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Objectives: Accurate histological typing plays an important role in diagnosing

thymoma or thymic carcinoma (TC) and predicting the corresponding

prognosis. In this paper, we develop and validate a deep learning-based

thymoma typing method for hematoxylin & eosin (H&E)-stained whole slide

images (WSIs), which provides useful histopathology information from patients

to assist doctors for better diagnosing thymoma or TC.

Methods: We propose a multi-path cross-scale vision transformer (MC-ViT),

which first uses the cross attentive scale-aware transformer (CAST) to classify

the pathological information related to thymoma, and then uses such

pathological information priors to assist the WSIs transformer (WT) for

thymoma typing. To make full use of the multi-scale (10×, 20×, and 40×)

information inherent in a WSI, CAST not only employs parallel multi-path to

capture different receptive field features from multi-scale WSI inputs, but also

introduces the cross-correlation attention module (CAM) to aggregate multi-

scale features to achieve cross-scale spatial information complementarity.

After that, WT can effectively convert full-scale WSIs into 1D feature matrices

with pathological information labels to improve the efficiency and accuracy

of thymoma typing.

Results: We construct a large-scale thymoma histopathology WSI (THW)

dataset and annotate corresponding pathological information and thymoma

typing labels. The proposed MC-ViT achieves the Top-1 accuracy of 0.939 and

0.951 in pathological information classification and thymoma typing,

respectively. Moreover, the quantitative and statistical experiments on the

THW dataset also demonstrate that our pipeline performs favorably against

the existing classical convolutional neural networks, vision transformers, and

deep learning-based medical image classification methods.

Conclusion: This paper demonstrates that comprehensively utilizing the

pathological information contained in multi-scale WSIs is feasible for

thymoma typing and achieves clinically acceptable performance. Specifically,
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the proposed MC-ViT can well predict pathological information classes as well

as thymoma types, which show the application potential to the diagnosis of

thymoma and TC and may assist doctors in improving diagnosis efficiency and

accuracy.
KEYWORDS

thymoma typing, histopathology whole slide image, vision transformer, cross-
correlation attention, multi-scale feature fusion
Introduction

Thymic epithelial tumors (i.e., thymomas) are uncommon

and primary anterior mediastinum neoplasms derived from the

thymic epithelium. According to the histological classification

standard, the World Health Organization (WHO) distinguishes

thymomas (types A, AB, B1, B1+B2, B2, B2+B3, and B3) from

thymic carcinoma (TC) (1, 2). Considering that thymoma may

gradually develop into TC, thymoma typing is crucial to assist

doctors in diagnosis and prognosis (3). The morphological

diagnosis of thymoma has traditionally posed difficulties for

histopathologists since thymoma has great histological

variability and intratumoral heterogeneity (4, 5), and it is

difficult to conceptualize a cogent and easily reproducible

morphological classification standard. Currently, based on the

schema of WHO, the morphological classification of thymic

epithelial neoplasms is described as follows: Type A thymoma

usually consists of the spindle or ovoid-shaped cells with bland

nuclei, scattered chromatin, and inconspicuous nucleoli

arranged in solid sheets with few or no lymphocytes in the

tumor. By comparison, type B thymoma may display coarse

lobulation delineated by fibrous septa. Type B1 thymoma

contains dense lymphocyte neoplastic with scant neoplastic

epithelial cells, which are composed of oval cells with pale

round nuclei and small nucleoli. In type B2 thymoma, the

neoplastic thymic epithelial cells are increased in number and

appear as scattered plump cells among equivalent mixed

lymphocytes. The epithelial cells are large and polygonal,

which have obvious vesicular nuclei and central prominent

nucleoli, and show a tendency to palisade around vessels and

fibrous septa. Here, dilated perivascular spaces are commonly

existed. Type B3 thymoma corresponds to the lobular growth

pattern of a smoothly contoured tumor composed

predominantly of epithelial cells having a round or polygonal

shape and clear cytoplasm. Note that perivascular spaces with

epithelial palisading are prominent, and lymphocytes are almost

always interspersed among the tumor cells. In addition, type AB

thymoma has features of type A thymoma that are admixed with

foci showing features of type B thymoma. TC exhibits clear-cut
02
cytological atypia and a set of cytoarchitectural features no

longer specific to the thymus (6).

At present, the diagnosis of thymoma and TC basically relies

on the visual observation of WSIs by histopathologists. With the

rapid development of deep learning technology, we aim to

develop a computer-assisted diagnosis (CAD) system to

provide doctors with more histopathological information to

assist the diagnosis and prognosis. More specifically, we can

achieve the initial screening of WSIs through an efficient CAD

system (7–10) to assist doctors in obtaining the detailed

thymoma pathological information and the accurate thymoma

typing results. Over the past few years, convolutional neural

networks (CNNs) have shown excellent performance in most

computer vision tasks including medical image processing.

However, many studies (11–13) have gradually discovered

some inherent limitations of CNNs, such as the difficulty in

modeling long-range dependencies and the local receptive field.

To better modeling global feature relations, some scholars

extend the transformer from the natural language processing

field to the computer vision field, and then propose high-

performance vision transformers (ViTs) including Swin-T

(12), PVT (13), LeViT (14), TNT (15), T2T-ViT (16), IPT

(17), and Uformer (18) to serve various high-level and low-

level vision tasks. In addition, there are also some ViT variants

developed to achieve medical image processing, such as GasHis-

ViT (19) for histopathology image normal and abnormal

classification, and Swin-Unet (20) and AFTer-Unet (21) for

multi-organ CT image segmentation. However, in digital

pathology workflow, existing ViTs are difficult to effectively

utilize for thymoma histopathology WSI typing due to the

following two problems (1): Affected by the implementation

mechanism of multi-head self-attention (MSA), current ViTs

usually have large computational costs; thus, it is unsuitable to

directly process the full-scale WSI with millions of resolutions

(2). Although many existing ViTs can effectively model global

and local feature relations, most of them fail to employ the

complementary between multi-scale or multi-resolution

features. Considering that thymoma histopathology WSIs have

the inherent multi-scale information, for example, a WSI
frontiersin.org
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includes three magnification versions in terms of 10 × , 20 × ,

and 40 × . Moreover, the local pathological information of a WSI

has close correspondences with the thymoma type. Therefore,

we can address such problems by comprehensively employing

the above-mentioned two types of information to design ViT.

In this paper, we propose a multi-path cross-scale vision

transformer (MC-ViT) to achieve thymoma histopathology WSI

typing. MC-ViT contains two core components, the first one

named cross attentive scale-aware transformer (CAST), which

takes the multi-scale patches from the same WSI as inputs and

then predicts corresponding pathological information classes

(spindle thymic epithelial cells, B1 thymic epithelial cells, B2

thymic epithelial cells, B3 thymic epithelial cells, fibrous septa,

erythrocyte, lymphocyte, perivascular space, medullary

differentiated areas, and tumor) to serve thymoma typing.

