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Synergistic effects of nab-PTX
and anti-PD-1 antibody
combination against lung
cancer by regulating the Pi3K/
AKT pathway through the
Serpinc1 gene

Jun Zhang1, Zhijia Tang1, Xi Guo2, Yunxia Wang1,
Yuhong Zhou2 and Weimin Cai1*

1Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China,
2Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
Lung cancer is a type of cancer with higher morbidity and mortality. In spite of

the impressive response rates of nab-paclitaxel (nab-PTX) or programmed cell

death-1 (PD-1) and its ligand inhibitors, the effective treatment remains limited.

Currently, alternative strategies aim at drug combination of nab-PTX and PD-1/

PD-L1 inhibitors. Even as the clinical impact of the combined agents continues

to increase, basic research studies are still limited and the mechanisms

underlying this synergy are not well studied. In this study, we evaluated the

antitumor efficacy and the molecular mechanisms of action of nab-PTX in

combination with anti-PD-1 antibody, using Lewis lung carcinoma (LLC) cell

and subcutaneously transplanted tumor models. The combination of nab-PTX

and anti-PD-1 antibody displayed stronger antitumor effects, manifested at

tumor volume, proliferation and apoptosis through Ki67 and TUNEL staining.

In-vivo experiments showed significant increases in CD4+ T cells, CD8+ T cells,

IFN-g, TNF-a, IL-2, PF, and Gzms-B, exerting antitumor effects with reductions

in MDSCs and IL-10 after the treatments. Furthermore, transcriptomic analysis

indicated 20 overlapped differentially expressed genes, and Serpin peptidase

inhibitor clade C Member 1 (Serpinc1) was downregulated during treatment in

vivo, whose expression level was markedly related to metastasis and overall

survival of lung cancer patients. Functional enrichment analysis of the target

gene revealed primary GO terms related to tumor, which warrants further

investigation. We also found that Serpinc1 overexpression promoted cell

proliferation, migration, and invasion and inhibited cell apoptosis of LLC cells

in vitro, possibly regulating the associated factors via the Pi3K/AKT pathway. In

summary, our results reveal the synergistic antitumor responses of nab-PTX

combined with anti-PD-1 antibody, in which Serpinc1 may play an important

role, providing a target gene for combination treatment strategy.
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Introduction

Lung cancer is the most common cancer (1) and the main

cause of cancer death. The majority of lung cancer is non-

small cell lung cancer (NSCLC), usually diagnosed at

advanced stages (2), accounting for approximately 80% with

a high metastatic potential (3). Although monotherapy with

chemotherapy and immune checkpoint inhibitors (ICIs) has

been widely used (4, 5), the combined agents have become a

new treatment modality against NSCLC due to the resistance

of chemotherapeutic drugs and limited efficacy of

programmed cell death-1 (PD-1) and its ligand inhibitors

a lone (6 , 7) . Among al l chemotherapeut ic drugs ,

nanoparticle albumin-bound paclitaxel (nab-PTX) has

become the preferred choice for combination therapy in

clinical settings, with its unique advantages such as higher

permeability, lower hematological toxicity, and no need for

hormone pretreatment compared with paclitaxel (8).

Moreover, in order to achieve rational drug use and develop

effective drug combination regimens, it is important to

understand the mechanisms behind the combined drugs,

which remains unclear.

There are few basic studies on chemotherapeutic drugs

combined with PD-1/PD-L1 inhibitors. A preclinical study

has indicated that a combination of gemcitabine (9) and

ant i -PD-1 therapy modulated the tumor immune

microenvironment, including tumor infiltration, in a Lewis

lung carcinoma (LLC) mouse model. Other chemotherapeutic

drugs, such as paclitaxel, cisplatin, or capecitabine, exerted

similar effects in mouse models with different types of cancer

(10, 11). Those findings provided insights into our study.

However, how the combination of nab-PTX and anti-PD-1

antibody exerts a synergist ic effect remains to be

further clarified.

It has been reported that to improve melanoma treatment,

the authors performed a transcriptomic analysis and identified a

melanoblast-specific gene, KDELR3, the deletion of which

impairs experimental metastasis (12). Transcriptomic analysis

offers a powerful means for mechanistic studies and for

biomarker identification, and the most common method for

transcriptomic analysis is RNA sequencing, which may be an

effective approach for our study. The aims of our study are to

investigate whether nab-PTX plus anti-PD-1 antibody exerts

synergistic effects, determine the potential therapeutic targets

using mRNA sequencing data, and explore significant biological

functions of the target gene. Consequently, we showed the

antitumor effects of the combined agents in vivo and identified

for the first time the important role of Serpinc1 in lung cancer

progression and treatment, including cell proliferation,

apoptosis, migration, and invasion possibly via the Pi3K/

AKT pathway.
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Materials and methods

Cell lines, reagents, and antibodies

LLC (LL/2; LLC1) was purchased by Procell Life Science &

Technology Co., Ltd. (China). Cells were cultured in DMEM

medium containing 10% fetal bovine serum and 1% penicillin/

streptomycin, at 37°C in an incubator with 5% CO2. Nab-

paclitaxel injection (CSPC OUYI Pharmaceutical Co., Ltd.,

China) was kindly provided by Zhongshan Hospital of Fudan

University (Shanghai, China). Anti-mouse PD-1 antibody

(CD279) (BE0146) was purchased from Bioxcell (USA).

Normal saline injection was obtained from Sinopharm

Chemical Reagent Co., Ltd. (China). Primer design and

synthesis were provided by Sangon Biotech Co., Ltd.