Unlike the standard ViT (11), the proposed CAST constructs

multiple paths to separately process 10 × , 20 ×, and 40 × WSI

patches for capturing potential pathological information in

different receptive field features. In general, 10 × WSI patches

contain more information about the medullary differentiated

areas and fibrous septa, 20 × WSI patches are mainly related to

the perivascular space and lymphocyte, and 40 × WSI patches

can better reflect the properties of the erythrocyte and thymic

epithelial cells. To comprehensively utilize such pathological

information, we also propose a cross-correlation attention

module (CAM) to fuse multi-scale features in the main path of

CAST. The second component is the WSIs transformer (WT),

which is designed to classify the thymoma type of WSIs. Here,
Frontiers in Oncology 03
we propose to use the fixed number of multi-scale WSI patches

to represent a full-scale WSI, and introduce the pathological

information labels of these WSI patches as priors to improve the

interpretability and accuracy of thymoma typing. Specifically, we

concatenate the low-level features of multi-scale WSI patches

and corresponding pathological information labels to form a 1D

feature matrix as the input, and then predict the thymoma type

(A, AB, B1, B1+B2, B2, B2+B3, B3, or C) by WT. Based on this

design, we achieve 95.1% thymoma typing accuracy using a

lightweight model with only a three-stage transformer encoder.

Finally, this paper constructs a large-scale thymoma

histopathology WSI (THW) dataset, which contains 129

hematoxylin & eosin (H&E)-stained WSIs with the

pathological information and thymoma typing annotations.

The thymoma diagnosis workflow is illustrated in Figure 1,

and the main contributions can be summarized as follows:
• We propose an MC-ViT, which is the first transformer

architecture designed for thymoma histopathology WSI

typing.

• We develop a CAST with a cross-correlation attention

mechanism, which can fully leverage the multi-scale

information inherent in WSIs to achieve pathological

information classification.

• We achieve the end-to-end thymoma histopathology

WSI typing. The proposed WSIs transformer takes

pathological information labels as priors to convert a

WSI into a 1D feature matrix as the network input,
FIGURE 1

Illustration of the thymoma diagnosis workflow. Firstly, we collect the clinical data from the China–Japan Friendship Hospital to construct the
thymoma histopathology WSI (THW) dataset. Then, histopathologists are invited to manually label the WSIs of the THW dataset as eight
thymoma types with 10 classes of local pathological information. Next, we propose the cross attentive scale-aware transformer (CAST) for
pathological information classification, which can guide the WSI transformer (WT) to achieve accurate thymoma histopathology WSI typing.
Finally, according to the predicted results of the network, doctors can more efficiently and accurately diagnose thymoma and TC.
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which solves the computing complexity problem caused

by full-scale WSI.

• We publish a large-scale thymoma histopathology WSI

dataset with 323 H&E-stained WSIs from 129 patients

and annotate the pathological information classes and

thymoma types.
Related works

Vision transformers

Starting with AlexNet (22), deep CNNs serve as the

mainstream backbone networks in computer vision for many

years. However, many studies (11–13) point out that CNNs are

unsuitable to model long-range dependencies in the data.

Recently, with the development of the non-local self-attention,

the transformer (23) and its variants (12–15, 17, 18) show

excellent performance on many computer vision tasks and the

potential to replace CNNs. For example, ViT (11) adopts the

classical transformer architecture [23] to achieve image

classification; it first splits an image into non-overlapping

patches and then regards these patches as input tokens for

network training. To reduce the model complexity of the

vision transformer, Swin-T (12) proposes an efficient shifted-

window-based self-attention, and adopts two successive Swin

transformer blocks to model non-local feature relations. For

achieving dense prediction tasks (e.g, instance segmentation and

object detection), Wang et al. (13) design the Pyramid Vision

Transformer (PVT) and the Spatial-Reduction Attention (SRA)

to effectively reduce resource consumption and computational

costs of using transformer. Moreover, in high-level vision tasks,

LeViT (14) develops an alternately residual block and employs

the attention bias to replace traditional absolute position

embeddings for achieving competitive performance. After that,

transformer in transformer (TNT) (15) combines the patch-level

and pixel-level transformer blocks; thus, this architecture can

effectively represent the feature relations between and within

regions. In low-level vision tasks, Chen et al. (17) not only

construct a large-scale benchmark based on the ImageNet

dataset, but also design an image processing transformer (IPT)

to serve various image restoration tasks including image super-

resolution, denoising, and deraining. Then, Uformer (18)

presents a hierarchical U-shaped transformer architecture with

skip connections like U-Net (24). By combining the depth-wise

convolution in basic transformer blocks, Uformer can capture

long-range and short-range dependencies (global and local

information) simultaneously. However, the above vision

transformers fail to comprehensively consider the multi-scale

information of an image. In this paper, we further propose an

MC-ViT, which can effectively extract and employ multi-scale

features to improve network performance.
tiers in Oncology 04
Attention mechanism

In deep learning-based methods, the attention mechanism

can enhance important features as well as suppress redundant

features, thereby improving the network performance on various

computer vision tasks. In general, attention mechanisms are

mainly divided into three classes according to different modes of

action (1): channel attention, (2) spatial attention, and (3) self-

attention. In addition to the self-attention mechanism

mentioned above, it is worth noting that the Squeeze-and-

Excitation (SE) module (25) is the first plug-and-play channel

attention mechanism, which can model the cross-channel

interdependence to enhance the useful channels of features.

Motivated by the SE module, selective kernel network (SKNet)

(26) presents to use the multi-scale information with different

receptive fields to adjust the weights of the channel attention.

Subsequently, Woo et al. (27) design a convolutional block

attention module, which not only proposes spatial attention to

enhance important feature locations by aggregating

neighborhood information, but also combines spatial attention

and the channel attention for achieving attention

complementarity. The similar spatial attention is also used in

the Attention-UNet (28). In addition, triplet attention (29) and

tensor element self-attention (30) can establish the cross-

dimension feature interactions for achieving multi-view spatial

attention. More recently, to model the attention across multi-

scale features, cross-MPI (31) presents to use the batch-wise

multiplication to explicitly correlate input features and

corresponding multi-depth planes. Different from the above

methods, we develop an efficient cross-correlation attention

module in CAST; this attention mechanism can model the

spatial-level multi-scale feature relations and then enhance the

multi-scale fusion features at each transformer block. Extensive

experiments also demonstrate that the proposed CAM is

effective to improve the network performance on the thymoma

typing task.
Materials and methods

Patients and dataset

In this study, all content, including the informed consent of

patients, received approval from the Institutional Ethics Review

Committee of the China–Japan Friendship Hospital. Specifically,

we collected 323 H&E-stained whole slides from 129 thymoma

and TC patients, and show the clinical information of such

patients in Table 1. Afterwards, we produced corresponding

thymoma histopathology WSIs by scanning these slides through

the high-throughput digital scanner Shenzhen Shengqiang

Technol. Co. Ltd (Slide Scan SystemSQS-600P). Each WSI has

three magnification scales in terms of 10×, 20× and 40× with
frontiersin.org
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resolutions of 0.57 mm/pixel , 0.29 mm/pixel , and 0.14 mm/pixel ,

respectively. To obtain accurate thymoma typing annotations,

we invited experienced pathologists to label such WSIs as eight

thymoma types, as shown in Figure 2, namely, type A, type AB,

type B1, type B1+B2, type B2, type B2+B3, type B3, and TC.

Considering the morphological continuum characteristic of

thymomas, it remains a challenge to effectively distinguish the

types B1, B2, and B3 thymomas. At present, the manual

annotation of thymomas is mainly dependent on the

experience and subjective judgment of pathologists, so there is

usually a certain difference between the annotation results of

different pathologists. To improve the annotation quality of the

training set, the invited pathologists use the collective discussion

to determine the type of each patient, and during the annotation,

they check the corresponding immunohistochemistry (IHC)-

stained WSI of each H&E-stained WSI to define a more accurate

thymoma type. In addition, different pathological information

related to thymoma typing is also labeled on WSIs, including

spindle thymic epithelial cells, B1 thymic epithelial cells, B2

thymic epithelial cells, B3 thymic epithelial cells, fibrous septa,

erythrocyte, lymphocyte, perivascular space, medullary

differentiated areas, and tumor. For some indistinguishable

classes like thymic epithelial cells (B1, B2, and B3), we provide

the corresponding IHC-stained WSIs, which can help us locate

thymic epithelial cells and calculate the ratio between epithelial

cells and lymphocytes in local WSI regions. Concretely, the

number of lymphocytes is more than that of epithelial cells in B1

thymoma WSIs, the number of lymphocytes is close to that of
Frontiers in Oncology 05
epithelial cells in B2 thymoma WSIs, and the number of

lymphocytes is lower than that of epithelial cells in B3

thymoma WSIs. Furthermore, there are still slight differences

in the nuclear heterogeneity, cell size, and chromatin for thymic

epithelial cells (B1, B2, and B3). The above properties can also

assist pathologists in distinguishing the thymoma type of a WSI.

In this way, we consider the epithelial cells in B1, B2, or B3

thymomaWSIs as B1, B2, or B3 thymic epithelial cells. As shown

in Figure 2, a total of 10 classes of pathological information can

be used to train the proposed MC-ViT for improving the

accuracy of thymoma typing. After that, we denote these

labeled data as the thymoma histopathology WSI dataset,

where 243 WSIs are selected to train the proposed pipeline

and 80 other WSIs are used as the test set. Among them, each

WSI is divided into 3,000 non-overlapping patches with three

resolutions (64×64, 128×128, and 256×256) for network

training. By constructing this large-scale dataset, we can

effectively achieve the thymoma histopathology WSI typing to

further assist doctors in diagnosing thymoma or TC.
Overall architecture

Thymoma typing is a complex and challenging digital

pathology workflow. As shown in Figure 2, doctors usually

need to comprehensively consider different local pathological

information from mult i-sca le (10×, 20×, and 40×

magnifications) WSIs to confirm the thymoma type.
FIGURE 2

The pathological information against the thymoma types. Concretely, there are 10 pathological information classes (spindle thymic epithelial
cells, B1 thymic epithelial cells, B2 thymic epithelial cells, B3 thymic epithelial cells, fibrous septa, erythrocyte, lymphocyte, perivascular space,
medullary differentiated areas, and tumor) and eight types (A, AB, B1, B1+B2, B2, B2+B3, B3 and TC).
TABLE 1 Clinical information of patients.

Basic information of patients Thymoma typing information of patients

Male Female Age A AB B1 B1+B2 B2 B2+B3 B3 TC

61 68 17–81 12 30 15 18 20 9 19 6
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Therefore, taking local pathological information as priors can

effectively achieve the deep learning-based thymoma

histopathology WSI typing. In this paper, we propose an MC-

ViT and show its overall architecture in Figure 3. Concretely, the

proposed MC-ViT consists of two sub-networks: (1) the CAST

for pathological information classification, and (2) the WSIs

transformer for thymoma typing.

In the concrete implementation, each WSI is firstly split into

10×, 20× and 40× magnification WSI patches with sizes of H/

2×W/2×3 , H×W×3, and 2H×2W×3 , respectively, where multi-

scale WSI patches at the same position on a WSI can form a

group of network inputs, and H and W represent the height and

width of WSI patches. The first sub-network CAST is designed

as a three-branch structure, where the local-guided branch

(LGB) and the global-guided branch (GGB) can extract the

local and global receptive field features from 40× and 10× WSI

patches, respectively, and the feature aggregation branch (FAB)

takes 20× WSI patches as inputs. In the above branches, we first

use a patch splitting layer to split and flatten input WSI patches

into non-overlapping 1D features, and then adopt a linear

embedding layer to project these 1D features to the expected

dimensions, like Swin-T (12), where each group of 1D features

can be regarded as a “token”. After that, we utilize three well-

established transformer architectures including Swin-T (12),

PVT (13), and ViT (11) to construct LGB, FAB, and GGB,

respectively, for adapting multi-scale input features. Concretely,

each branch is built as a hierarchical structure with three stages,

LGB, FAB, and GGB, which respectively use the window-based

multi-head self-attention (W-MSA), the spatial reduction

attention (SRA), and the multi-head self-attention (MSA) to
Frontiers in Oncology 06
build basic transformer blocks as shown in Figure 4, and adopt

the patch splitting layer with 4×4 kernel size to achieve two

times down-sampling for token sequences to produce

hierarchical representations. The configurations of each

network branch are illustrated in Table 2. Different from LGB

and GGB, to effectively predict pathological information classes

of input WSI patches, the FAB fuses multi-scale (multiple

receptive fields) features from different branches at each

transformer block. Here, we carefully design a cross-

correlation attention module, which can establish the spatial-

level relations between multi-scale features with potential

pathological information, thereby promoting the multi-scale

feature fusion in the transformer.