(China). Mouse antibodies specific for Flag tag, Serpinc1, N-

cadherin, E-cadherin, p53, Survivin, CyclinD1, Bcl-2, Bax,

P i3K, phos-P i3K, and AKT were purchased from

Proteintech (USA). Phospho-AKT (Ser473) was obtained

from Cell Signaling Technology (USA). The GAPDH

antibody was purchased from ABclonal (China). Mouse

anti-Ly-6G/Ly-6C (Gr-1)-APC, anti-CD11b-PE, anti-CD3-

PE/Cyanine7, anti-CD4-PerCP/Cyanine5.5, anti-CD8-

Brilliant Violet 510™, and anti-CD45-FITC antibodies were

purchased from BioLegend (USA).
Lewis lung cancer models of
C57BL/6 mice

C57BL/6 female mice (6–8 weeks old) were obtained from

Shanghai Lingchang Biotechnology Co., Ltd. (China), raised in

an SPF environment, free to drink and eat, and adapted to the

environment for 5–7 days. Six healthy mice were assigned to a

normal group without any treatment, and the others were

tumor-bearing. The mouse LLC model was established with

reference to the previous study (13).
In vivo treatment of tumor-bearing mice

When the average tumor volume of mice reached about

50–100 mm3, all mice were randomly assigned to four

treatment groups with different dosing schedules (Table 1).

Mice were weighed every 3 days for the duration of the study,

and the tumor volume (TV) of mice was measured and

calculated every 3 days ( TV=width2×length÷2 ). RTV

means the relative tumor volume and tumor growth

inhibition (TGI) value was another indicator to determine

the percentage of tumor growth inhibition and antitumor

efficacy in vivo ( TGI=1−RTV(test)⁄RTV(control) ×100% ). At
frontiersin.org
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the end of the experiment, the mice were sacrificed, and their

subcutaneous tumors were removed for further investigation

and photographed.
Immunohistochemistry analysis of Ki67
and TUNEL analysis

Fresh tumor tissues after the treatment were fixed with 4%

paraformaldehyde, and the steps making paraffin sections were

as described previously (13). The TUNEL assay and Ki67

immunohistochemistry (IHC) analysis were performed on the

sections to evaluate in-vivo cell proliferation and apoptosis

following the manufacturer’s instructions. Slices were observed

under a microscope (Nikon, Japan) and images were acquired.

Cells with a brown nucleus were considered positive for

Ki67, while green fluorescence staining indicated TUNEL-

positive cells.
Analysis of tumor-infiltrating
lymphocytes

The single-cell suspensions of spleens and tumors were

prepared as described (13). The peripheral blood and

single-cell suspensions from the spleen and tumor tissues

were lysed with red cell lysis buffer (BD Biosciences, USA),

stained with fluorescein-conjugated antibodies (BioLegend,

USA) at room temperature in the dark for 20 min, and

detected on CytoFlex S flow cytometer (Beckman, USA).

The following steps were processed in accordance with the

manufacturer’s instructions.
Cytokine quantification by ELISA in the
tumor microenvironment

Tumor tissues were harvested as mentioned above and then

homogenized cryogenically to collect the supernatants.

Cytokine levels in the supernatants were measured using

mouse cytokine ELISA kits (Shanghai Zhen Ke Biological

Technology Co., Ltd., China) to detect the changes of IL-2,

IL-10, IFN-g, TNF-a, PF, and Gzms-B caused by nab-PTX and
Frontiers in Oncology 03
anti-PD-1 antibody in the tumor microenvironment according

to the manufacturer’s procedures.
RNA sequencing and bioinformatics
analysis

Part of the excised tumor tissues was sequenced on an

Illumina NovaSeq platform by Beijing Berry Hekang

Biotechnology Co., Ltd. (China) to obtain the original

sequencing data (fastq format) for biological information

analysis. Comparisons of fragments per kilobase of transcript

per million mapped reads level were performed using one-way

ANOVA. Differential gene expression analysis for the samples

between two conditions was performed using the DEGSeq R

package (1.20.0). Differentially expressed genes (DEGs) were

defined as those for which the adjusted p-value was below 0.05

and the log2 (fold change) was more than 1. Venn diagrams were

generated using the “Venn Diagram” packages in R software,

and volcano plots of differential expression data were plotted

using the −log10 (p-value) and log2 (fold change) using the R

package ggplot2. The overlapped differentially expressed genes

of these three comparisons were hierarchical clustered with MeV

(MultiExperiment Viewer, v4.9.0) software using Euclidian

distance as the similarity metric (centered) and centroid

linkage as the clustering method. Gene Ontology (GO)

analysis of differentially expressed genes was implemented in

the GOseq R package. GO terms with adjusted p-value below

0.05 were considered as significantly enriched by differential

expressed genes. Moreover, the bar graphs of GO functional

enrichment terms were generated using GraphPad Prism 8.
Quantitative RT-PCR

Total RNA was extracted from tumor tissues or cells with

RNAiso Plus (Takara Bio Inc., Shiga, Japan). The first-strand

cDNA was generated using the HiScript III RT SuperMix for

qPCR with gDNA wiper (Vazyme Biotech Co., Ltd., China), and

quanti tat ive PCR was performed according to the

manufacturer’s instructions. The sequences of the primers are

shown in Table S1. The mRNA levels of the genes were

normalized to GAPDH mRNA expression.
TABLE 1 Experimental groups and dosing schedules of mouse LLC models (n = 6).