The second sub-network WT is a simple but effective three-

stage transformer encoder. For aWSI, we randomly select a fixed

number of WSI patches, and then through the CAST to produce

the multi-scale embeddings and the pathological information

labels of these WSI patches. Specifically, we first concatenate the

multi-scale embeddings of each WSI patch with the

corresponding pathological information label at the channel

dimension, and then connect the concatenated features of WSI

patches at the node dimension. To this end, each WSI can be

encoded into a feature matrix M∈Rm×769 with pathological

information priors to train the proposed WT, where M

indicates that each WSI is divided into M small patches. In the

WT, we use classical transformer blocks (11) with absolute

position encodings to process the input feature matrices for

thymoma typing. In addition, converting a 2D full-scale WSI to a

1D feature matrix can significantly reduce the computational

costs of the transformer.
FIGURE 3

The architecture of the proposed multi-path cross-scale vision transformer (MC-ViT), which consists of the cross attentive scale-aware
transformer (CAST) for pathological information classification and the WSIs transformer (WT) for thymoma typing.
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Cross attentive scale-aware transformer

Unlike general natural and medical images (32, 33), a WSI

usually has three magnification scales in terms of 10 × , 20 ×, and

40 × . To effectively utilize different scale WSIs for modeling

multi-scale feature relations, we propose a CAST consisting of

three kinds of basic transformer blocks, namely, the global

transformer block, the CAST block, and the local transformer

block. As shown in Figure 4, the proposed CAST is also different

from existing advanced multi-scale U-Net architectures. For

examples, Su et al. (34) design MSU-Net that uses scale-

specific convolutions (1×1, 3×3, and 7×7) to capture multi-

scale features (see Figure 4D). Kushnure et al. (35) construct MS-

UNet to process the split feature channels to produce multi-scale
Frontiers in Oncology 07
representations (see Figure 4E). However, locally connected

convolutions are not enough to extract sufficient global

information, which limits the receptive fields of both MSU-

Net and MS-UNet. In contrast, the proposed CAST can capture

richer global information by three different non-local self-

attention mechanisms, and fully leverage multi-scale WSIs

(10×, 20× and 40×) rather than only the multi-scale features

from a scale-specific WSI. Then, considering that the above

transformer blocks have different receptive fields, the clinical

observation process for thymoma histopathology WSIs can be

effectively simulated in the proposed CAST. Concretely, in GGB,

the global transformer block has similar configurations to that of

the classical transformer block (11), which contains an MSA, a

multi-layer perception (MLP), and two layer normalizations
B

C

D E

A

FIGURE 4

The architectures of self-attention and multi-scale convolution. (A) Window-based multi-head self-attention (W-MSA), (B) spatial reduction
attention (SRA), (C) multi-head self-attention (MSA), (D) multi-scale convolution of MSU-Net, and (E) multi-scale convolution of MS-UNet.
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(LNs) before MSA and MLP with the GELU non-linear layers

(23). The calculation process in the global transformer block is

~Ai = MSA LNðAi−1ð ÞÞ + Ai−1, (1)

Ai = MLP LNð~Ai

� �Þ + ~Ai, (2)

where Ai−1 and Ai are the input and output features of the i

th global transformer block, and ~Ai denotes the output of

intermediate features by the MSA.

Then, in LGB, the local transformer block continues the

advantages of Swin-T (12), which replaces the MSA with the

window-based multi-head self-attention, and employs two

successive Swin transformer blocks to achieve cross-window

connections. The concrete configurations are shown in

Figure 3; compared with MSA, W-MSA focuses more on

modeling the feature relations in non-overlapping local

windows, which not only effectively promotes the extraction of

local information, but also significantly reduces the
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computations of transformer blocks. The local transformer

block can be computed as

~Bi = W −MSA LNðBi−1ð ÞÞ + Bi−1, (3)

B̂ i = MLP LNð~Bi)
� �

+ ~Bi, (4)

�Bi = SW −MSA LNðB̂ i)
� �

+ B̂ i, (5)

Bi = MLP LN �Bið Þð Þ + �Bi, (6)

Where Bi−1 and Bi are the input and output features of the i

th local transformer block, SW-MSA is the multi-head self-

attention with the shifted windowing configuration, and ~Bi, B̂ i,

and �Bi represent the intermediate features output by MSA, the

first MLP, and SW-MSA, respectively. Referring to Swin-T (12),

we adopt the relative position bias to compute W-MSA and SW-

MSA, which can be expressed as
TABLE 2 The network configurations of the proposed MC-ViT, where P, C, N, and E indicate the patch size, the channel number of the output,
the head number of transformer block, and the expansion ratio of MLP, respectively.

Stage Branch Input size Patch merging Transformer encoder Output size

MC-ViT CAST Stage 1 LGB (40×) 2562×3 P = 8, C = 128
½
N = 2

E = 8
� � 2

322×128

FAB (20 ×) 1282×3 P = 4, C = 128
½
N = 2

E = 8
� � 2

322×128

GGB (10 ×) 642×3 P = 2, C = 128
½
N = 2

E = 8
� � 2

322×128

Stage 2 LGB (40 ×) 322×128 P = 2, C = 256
½
N = 4

E = 4
� � 2

162×256

FAB (20 ×) 322×128 P = 2, C = 256
½
N = 4

E = 4
� � 2

162×256

GGB (10 ×) 322×128 P = 2, C = 256
½
N = 4

E = 4
� � 2

162×256

Stage 3 LGB (40 ×) 162×256 P = 2, C = 512
½
N = 8

E = 4
� � 2

82×512

FAB (20 ×) 162×256 P = 2, C = 512
½
N = 8

E = 4
� � 2

82×512

GGB (10 ×) 162×256 P = 2, C = 512
½
N = 8

E = 4
� � 2

82×512

WT Stage 1 − 512×769 −
½
N = 12

E = 4
� � 2

512×769

Stage 2 − 512×769 −
½
N = 12

E = 4
� � 2

512×769

Stage 3 − 512×769 −
½
N = 12

E = 4
� � 2

512×769
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Self − attentionðQ,K ,V) = SoftmaxðQKT=
ffiffiffi
d

p
+ R)V , (7)

where Q , K, and V are the query, key, and value

matrices, respectively.

Finally, in FAB, we propose the cross-correlation attention

module to combine with the spatial-reduction attention (13) to

construct the cross attentive scale-aware (CAS) transformer

block. Specifically, each CAS transformer block is composed of

a CAM, an SRA, an MLP, and two LNs. Different from the global

and local transformer blocks, we first adopt a CAM to aggregate

and enhance the multi-scale features Ai , Bi, and Ci from different

branches. With this design, the spatial-level feature relations can

be supplemented and the representation of potential

pathological information can be boosted effectively. Then,

MLP can update the multi-scale fusion features captured by

SRA accompanied with LNs for stable training and rapid

convergence. The CAS transformer block can be formulated as

~Ci = SRA LN CAM ½Ai−1,Bi−1,Ci−1�ð Þð Þð Þ + Ci−1, (8)

Ci = MLP LNð~Ci)
� �

+ ~Ci, (9)

Where Ci−1 and Ci are the input and output features of the i

th CAS transformer block, and ~Ci denotes the intermediate

features output by the SRA.