Group Dosing schedule

Control PBS (q3d., i.p.) + normal saline (q3d., i.v.) (d1–17)

Nab-PTX monotherapy PBS (q3d., i.p.) + nab-PTX in normal saline (10 mg/kg, q3d., i.v.) (d1–17)

Anti-PD-1 antibody monotherapy Anti-PD-1 antibody in PBS (200 mg, q3d., i.p.) + normal saline (q3d., i.v.) (d1–17)

Nab-PTX plus anti-PD-1 antibody Anti-PD-1 antibody in PBS (200 mg, q3d., i.p.) + nab-PTX in normal saline (10 mg/kg, q3d., i.v.) (d1–17)
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Correlation analysis from
public databases

TNMplot (14) (https://tnmplot.com/analysis/) was used to

compare Serpinc1 gene expression level in normal (n = 391),

tumor (n = 1,865), and metastatic (n = 8) lung tissues using gene

chip data. Kaplan–Meier curves were generated using an online

tool (http://kmplot.com/analysis/) (15) to investigate the

association of Serpinc1 (Affy ID: 210049_at) expression level

and overall survival (OS) of lung cancer patients (n = 1,925). The

KM plots, hazard ratio (HR) with 95% confidence intervals, and

log-rank p-value were calculated and plotted in R software. Lung

adenocarcinoma patients (n = 719) and squamous cell

carcinoma patients (n = 524) were further selected to

investigate this association.
Plasmids and transfection

Mouse Serpinc1 overexpression plasmid was constructed on

the control vector (pcDNA3.1-3xFlag-C) by Hunan Fenghui

Biotechnology Co., Ltd. (China). LLC cells were transfected with

the control vector or Serpinc1 overexpression plasmids using

Lipofectamine 3000 (Invitrogen, USA) following the

manufacturer’s instructions. The sequences for Serpinc1

overexpression used in the present study were as follows:

forward, GGCTGCTGGTGAGAGGAAG, and reverse,

GGATTCACGGGGATGTCTCG. After transfection, cells were

taken for qRT-PCR or Western blotting.
Western blotting

Cells were lysed with phosphatase and protease inhibitor in

RIPA lysis buffer and centrifuged at 12,000 rpm for 5 min to

collect the supernatants of protein. The total protein

concentration was determined by BCA assay using the BCA

Assay Kit (Beyotime Biotechnology, China). Electrophoresis and

membrane transfer were performed as described (16). Protein

bands were detected by enhanced chemiluminescence (ECL) kit

(Dalian Meilun Biotechnology Co., Ltd., China), developed by a

chemiluminescence imaging system and quantified using ImageJ

software (National Institutes of Health, Bethesda, MD, USA).
Analysis of cell viability and apoptosis

For cell proliferation capacity of transfected cells, cell

viability was detected at 24, 48, and 72 h post-transfection

with the CCK8 kit (Dalian Meilun Biotechnology Co., Ltd.,

China). Briefly, cells were plated into 96-well plates containing

a culture medium. Subsequently, the cells were exposed to
Frontiers in Oncology 04
different transfected vectors at indicated times. The CCK8

assay was carried out by adding 10 µl of CCK8 reagent into

each well, incubating at 37°C for another 1 h, and cell viability

was measured by testing the absorbance at 450 nm using a

microplate reader. Colony formation assay was performed (17)

to detect long-term cell survival with the transfection. The extent

of cell apoptosis was determined using Annexin V-FITC/PI kit

(Dalian Meilun Biotechnology Co., Ltd., China) according to the

manufacturer’s instructions.
Wound healing assays

Wound healing assays were conducted to evaluate the cell

mobility of Serpinc1 overexpressing LLC cells. Briefly, cells were

seeded in six-well plates, and then scratches were made with a

200-ml pipette tip to wound at a cell confluence of 90%. Each well

was washed twice with PBS gently and replaced with basal DMEM

containing the control vector or Serpinc1 overexpression plasmids.

Cells in each well were visualized and photographed under an

inverted microscope at the indicated time after wounding. The

width of the scratch gap was measured using ImageJ software

(National Institutes of Health, Bethesda, MD, USA). Wound

healing rate was calculated as follows: Wound healing rate=

((initial wound width−wound width at tested time point ))⁄

(initial wound width)×100% .
Transwell assays

Cell migration and invasion were determined by Transwell

assays. Cells were transfected with the control vector or Serpinc1

overexpression plasmids for 24, 48, and 72 h. Then after digestion,

cells were resuspended, counted, and seeded in a 100-ml serum-

free medium in the Transwell chamber (8 mm pore size, Corning

Inc., USA), and the lower chamber was filled with 600 ml of
medium containing 10% serum. After 12–24 h, the translocated

cells were fixed and stained, and then images were captured by an

inverted microscope. For the cell invasion assay, the upper sides of

the chambers were coated with 2% Matrigel (BD Biosciences,

USA) diluted in 100 ml of serum-free medium in advance. The

other procedures were the same as described above.
Statistics

Data are presented as mean ± standard deviation from at

least three independent experiments. Statistical analysis was

performed using GraphPad Prism 8 by two-tailed unpaired

Student’s t-tests between two groups. One- or two-way

analysis of variance (ANOVA) was used for multiple

comparisons among three or more groups. Statistically
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significant differences are annotated with a line segment and an

asterisk. Sample size, the number of replicates, and the statistical

test are described in the figure captions. A p-value less than 0.05

is considered statistically significant.
Results

nab-PTX plus anti-PD-1 antibody inhibits
synergistically LLC tumor growth in vivo