In addition, after the last transformer block of each stage, we

use a 4 × 4 patch splitting (unfolding) layer PS(·) to down-

sample the reshaped features, and a linear embedding layer FC(·)

to project the down-sampled features to the expected dimension

for producing hierarchical representations

Ai=Bi=Ci = FC PS(reshape(Ai=Bi=Ci))ð Þ : (10)

In the proposed CAST, after fusing and updating each stage’s

multi-scale features, we use the last fully connected layer with

softmax of FAB to predict the pathological information classes of

input WSI patches. During the test process, the predicted

pathological information labels and the extracted multi-scale

embeddings from the same WSI are connected as an input

feature matrix to feed the subsequent WT.
WSI transformer

Benefiting from the prediction for pathological information

labels and the encoding for multi-scale embeddings by the first

sub-network CAST, we can construct an efficient WT with a

three-stage transformer encoder to further achieve thymoma

histopathology WSI typing. As shown in Figure 3, after

concatenating the pathological information labels and multi-

scale embeddings to convert a full-scale WSI to a simple input

feature matrix, the computations of WT are significantly

reduced. Specifically, each stage contains two classical

transformer blocks (11); the head number N of MSA and the

expansion ratio E of MLP in each transformer block are set as 12
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and 4, respectively. In addition, we not only introduce absolute

position encodings, but also replace class tokens with a global

average pooling layer and a fully connected layer (36) to improve

the accuracy of thymoma typing. The network configurations of

the proposed CAST and WT are shown in Table 2.
Cross-correlation attention module

Converting an image into a sequence of tokens will result in

the spatial information loss, and most existing vision transformers

(12, 13, 15, 16, 31) fail to consider the spatial-level relations

between features. To address this issue, we propose a cross-

correlation attention module to effectively establish the spatial-

level relations between multi-scale features as well as achieving the

multi-scale feature fusion. As shown in Figure 5, CAM can

comprehensively consider different receptive field features with

global and local information, and enhance the multi-scale fusion

features through a spatial attention map generated by the cross-

correlation attention mechanism. Considering that multi-scale

features completely contain potential pathological information,

the proposed CAM can further improve the accuracy of potential

pathological classification. Specifically, CAM first concatenates the

features Ai∈Rc×hw , Bi∈Rc×hw , and Ci∈Rc×hw from GGB, LGB,

and FAB, respectively, to generate the features G∈R3×c×hw , and

then reshapes its size to 3×c×h×w . After a 1 × 1 convolution, we

can get the spatial-level features f1∈R3×c×h×w . Moreover, we

reshape the features Ci∈Rc×hw as another spatial-level features

f2∈Rc×1×h×w and cross-correlate features f1∈R3×c×h×w and

f2∈c×1×h×w by a batch-wise multiplication to establish the

relations between multi-scale features for producing the

attention map Att

Att = s conv1 reshape ½Ai,Bi,Ci�ð Þð Þ⊗ reshapeðCi)ð Þ, (11)

Where s(·) indicates the Sigmoid activation function, conv1
(·) is the 1 × 1 convolution, [·, ·, ·] and reshape(·) denote the

feature concatenation and reshape operations, and ⊗ is the

batch-wise matrix multiplication.

After that, we split the attention map Att∈R3×h×w into three

individual attention maps AttA∈R1×h×w , AttB∈R1×h×w , and

AttC∈R1×h×w to enhance corresponding spatial-level features

fA∈Rc×h×w , fB∈Rc×h×w, and fC∈Rc×h×w by the element-wise

multiplication. Here, the features fA , fB , and fC related to

different receptive field information are split from the spatial-

level features G∈R3×c×h×w . Then, we re-aggregate the enhanced

spatial-level features by a 3 × 3 convolution to generate the

features f3∈Rc×h×w . The final output F∈Rc×hw of CAM can be

obtained by a reshape operation, and the above process is

expressed as

F = reshape conv3 ½AttA o ̇ fA,AttB o ̇ fB,AttC ȯ fC�ð Þð Þ, (12)

where ȯ denotes the element-wise multiplication.
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Loss functions

The first sub-network CAST can classify input WSI patches

into 10 pathological information classes, including spindle

thymic epithelial cells, B1 thymic epithelial cells, B2 thymic

epithelial cells, B3 thymic epithelial cells, fibrous septa,

erythrocyte, lymphocyte, perivascular space, medullary

differentiated areas, and tumor. Specifically, we use the cross-

entropy loss (22) to train the proposed CAST, which can

minimize the distance between predicted probabilities and

corresponding ground truths by the following expression
Frontiers in Oncology 10
LCAST = −o
K

k=1

yk log  (pk), (13)

where K is the number of pathological information classes,

pk represents the predicted probability that an input WSI patch

belongs to the k th pathological information class, and yk is its

ground truth.

After that, the second sub-network WT can predict the

thymoma type of the input feature matrix for achieving

thymoma typing. Concretely, there are eight thymoma types

(A, AB, B1, B1+B2, B2, B2+B3, B3, and C) in our task. Similarly,
B CA

FIGURE 5

The architecture of the proposed cross-correlation attention module (CAM), which can model the spatial-level relationship between multi-scale
features (A–C) from the global-guided, the local-guided, and the feature aggregation branches for achieving the multi-scale feature fusion.
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we also adopt the cross-entropy loss to optimize this multi-

classification task as

LWT = −o
T

t=1
Yt log  (Pt), (14)

where T is the number of thymoma types, Pt represents the

predicted probability that a input feature matrix belongs to the t

th thymoma type, and Yt is its ground truth.
Experimental results and analysis

Implementation details

The proposed MC-ViT is programmed by PyTorch 1.9.0 and

all experiments are conducted on a server with Intel (R) Core

(TM) i9-10850K CPU (5.0 GHz) and NVIDIA GeForce RTX

3090 GPU (24GB). In our concrete implementation, the Adam

optimizer with momentums �eta1 = 0:9 and b2=0.999 is used to

optimize both CAST and WT. For the proposed CAST, there are

160 epochs in network training with batch size 64 and the initial

learning rate 2e -3. Moreover, the proposed WT is trained in 160

epochs using batch size 8 and the initial learning rate 1e -3. In

Figure 6, we report the training loss and accuracy against

training epochs to show the effectiveness and convergence of

the proposed CAST and WT.
Evaluation metrics

To comprehensively evaluate the performance of the

proposed CAST for pathological information classification and

the performance of the proposed WT for thymus typing, we

introduce eight well-established metrics, namely, recall (37)

(Rec), Top-1 accuracy (Top-1 Acc), mean accuracy (38)
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(MAcc), precision (37) (Pre), F-measure (38) (F1), receiver

operating characteristic (ROC) curve, area under the curve

(AUC), and confusion matrix (CM), and three statistical

metrics, namely, sensitivity and specificity with the 95%

confidence interval (CI) and the two-sided McNemar’s tests

(39) (test statistic and asymptotic Sig.). For the first five metrics,

the larger values indicate a classification method has better

performance. The AUC is defined as the area surrounded by

the coordinate axis and the ROC curve, where a large AUC value

denotes a high classification accuracy.
Evaluation for pathological
information classification

This subsection first compares the proposed CAST with four

well-known vision transformers, ViT (11), TNT (15), LeViT

(14), and CrossViT (40); two classical CNNs, ResNet-101 (41)

and DenseNet-121 (42); and four state-of-the-art medical image

classification methods, GuSA-Net (43), ROPsNet (44), CPWA-

Net (45), and IL-MCAM (46). The quantitative results on the

proposed THW dataset are shown in Table 3; compared with

existing advanced classification methods, the proposed CAST

achieves 0.016, 0.012, 0.015, and 0.007 improvements in terms of

Rec, Top-1 Acc, Macc, and F1, respectively. In general, some

classical transformer-based and CNN-based methods, such as

ViT, TNT, LeViT, and ResNet-101, fail to achieve satisfactory

classification results, which could be attributed to the fact that

these methods ignore capturing and utilizing the inherent multi-

scale information in WSIs. In contrast, state-of-the-art IL-

MCAM and CrossViT achieve better classification accuracy

since both of them are built as the multi-scale network

architecture. It is noteworthy that GuSA-Net is the

improvement of DenseNet; thus, its classification performance

is slightly better than that of DenseNet. Currently, in most
BA

FIGURE 6

(A) The training loss against training epochs and (B) the training accuracy against training epochs on the THW dataset.
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clinical cases, doctors need to comprehensively observe the

multi-scale (10 × , 20 ×, and 40 × ) local patches of a WSI to

determine its pathological information classes, and then

diagnose the corresponding thymoma type. The proposed

CAST effectively simulates the above process by taking multi-

scale WSI patches as inputs and fusing multi-scale features in

each stage. As a result, we successfully achieve an improvement

of 0.015 on MAcc compared with the state-of-the-art IL-

MCAM, and about 0.023 average improvement on other

evaluation metrics.

To further verify the effectiveness of the proposed CAST, we

illustrate the ROC curve and AUC of each pathological

information class in the left part of Figure 7. It can be seen

that the proposed CAST performs well on six classes, namely,

erythrocyte, lymphocyte, spindle thymic epithelial cells, B1
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thymic epithelial cells, B2 thymic epithelial cells, and B3

thymic epithelial cells. For the other three pathological

information classes, where fibrous septa and perivascular space

can be distinguished on H&E-stained WSIs according to the

color and position information of existing cells (like fibroblasts

and erythrocytes), medullary differentiated areas are usually

distinguishable on IHC-stained WSIs. Compared with the

above five pathological information classes, our pipeline

achieves slightly poor but still competitive classification results

for fibrous septa, perivascular space, and medullary

differentiated areas. In summary, the proposed CAST

effectively distinguishes each pathological information class

using only H&E-stained WSIs. Since the classification results

of pathological information are closely related to thymoma

types, CAST can assist the subsequent WT for thymoma typing.
BA

FIGURE 7

The ROC curve and AUC on the THW dataset. (A) Pathological information classification and (B) thymoma typing.
TABLE 3 Quantitative comparisons (Rec, Top-1 Acc, MAcc, Pre, and F1) for pathological information classification on the THW dataset.

Pathological Information Classification

Methods Rec Top-1 Acc Macc Pre F1

(ICLR’2021) ViT (11) 0.813 0.834 0.804 0.810 0.811

(NIPS’2021) TNT (15) 0.814 0.828 0.813 0.817 0.815

(ICCV’2021) LeViT (14) 0.821 0.857 0.833 0.827 0.824

(ICCV’2021) CrossViT (40) 0.897 0.886 0.860 0.867 0.882

(CVPR’2016) ResNet-101 (41) 0.819 0.836 0.802 0.808 0.813

(CVPR’2017) DenseNet-121 (42) 0.873 0.848 0.834 0.860 0.867

(TMI’2020) GuSA-Net (43) 0.918 0.927 0.909 0.925 0.921

(TMI’2021) ROPsNet (44) 0.874 0.892 0.886 0.882 0.878

(JBHI’2021) CPWA-Net (45) 0.817 0.832 0.821 0.813 0.815

(CBM’2022) IL-MCAM (46) 0.906 0.918 0.912 0.903 0.904

CAST (Ours) 0.934 0.939 0.927 0.922 0.928
frontiers
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Thymoma typing evaluation

Clinically, the thymoma type of a WSI is reflected by

multiple pathological information; hence, theoretically, the

high-precision classification results for pathological

information are helpful to improve the accuracy of thymoma

typing. To demonstrate the above content, we respectively use

the classification methods ViT, TNT, LeViT, CrossViT, ResNet-

101, DenseNet-121, GuSA-Net, and IL-MCAM to predict the

pathological information labels and the uniform size

embeddings of each WSI. By concatenating these labels and

embeddings to produce input feature matrices to train WT, we

can denote corresponding comparison methods as ViT+WT,

TNT+WT, LeViT+WT, CrossViT+WT, ResNet-101+WT,

DenseNet-121+WT, GuSA-Net+WT, ROPsNet+WT, CPWA-

Net+WT, and IL-MCAM+WT. Their predicted results are

shown in Table 4; we can observe that the proposed MC-ViT

(CAST+WT) achieves the best classification accuracy, especially

on Top-1 Acc (about 0.017 improvement) and F1 (about 0.016
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improvement). The ROC curve and AUC of each thymoma type

are also shown in the right part of Figure 7, which further proves

that the proposed MC-ViT is effective to classify various

thymoma types. Based on the above quantitative analysis, we

can conclude that the pathological information labels provided

by CAST help to achieve thymoma histopathology WSI typing,

and the quality of such labels and embeddings determines the

typing accuracy.

In addition, we statistically analyze the performance of these

comparison methods and our MC-ViT by computing the

sensitivity and specificity with 95% CI, and the two-sided

McNemar’s tests (test statistic and asymptotic Sig.). As can be

seen from Table 5, the proposed MC-ViT achieves completely

correct typing results (sensitivity) for types AB, B1, B2, and C,

and the competitive average 0.875 sensitivity (95% CI: 0.528–

0.970) and 0.982 specificity (95% CI: 0.911–0.992) for the

thymoma typing task. Moreover, the two-sided McNemar’s

tests (average 1.810 test statistic and 0.42996 asymptotic Sig.)

further show the statistical significance of our predicted results,
TABLE 4 Quantitative comparisons (Rec, Top-1 Acc, Macc, Pre, and F1) for thymoma typing on the THW dataset.

Methods Thymoma Typing

Rec Top-1 Acc MAcc Pre F1

(ICLR’2021) ViT (11)+WT 0.832 0.839 0.820 0.824 0.828

(NIPS’2021) TNT (15)+WT 0.825 0.861 0.836 0.839 0.852

(ICCV’2021) LeViT (14)+WT 0.844 0.868 0.843 0.849 0.846

(ICCV’2021) CrossViT (40)+WT 0.903 0.899 0.875 0.879 0.891

(CVPR’2016) ResNet-101 (41)+WT 0.841 0.831 0.819 0.825 0.833

(CVPR’2017) DenseNet-121 (42)+WT 0.902 0.863 0.842 0.865 0.883

(TMI’2020) GuSA-Net (43)+WT 0.931 0.937 0.916 0.934 0.923

(TMI’2021) ROPsNet (44)+WT 0.881 0.898 0.890 0.896 0.888

(JBHI’2021) CPWA-Net (45)+WT 0.848 0.856 0.843 0.846 0.847

(CBM’2022) IL-MCAM (46)+WT 0.921 0.928 0.915 0.908 0.914

CAST+WT (Ours) 0.948 0.951 0.942 0.931 0.939
frontiersin.or
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TABLE 5 Quantitative comparisons (sensitivity and specificity with 95% CI, test statistic, and asymptotic Sig.) for thymoma typing on the THW
dataset.