To investigate the antitumor responses after a combination

of nab-PTX and anti-PD-1 antibody, a subcutaneous LLCmouse

model was established, and then the mice were administered

different drugs. The indicated doses of both drugs were shown to

be well tolerated as evaluated by monitoring the changes of

murine body weight (Figure S1). We also found that tumors in

each group grew gradually (Figure 1A). Monotherapy with anti-

PD-1 antibody showed limited activity (TGI 29%), and nab-PTX

slightly increased tumor growth inhibition (TGI 43%), while the

combination treatment of nab-PTX and anti-PD-1 antibody

resulted in substantially improved efficacy (TGI 60%, p< 0.05)

compared with any monotherapy group. In addition to the

indicator of tumor volume, Ki67 staining revealed a significant

decrease in proliferating cancer cells with the combined agents

(Figure 1B). Analogous to the results in Ki67 analysis, TUNEL-

positive staining was observed in more areas of the tumor

sections after the combination therapy of nab-PTX and anti-

PD-1 antibody, suggesting a strong pro-death effect of the

combination treatment in vivo (Figure 1C). These results

demonstrated that the combination treatment significantly

improved antitumor efficacy compared with nab-PTX or anti-

PD-1 antibody alone, showing synergies in vivo.
Combination treatment alters immune
infiltration in vivo

To assess the influence of combined agents on immune

function in the process of tumor development, we next

examined tumor infiltration in murine peripheral blood,

spleens, and tumors using flow cytometry. We found that

tumor-bearing mice had markedly increased myeloid-derived

suppressor cells (MDSCs) in the spleen and blood compared

with non-tumor-bearing mice, and the combination treatment

significantly decreased the infiltration of MDSCs compared with

any treatment group (Figures 2A, C, 3A, C, p< 0.05). As for

tumors, there was no obvious reduction in MDSCs (Figures 2B,

3B). In the spleen tissues, we found significantly higher

percentages of CD4+ and CD8+ T cells in mice treated with

combination treatment compared with those that received

monotherapy or untreated controls, while tumor-bearing mice

had decreased CD4+ T cells (Figures 3A, S2A, B, p< 0.05).
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Furthermore, the percentages of CD4+ and CD8+ T cells were

induced by the combination treatment in tumor tissues

(Figures 3B, S2C, D, p< 0.05), and the combined therapy

increased the proportion of CD4+ T cells in the peripheral

blood of mice, without affecting CD8+ T cells (Figures 3C,

S2E, F, p< 0.05). The results showed that the synergistic effects

against LLC murine tumor model contributed to the activation

of adaptive immunity.
Combination treatment modulates
cytokines in the tumor
microenvironment

Furthermore, cytokine secretion is also a typical indication

of antitumor immune responses. Thus, we subsequently detected

the relative changes of TNF-a, IFN-g, IL-10, IL-2, PF, and
Gzms-B concentrations by ELISA kits. We found that TNF-a,
IFN-g, and IL-2, which play vital roles in immunity against

tumor growth, were relatively upregulated with these treatments

(Figures 4A, B, D, p< 0.05). The change of IL-10 concentration, a

cytokine involved in immunosuppression, was relatively

decreased by the administration of nab-PTX and anti-PD-1

antibody (Figure 4C, p< 0.05). In addition, the combination

also induced the secretion of PF and Gzms-B (Figures 4E, F,

p< 0.05). The above experimental results illustrated that the

combination of nab-PTX and anti-PD-1 antibody regulated the

immune microenvironment, including several cytokines, and

thereby may activate and enhance antitumor immune responses.
Tumor tissues from mice treated with
combined agents have a differential
gene signature

To further illustrate the underlying mechanisms of the

synergistic antitumor efficacy, we performed a transcriptomic

analysis of murine tumor tissues. RNA was extracted from the

tumor tissues and prepared for library construction. Through

sequencing and differential gene expression analysis, we

obtained differentially expressed genes from the pairwise

comparisons between the different groups separately. Volcano

plots showed the numbers of upregulated and downregulated

DEGs caused by combined agents, with three datasets in

pairwise comparison between groups (Figure 5A). By taking

the intersection of these three DEG datasets, 20 co-expressed

DEGs were selected (Figure 5B), which were Serpinc1, Fcrls,

Nrn1, Igkv12-38, Apela, Gm7461, Gm43311, Prg4, Ccdc3,

Fam107a, Hs3st6, Has1, Fbxo15, Chst3, Lrrc2, Tdrd6, Cd1d2,

Erp27, Cntnap5a, and Gldc. In addition, the heatmap

visualization tool showed detailed gene expression patterns

underlying individual functions of these 20 overlapped DEGs,

indicating similar clustering (Figure 5C). The mRNA expression
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B

C

A

FIGURE 1

The antitumor responses of mice treated with nab-paclitaxel (nab-PTX) and anti-PD-1 antibody. (A) Macroscopic images and tumor growth
curve in mouse LLC cancer models (n = 6, biological duplicates), statistically analyzed with two-way ANOVA followed by Tukey’s multiple
comparisons. ***p< 0.001, ****p< 0.0001. (B) Immunohistochemistry staining of Ki67 for tumor sections (n = 3, magnification ×20, biological
duplicates). The hematoxylin-stained nucleus is blue, and the positive expression of DAB is brownish yellow. (C) Apoptosis detection of tumor
sections by TUNEL staining after the last administration (n = 3, magnification ×200, biological duplicates). Green, TUNEL staining; blue, DAPI.
The red arrow denotes a representative TUNEL-positive cell.
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levels of 10 DEGs (Serpinc1, Has1, Nrn1, Lrrc2, Tdrd6, Erp27,

Fcrls, Fam107a, Chst3, Cd1d2) in tumor tissues by qRT-PCR

were consistent with our transcriptomic analysis, while the

expression levels of seven DEGs (Apela, Prg4, Gldc, Cntnap5a,

Fbxo15, Ccdc3, Hs3st6) were opposite with transcriptomic

analysis (Figures 5D, S3, data not shown partially). Moreover,

the other three genes (Igkv12-38, Gm7461, Gm43311) have no

primer information for qPCR.

Furthermore, we chose to study one gene in depth in order

to understand the functions of these genes in the antitumor

process. Among the co-expressed genes, Serpinc1 was selected as

it was a positive hit in our analyses. Serpinc1 encodes

antithrombin III, whose expression level in tumors was

significantly downregulated by combination treatment in vivo

(Figure 5D). Moreover, from the gene chip data of the GEO

database, we observed a higher Serpinc1 expression level in

metastatic patients with lung cancer (Figure 6A), suggesting a

positive association between Serpinc1 gene expression and

tumor metastasis. Kaplan–Meier’s plots revealed a significant

inverse correlation of Serpinc1 gene expression and overall

survival in lung cancer patients (Figure 6B), especially in

patients with lung adenocarcinoma (Figure 6C), but there was

no significant inverse correlation in patients with lung squamous

cell carcinoma (Figure 6D). These data raised the possibility that

the Serpinc1 gene may play a role in tumor metastasis and poor

survival in lung cancer patients.
Frontiers in Oncology 07
GO functional enrichment analysis
reveals that the Serpinc1 gene correlates
with tumor progression

To determine the significant and accurate functions of the

Serpinc1 gene, GO enrichment analysis was performed. In the

datasets of the pairwise comparison between the control and

combination treatment (Figure 7A), Serpinc1 related to

biological processes (BP) was primarily enriched in the

regulation of blood coagulation, intrinsic pathway (p< 0.01),

whereas the target gene related to cellular components (CC)

was enriched in the function of blood microparticle (p< 0.01).

In addition, molecular function (MF) analysis showed that

Serpinc1 was involved in serine-type endopeptidase inhibitor

activity (p< 0.01). nab-PTX and combination treatment

comparison datasets indicated that the gene related to BP

was enriched in the developmental process (p< 0.0001),

response to wounding (p< 0.05), and regulation of molecular

function (p< 0.05). It was enriched in blood microparticle in

terms of cellular components, whereas it was also enriched in

protein binding in terms of molecular function (Figure 7B,

p< 0.001). Furthermore, the enrichment analysis of the

datasets between anti-PD-1 antibody and combined drugs

showed that Serpinc1 related to BP was involved in cell

proliferation (p< 0.001), regulation of cell adhesion

(p< 0.01), and response to wounding (p< 0.05). The
B

C

A

FIGURE 2

Representative flow cytometric plots of MDSCs in (A) spleen (n = 3, biological duplicates), (B) tumor (n = 5, biological duplicates), and
(C) peripheral blood (n = 3, biological duplicates) after treatment with nab-PTX and anti-PD-1 antibody.
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enriched function of CC included extracellular space

(p< 0.0001), while the enriched function of MF was sulfur

compound binding (Figure 7C, p< 0.001). Through the

functional enrichment analysis, we determined several

critical tumor-related functions of the Serpinc1 gene, such as

cell adhesion, proliferation, and response to wound healing,

worthy of being further investigated.
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Serpinc1 may play a vital role in the
antitumor efficacy in vitro

Based on this positive correlation between Serpinc1 gene

expression and metastasis shown in public databases and the

above enriched functions, we hypothesized that the Serpinc1

gene performs important roles in the regulation of cancer
B

C

A

FIGURE 3

The combination of nab-PTX and anti-PD-1 antibody regulates immune infiltration. The frequency of MDSCs, CD8+ T cells, and CD4+ T cells in
the (A) spleen (n = 3, biological duplicates), (B) tumor (n = 5, biological duplicates), and (C) blood (n = 3, biological duplicates) using one-way
ANOVA followed by Tukey’s multiple comparisons. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001.
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progression in vitro, including proliferation, apoptosis, and

metastasis. We next focused on the identified pathway

analyses. Both cell migration and invasion were directly related

to tumor metastasis. We sought to functionally validate the role

of Serpinc1 in cancer progression with LLC cells. We firstly

constructed LLC cells overexpressing the Serpinc1 gene and

confirmed successful transfection by Western blotting and

qRT-PCR (Figures 8A, B, p< 0.05). Subsequently, we

performed wound healing, migration, and invasion assays

using Serpinc1 overexpressing LLC cells. Cells with Serpinc1

overexpression plasmid resulted in a faster closure of scratch

wounds at 48 h than cells transfected with the control vector

(Figure 8C, p< 0.05). Consistently, cell migration and invasion

assays showed that compared with the control vector group,

translocated cells were significantly increased in the Serpinc1

overexpressing group, i.e., Serpinc1 overexpressing cells

displayed markedly induced ability of migration and invasion

24 and 48 h post-transfection (Figures 8D, E, p< 0.05).
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Additionally, we also investigated the effects of Serpinc1

overexpression on cell proliferation and apoptosis. We

observed that Serpinc1 gene overexpression promoted long-

term proliferation (Figure 8F, p< 0.0001) and increased cell

viability of LLC cells compared with the control vector group;