Types Sensitivity (95% CI) Specificity (95% CI) Test Statistic Asymptotic Sig.

A 0.800 (0.442–0.965) 1.000 (0.935–1.000) 0.500 0.47950

AB 1.000 (0.655–1.000) 1.000 (0.935–1.000) − −

B1 1.000 (0.655–1.000) 0.986 (0.912–0.999) 0.000 1.00000

B1+B2 0.800 (0.442–0.965) 1.000 (0.935–1.000) 0.500 0.47950

B2 1.000 (0.655–1.000) 0.871 (0.765–0.936) 7.111 0.00766

B2+B3 0.800 (0.442–0.965) 1.000 (0.935–1.000) 0.500 0.47950

B3 0.600 (0.274–0.863) 1.000 (0.935–1.000) 2.250 0.13361

TC 1.000 (0.655–1.000) 1.000 (0.935–1.000) − −

Average 0.875 (0.528–0.970) 0.982 (0.911–0.992) 1.810 0.42996
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which have slight differences from the expert-annotated

ground truths.
Discussion

In this section, we discuss the effectiveness of the proposed

multi-scale (multi-path) transformer architecture and the cross-

correlation attention mechanism. Concretely, we define eight

ablation models: (1) Single-branch Swin-T Transformer (SSwT):

SSwTonly has LGB for processing 40 × WSIs; (2) Single-branch

Pyramid Vision Transformer (SPVT): SPVT only has FAB for

processing 20 × WSIs; (3) Single-branch Vision Transformer

(SViT): SViT only has GGB for processing 10 × WSIs; (4) CAST

without (w/o) GGB: this model has LGB and FAB for processing

40 × and 20 ×WSIs; (5) CAST w/o FAB: this model has LGB and

GGB for processing 40 × and 10 ×WSIs; (6) CAST w/o LGB: this

model has FAB and GGB for processing 20 × and 10 × WSIs; (7)

CAST w/o CAM: this model contains three paths but without

CAM; and (8) the proposed CAST. For fair comparisons, the

training dataset and implementation details remain unchanged,

and corresponding experimental results are exhibited in the

following subsections.
Ablation study for multiple paths
of transformer

Firstly, we evaluate the effectiveness of multiple paths in the

proposed CAST, where LGB, FAB, and GGB are ablated and

adopted respectively to demonstrate their contributions. The

quantitative results of seven ablation models, SSwT, SPVT, SViT,

CAST w/o GGB, CAST w/o FAB, CAST w/o LGB, and CAST,

are listed in Table 6. It can be seen that ablating GGB reduces the

accuracy to classify the medullary differentiated areas and

fibrous septa, ablating LGB weakens the performance to
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distinguish different thymic epithelial cells, and ablating FAB

causes unsatisfactory results to recognize the perivascular space

and lymphocyte. In summary, simultaneously adopting three

paths in CAST to process multi-scale WSIs can achieve more

excellent performance compared with using a single path or dual

paths, and FAB brings the largest improvement to pathological

information classification.
Ablation study for multi-scale
transformer architecture

Next, we compare CAST w/o CAM and SPVT to verify the

effectiveness of the proposed multi-scale transformer

architecture. Specifically, CAST w/o CAM adopts three

transformer branches to process 10×, 20× and 40× WSI

patches, respectively, while replacing the proposed CAM by

the traditional feature concatenation to achieve multi-scale

feature fusion. SPVT only uses a single branch with the SRA-

based transformer blocks to train 20 × WSI patches. The

quantitative comparisons (Top-1Acc, Macc, and F1) on the

THW dataset are reported in Figure 8A, and it can be seen

that using the multi-scale transformer architecture brings

significant performance improvements for pathological

information classification. In addition, Figure 9 shows their

confusion matrices, which further demonstrate that

comprehensively considering the multi-scale information

in WSIs can reduce the confusion between similar

thymoma types.
Ablation study for cross-correlation
attention mechanism

Finally, we evaluate the contribution of the proposed CAM

to show its effectiveness on pathological information
TABLE 6 Ablation study (Acc and MAcc) for multiple paths in the proposed CAST on the THW dataset.

Acc of Each Class SSwT SPVT SViT CAST
w/o GGB

CAST
w/o FAB

CAST
w/o LGB

CAST

Spindle Thymic Epithelial Cells 0.859 0.871 0.844 0.866 0.918 0.897 0.923

B1 Thymic Epithelial Cells 0.887 0.876 0.854 0.895 0.886 0.905 0.915

B2 Thymic Epithelial Cells 0.893 0.881 0.861 0.903 0.892 0.911 0.920

B3 Thymic Epithelial Cells 0.890 0.879 0.858 0.898 0.887 0.909 0.916

Fibrous Septa 0.859 0.877 0.896 0.915 0.919 0.902 0.924

Erythrocyte 0.912 0.918 0.904 0.925 0.926 0.933 0.941

Lymphocyte 0.861 0.896 0.849 0.902 0.924 0.927 0.938

Perivascular Space 0.865 0.894 0.842 0.898 0.917 0.929 0.936

Medullary Differentiated Areas 0.857 0.883 0.905 0.918 0.921 0.905 0.927

Tumor 0.887 0.886 0.882 0.897 0.905 0.908 0.929

MAcc 0.877 0.886 0.870 0.902 0.910 0.913 0.927
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classification and thymoma typing. Corresponding quantitative

results are shown in Figure 8, and from the overall integration of

evaluation metrics Top-1 Acc, Macc, and F1, we can observe that

adopting CAM to aggregate multi-scale features significantly

improves the precision for pathological information

classification and thymus typing. On the other hand, the

confusion matrices about thymoma typing are reported in
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Figure 9; although CAST w/o CAM+WT outperforms SPVT

+WT, some highly similar thymoma types are still difficult to

distinguish, such as B1, B1+B2, and B2 types. By comparison, the

proposed MC-ViT (CAST+WT) achieves better thymoma

typing results. Overall, these ablation studies show that the

accurate pathological information labels are beneficial

for boosting thymoma typing accuracy, and the proposed
BA

FIGURE 8

Ablation study (Top-1 Acc, MAcc, and F1) on the THW dataset, where w/o represents without such component. (A) Pathological information
classification and (B) thymoma typing.
B

C

A

FIGURE 9

Ablation study (confusion matrix) for thymoma typing on the THW dataset; subfigures (A–C) are SPVT+WT, CAST w/o CAM+WT, and CAST+WT,
where w/o represents without such component.
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CAM is effective to improve pathological information

classification results.
Unsupervised method for
thymoma typing

In CAD, unsupervised methods are mainly used for

processing unlabeled or incompletely labeled data, and they

can automatically determine the total class of input data and

then achieve the classification task. Traditional unsupervised

methods include clustering and dimensionality reduction, and

deep learning-based unsupervised methods include domain

adaptation and contrastive learning. Compared with

traditional methods, most deep learning-based methods have

superior performance but require minor annotation information

to assist network training, which means they fail to achieve full

unsupervised classification. For example, domain adaptation

methods require a small labeled dataset as the source domain

to achieve the unsupervised classification of the target domain.