however, the cell survival rates of both groups were lower than

the non-transfected blank group (Figure 8G, p< 0.05). Apoptotic

cells were also increased in the control vector group than in the

non-transfected blank group (Figure 8H, p< 0.0001). The lower

cell viability and more apoptotic cells with transfection in

Figures 8F–H may be all due to the inevitable toxicity of

transfection reagents. Furthermore, Serpinc1 overexpression

markedly reduced the apoptotic cells compared with the

control vector group (Figure 8H, p< 0.001). Taken together,

these results demonstrated that the Serpinc1 gene may affect cell

migration, invasion, proliferation, and apoptosis of LLC cells,

possibly associated with the antitumor efficacy of the

combination treatment.
B C

D E F

A

FIGURE 4

Concentrations of (A) TNF-a, (B) IFN-g, (C) IL-10, (D) IL-2, (E) PF, and (F) Gzms-B in the tumor microenvironment with the administration of
nab-PTX and anti-PD-1 antibody (n = 3, biological duplicates). TNF-a, tumor necrosis factor a; IFN-g, interferon-gamma; IL-10, interleukin 10;
IL-2, interleukin 2; PF, perforin; Gzms-B, granzymes B. The data were from three independent biological replicates with one-way ANOVA
followed by Tukey’s multiple comparisons. **p< 0.01, ***p< 0.001, ****p< 0.0001.
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B

C

D

A

FIGURE 5

Transcriptomic analysis of mRNA in tumor tissues treated with nab-PTX and anti-PD-1 antibody. (A) Volcano plots of differentially expressed
genes. Red dots represent upregulated genes, green dots represent downregulated genes, and blue dots represent genes with no significant
changes in expression. (B) Venn diagram shows the 20 co-expressed DEGs among the three comparisons. (C) Gene expression patterns of the
overlapped 20 DEGs between every two comparison groups using clustering heatmaps. Red in the heatmap indicates high expression, and
green indicates low expression. (D) Validation of partial DEGs by qRT-PCR (n = 3, biological duplicates), statistically analyzed with two-way
ANOVA followed by Tukey’s multiple comparisons. *p< 0.05, **p< 0.01.
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Serpinc1 overexpression affects
metastasis, cell cycle, and apoptosis-
associated genes and proteins through
Pi3K/AKT phosphorylation

Metastasis (N-cadherin and E-cadherin), cell cycle

(CyclinD1 and p53), and apoptosis (Bcl-2, Bax, and Survivin)-

associated gene and protein expression levels were determined to

further investigate the molecular effects of the Serpinc1 gene. The

relative expression levels of N-cadherin, Survivin, CyclinD1, and

Bcl-2 mRNA were significantly upregulated in Serpinc1

overexpressing cells compared with those in the control vector

group, while those of E-cadherin, p53, and Bax mRNA were

downregulated (Figure 9A, p< 0.05). Similar alternations in the

expression levels of these proteins were also observed (Figure 9B,

p< 0.05). Moreover, the phosphorylation levels of Pi3K and AKT

were induced in cells with Serpinc1 overexpression (Figure 9C,

p< 0.05), suggesting that Serpinc1 overexpression activated the

Pi3K/AKT pathway. All these data indicated that overexpression
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of the Serpinc1 gene in LLC cells may exert functions in cell

migration, invasion, proliferation, and apoptosis via the Pi3K/

AKT pathway, regulating metastasis, cell cycle, and apoptosis-

associated factors.
Discussion

In recent years, the proportion of combination treatment has

increased. Previous studies, especially clinical trials, have shown

that the combination of chemotherapy and immune checkpoint

inhibitors improves the outcomes of patients with several

cancers (18–21), with few mechanistic studies. To address the

limitation of unclear mechanisms of nab-PTX and anti-PD-1

antibody combination, we made several attempts in our study by

establishing in-vivo and in-vitro models. Here, we provided

multiple lines of evidence demonstrating the synergies of nab-

PTX combined with the anti-PD-1 antibody. We firstly

demonstrated that the synergistic effects of nab-PTX and anti-
B

C D

A

FIGURE 6

The clinical outcomes of high Serpinc1 gene expression in public databases. (A) Comparisons of Serpinc1 gene expression in normal (n = 391),
tumor (n = 1,865), and metastatic tissues (n = 8) in lung cancer patients using one-way ANOVA followed by Dunnett’s multiple comparisons.
Kaplan–Meier survival analysis of OS according to Serpinc1 expression level in (B) lung cancer patients (n = 2,437), (C) lung adenocarcinoma
patients (n = 719), and (D) lung squamous cell carcinoma patients (n = 524).
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PD-1 antibody reduced tumor volume growth by up to 60% in

an in-vivo model of lung cancer.

It has been reported that the efficacy of chemotherapeutic

drugs does not reflect only in direct cytotoxic effects but also in

increasing immunogenicity of malignant cells, or inhibiting

immunosuppressive circuitries (22–24), which might lead to

enhanced e fficacy of the combina t ion t rea tment .

Chemotherapeutic drugs can stimulate tumor-infiltrating

lymphocytes and inhibit immunosuppressive cells (24, 25),

while PD-1/PD-L1 interaction promotes differentiation of

CD4+ T cells into FoxP3+ Tregs (26, 27), inhibits tumor-

specific T-cell activities, and induces T-cell apoptosis (28),

further suppressing the immune system and resulting in

peripheral immune tolerance in cancer patients. Consistent

with previous findings, we discovered that the combination
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significantly increased the infiltration of CD4+ T cells and

CD8+ T cells in the TME. The percentages of MDSCs in the

spleen and blood confirmed that mice had stronger

immunosuppressive effects when they were implanted

tumors, and the combination of nab-PTX and anti-PD-1

antibody may inhibit immunosuppression and thereby slow

tumor growth. During antigen presentation, nab-PTX plus

anti-PD-1 antibody also led to changes in cytokines in the

tumor microenvironment, and this trend was in line with

relevant reports (29). In addition, it is usually believed that

CD8+ T cells induce tumor cell death through the following

two main methods: i) perforin–granzyme and ii) Fas–FasL (30,

31). The secretion of granzymes and perforin reflects the

act ivat ion of CD8+ T ce l l s . Thus , the increas ing

concentrations of Gzms-B and PF indicated that nab-PTX
B

C

A

FIGURE 7

GO analysis of the functional classification of the target gene. The top 10 enriched GO terms of the Serpinc1 gene in molecular function (MF),
cellular component (CC), and biological process (BP) in the comparison between (A) the control and the combination group, (B) nab-PTX and
the combination group, and (C) anti-PD-1 antibody and the combination group.
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combined with anti-PD-1 antibody promoted CD8+ T-cell

activation. All results of cytokines provided strong evidence

to support that nab-PTX synergized potently with anti-PD-1

antibody in vivo through the immune system.

More than that, we also attempted to explore the possible

molecular mechanisms. In the exploration of underlying

mechanisms, we determined 20 co-expressed DEGs through

transcriptomic analysis of post-treatment tumor tissues. By

qPCR validation, gene expression comparison from the gene

chip data (Figure 6A), and Kaplan–Meier curves (Figures 6B–D),

we identified a hit gene, Serpinc1, to delve into the biological role.

Therefore, GO enrichment analysis was used to predict its

function, and it was found that Serpinc1 was mainly enriched

in the regulation of blood coagulation, cell proliferation,

adhesion, response to wounding, and response to stimulus.
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Additionally, it was reported that Serpinc1 may be related to

the development of colorectal cancer (32), breast cancer (33),

head and neck cancer (33), ovarian cancer (34), nasopharyngeal

cancer (35), liver cancer (36), and endometrial cancer (37),

involving the proliferation, migration, and invasion of tumor

cells. In a study about lung adenocarcinoma patients (38), eight

TME-related prognostic genes were identified by LASSO

regression and random forest algorithm, including the

Serpinc1 gene. Though these studies have not stated clearly the

relationship between the Serpinc1 gene and lung cancer, they

provide a theoretical basis that it is feasible to assume that

Serpinc1 may be a critical gene for the progression, metastasis,

and prognosis of lung cancer.

In our study, Serpinc1 expression was regulated by the

combination treatment in vivo and involved in cell
B

C D

E F

G H

A

FIGURE 8

Effects of Serpinc1 gene on cell migration, invasion, proliferation, and apoptosis. The transfection of Serpinc1 was determined using (A) Western
blot analysis and (B) qRT-PCR by one-way ANOVA (n = 3). (C) Wound healing assay was measured and analyzed using two-way ANOVA (n = 3,
magnification ×200). The rates of (D) migration and (E) invasion were determined with transfection for 24, 48, and 72 h with two-way ANOVA
(n = 3, magnification ×400). (F) Colony formation assay (n = 3) and (G) CCK8 assay (n = 5) of Serpinc1 overexpressing LLC cells were used to
determine cell viability with ANOVA. (H) Apoptotic cells post-transfection were detected on flow cytometry using one-way ANOVA (n = 6).
*p< 0.05, ***p< 0.001, ****p< 0.0001. Serpinc1-OE, Serpinc1 overexpression.
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proliferation, apoptosis, migration, and invasion of LLC cells.

Serpinc1 gene overexpression modulated the expression of N-

cadherin, E-cadherin, Survivin, p53, CyclinD1, Bcl-2, and Bax,

elaborating that the Serpinc1 gene may contribute to the

pathogenesis of lung cancer. Furthermore, the Pi3K/AKT

pathway has been reported to participate in the pathogenesis

of numerous cancer types (39, 40), crucial to tumor cell growth,

survival, death, and epithelial-to-mesenchymal transition (41–

43). In recent years, the link between the Pi3K/AKT pathway
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and coagulation has been reported in several studies (44, 45).

Therefore, Serpinc1, a most important serine protease inhibitor

that regulates the blood coagulation cascade, is possibly related

to this signaling pathway. Actually, we observed that Serpinc1

overexpression activated the phosphorylation levels of Pi3K/

AKT (Figure 9C), thereby illustrating that the possible

mechanism of the Serpinc1 gene involved in cancer

progression may be due to signal transduction of the Pi3K/

AKT pathway. Thus, Serpinc1may be a meaningful indicator for
B

C

A

FIGURE 9

Effects of Serpinc1 gene overexpression on the expression of genes and proteins involved in cellular migration, invasion, cycle, and apoptosis.
(A) N-cadherin, E-cadherin, p53, Survivin, CyclinD1, Bcl-2, and Bax mRNA in non-transfected blank, empty vector control, and Serpinc1
overexpressing cells (n = 3). (B) Expression levels of N-cadherin, E-cadherin, p53, Survivin, CyclinD1, Bcl-2, and Bax proteins were determined
by Western blotting (n = 3). (C) The phosphorylation of Pi3K and AKT was determined by Western blot analysis (n = 3). p-values were analyzed
by two-way ANOVA with Tukey’s multiple comparisons; comparison between the control vector and Serpinc1 overexpression. *p< 0.05,
**p< 0.01, ***p< 0.001, ****p< 0.0001. Bcl-2, B-cell lymphoma 2; Bax, Bcl-2-associated X protein; AKT, protein kinase B; Pi3K,
phosphatidylinositol 3-kinase.
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the therapeutic efficacy of this combination. Furthermore, this

target gene will be investigated in greater depth by verifying on

humanized cells, other lung cancer cell lines, and metastatic

tumor models, taking dosage modulation into consideration as

well. The association between Serpinc1 and the Pi3K/AKT

pathway and how the Serpinc1 protein exerts its effects on

cancer cells require further investigation. We will attempt to

address these issues in future research.

Here, the transcriptomic analysis of mouse LLC lung

cancer models was performed to generate a resource of

antitumor synergistic genes, which facilitates elucidation of

the underlying mechanisms of the combination. We anticipate

that further investigation of Serpinc1 and other now-

uncovered genes/pathways will help reveal the synergy of

nab-PTX and anti-PD-1 antibody in tumor types other than

lung cancer. In conclusion, this study provides a strong

support for the synergistic effect of nab-PTX combined with

anti-PD-1 antibody in inhibiting tumor growth, enhancing

immune responses, and suppressing Serpinc1 gene expression

and emphasizes the role of Serpinc1 overexpression in cancer

development. Therefore, reducing the expression of Serpinc1

may be considered as an effective approach to treat

lung cancer.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: https://www.ncbi.

nlm.nih.gov/, PRJNA833745.
Ethics statement

The animal study was reviewed and approved by

Institutional Animal Care and Use Committee (IACUC),

School of Pharmacy, Fudan University.
Frontiers in Oncology 15
Author contributions

JZ designed the experiments and had full access to all the

data in the study. Agents were provided by XG and YZ. Study

design: JZ and YW. Drafting of the manuscript and statistical

analysis: JZ. Revision of the manuscript: ZT. Supervision: WC.

All authors contributed to the article and approved the

submitted version.
Funding

This work was supported by grant from the National Natural

Science Foundation of China [Grant No. 8217130423].
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.933646/full#supplementary-material
References

1. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre LA, Jemal A, et al. Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68(6):394–
424. doi: 10.3322/caac.21492

2. Adrianzen Herrera D, Ashai N, Perez-Soler R, Cheng H. Nanoparticle
albumin bound-paclitaxel for treatment of advanced non-small cell lung cancer:
An evaluation of the clinical evidence. Expert Opin Pharmacother (2019) 20(1):95–
102. doi: 10.1080/14656566.2018.1546290

3. Su XH, Zhu YR, Hou YJ, Li K, Dong NH. PVT1 induces NSCLC cell
migration and invasion by regulating IL-6 via sponging miR-760. Mol Cell Probes
(2020) 54. doi: 10.1016/j.mcp.2020.101652

4. Schizas D, Charalampakis N, Kole C, Economopoulou P, Koustas E, Gkotsis
E, et al. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat Rev
(2020) 86. doi: 10.1016/j.ctrv.2020.102016
5. Feng M, Xiong G, Cao Z, Yang G, Zheng S, Song X, et al. PD-1/PD-L1 and
immunotherapy for pancreatic cancer. Cancer Lett (2017) 40:57–65. doi: 10.1016/
j.canlet.2017.08.006

6. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al.
Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N
Engl J Med (2018) 379(22):2108–21. doi: 10.1056/NEJMoa1809615

7. Fang W, Yang Y, Ma Y, Hong S, Lin L, He X, et al. Camrelizumab (SHR-
1210) alone or in combination with gemcitabine plus cisplatin for nasopharyngeal
carcinoma: Results from two single-arm, phase 1 trials. Lancet Oncol (2018) 19
(10):1338–50. doi: 10.1016/S1470-2045(18)30495-9

8. Soliman HH. Nab-paclitaxel as a potential partner with checkpoint
inhibitors in solid tumors. OncoTargets Ther (2017) 10:101–12. doi: 10.2147/
OTT.S122974
frontiersin.org

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/articles/10.3389/fonc.2022.933646/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.933646/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.1080/14656566.2018.1546290
https://doi.org/10.1016/j.mcp.2020.101652
https://doi.org/10.1016/j.ctrv.2020.102016
https://doi.org/10.1016/j.canlet.2017.08.006
https://doi.org/10.1016/j.canlet.2017.08.006
https://doi.org/10.1056/NEJMoa1809615
https://doi.org/10.1016/S1470-2045(18)30495-9
https://doi.org/10.2147/OTT.S122974
https://doi.org/10.2147/OTT.S122974
https://doi.org/10.3389/fonc.2022.933646
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.933646
9. Du B, Wen X, Wang Y, Lin M, Lai J. Gemcitabine and checkpoint blockade
exhibit synergistic anti-tumor effects in a model of murine lung carcinoma. Int
Immunopharmacol (2020) 86. doi: 10.1016/j.intimp.2020.106694

10. Peng J, Hamanishi J, Matsumura N, Abiko K, Murat K, Baba T, et al.
Chemotherapy induces programmed cell death-ligand 1 overexpression via the
nuclear factor-kb to foster an immunosuppressive tumor microenvironment in
ovarian cancer. Cancer Res (2015) 75(23):5034–45. doi: 10.1158/0008-5472.CAN-
14-3098

11. Grasselly C, Denis M, Bourguignon A, Talhi N, Mathe D, Tourette A, et al.
The antitumor activity of combinations of cytotoxic chemotherapy and immune
checkpoint inhibitors is model-dependent. Front Immunol (2018) 9. doi: 10.3389/
fimmu.2018.02100

12. Marie KL, Sassano A, Yang HH,Michalowski AM, Michael HT, Guo T, et al.
Melanoblast transcriptome analysis reveals pathways promoting melanoma
metastasis. Nat Commun (2020) 11(1):333. doi: 10.1038/s41467-019-14085-2

13. Zhao S, Ren S, Jiang T, Zhu B, Li X, Zhao C, et al. Low-dose apatinib
optimizes tumor microenvironment and potentiates antitumor effect of pd-1/pd-l1
blockade in lung cancer. Cancer Immunol Res (2019) 7(4):630–43. doi: 10.1158/
2326-6066.CIR-17-0640
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