Contrastive learning methods need to define the similarity

between samples through pretext tasks, and then classify these

data in a self-supervised (unsupervised) way. In general,

supervised methods perform favorably against ful l

unsupervised methods. In this work, we introduce a classical

full unsupervised method (47) for thymoma typing, which is the

combination of CNN and k -means clustering. We find that this

method cannot successfully distinguish types B1, B1+B2, B2, B2

+B3, and B3; however, it still shows high potential when only

classifying three types A, B, and TC (0.659 Top-1 Acc). Hence,

we think that full unsupervised methods are more suitable for a

simple classification of unlabeled data; they can provide certain

diagnosis information for doctors while effectively reducing the

time consumed by manual annotation. By comparison,

supervised methods can better achieve precise thymoma

typing when having sufficient labeled data.
Conclusions

In this paper, we propose an MC-ViT for achieving

thymoma histopathology WSI typing. Aiming at full-scale

WSIs that are difficult to train by deep learning-based

methods, the proposed MC-ViT is designed as a twofold

transformer architecture to separately predict the pathological

information labels of WSI patches and the thymoma type of a

WSI, where the former effectively fuses complementary multi-

scale information to produce accurate pathological information

priors, and the latter successfully converts the full-scale WSI to

the low-cost feature matrix to achieve efficient network training

by introducing such priors. In addition, we propose a cross-
Frontiers in Oncology 16
correlation attention mechanism to enhance and fuse multi-

scale features with global and local receptive fields. Considering

that CAM well establishes the spatial-level feature relations in

the transformer, our thymoma typing results achieve further

improvements. Extensive experiments also show that our MC-

ViT outperforms most existing advanced transformer-based and

CNN-based methods on the proposed THW dataset with 323

WSIs. In future works, we look forward to incorporating CT

images and histopathology WSIs for achieving the multi-modal

information fusion-based thymoma typing, which may further

assist doctors to improve the efficiency and accuracy of

thymoma and TC diagnosis. In addition, we will make the

network outputs the soft labels (the probability of a WSI

belongs to types B1, B2, and B3) instead of the hard labels (the

class of a WSI belongs to type B1, B2, or B3) for thymoma WSIs

with B1, B2, and B3 types, thereby providing more reasonable

diagnosis information for doctors.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/supplementary material.
Ethics statement

This study was approved by the institutional ethics review

committee of the China–Japan Friendship Hospital. Written

informed consent to participate in this study was provided by the

participant’s legal guardian.
Author contributions

HZ proposed the algorithm and wrote the manuscript. HC

provided the guidance and labeled the pathological information

classes and thymoma types of WSIs. JQ collected the dataset from

the China–Japan Friendship Hospital. BW, GM, and DZ verified

the medical research significance of this study. PW designed the

figures and experiments, and revised the manuscript. JL provided

the financial support and guided the study. All authors

contributed to the article and approved the submitted version.
Funding

This study was supported by the National Key Research and

Development Program of China (No. 2017YFA0700401), the

National Natural Science Foundation of China (No.
frontiersin.org

https://doi.org/10.3389/fonc.2022.925903
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.925903
KKA309004533, 81571836), and the Fundamental Research

Funds for the Central Universities (2021YJS036).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Oncology 17
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Marx A, Chan JK, Chalabreysse L, Dacic S, Detterbeck F, French CA, et al.
The 2021 WHO classification of tumors of the thymus and mediastinum: What is
new in thymic epithelial, germ cell, and mesenchymal tumors? J Thorac Oncol
(2021) 17:200–13. doi: 10.1016/j.jtho.2021.10.010

2. Borczuk AC.WHO classification of tumours: Thoracic tumours (International
agency for research on cancer (IARC) publications). (2021).

3. Scorsetti M, Leo F, Trama A, D’Angelillo R, Serpico D, Macerelli M, et al.
Thymoma and thymic carcinomas. Crit Rev oncolo/hematol (2016) 99:332–50.
doi: 10.1016/j.critrevonc.2016.01.012

4. Venuta F, Anile M, Diso D, Vitolo D, Rendina EA, De Giacomo T, et al.
Thymoma and thymic carcinomas. Eur J cardio-thoracic Surg (2010) 37:13–25.
doi: 10.1016/j.ejcts.2009.05.038

5. Han X, Gao W, Chen Y, Du L, Duan J, Yu H, et al. Relationship between
computed tomography imaging features and clinical characteristics, masaoka–koga
stages, and world health organization histological classifications of thymoma. Front
Oncol (2019) 9:1041. doi: 10.3389/fonc.2019.01041

6. Luo T, Zhao H, Zhou X. The clinical features, diagnosis and management of
recurrent thymoma. J Cardiothorac Surg (2016) 11:140. doi: 10.1186/s13019-016-
0533-9

7. Zormpas-Petridis K, Failmezger H, Raza SEA, Roxanis I, Jamin Y, Yuan Y.
Superpixel-based conditional random fields (SuperCRF): Incorporating global and
local context for enhanced deep learning in melanoma histopathology. Front Oncol
(2019) 10:1045. doi: 10.3389/fonc.2019.01045

8. Zormpas-Petridis K, Noguera R, Ivankovic DK, Roxanis I, Jamin Y, Yuan Y.
SuperHistopath: a deep learning pipeline for mapping tumor heterogeneity on low-
resolution whole-slide digital histopathology images. Front Oncol (2021) 9:586292.
doi: 10.3389/fonc.2020.586292

9. Liu Y, Li X, Zheng A, Zhu X, Liu S, Hu M, et al. Predict ki-67 positive cells in
H&E-stained images using deep learning independently from IHC-stained images.
Front Mol Biosci (2020) 7:183. doi: 10.3389/fmolb.2020.00183

10. Xie J, Liu R, Luttrell IVJ, Zhang C. Deep learning based analysis of
histopathological images of breast cancer. Front Genet (2019) 10:80.
doi: 10.3389/fgene.2019.00080

11. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner
T, et al. (2021). An image is worth 16x16 words: Transformers for image
recognition at scale, in: Proc. Int. Conf. Learn. Represent. (ICLR), (Vienna,
Austria: OpenReview.net).

12. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. (2021). Swin transformer:
Hierarchical vision transformer using shifted windows, in: Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), (Montreal, QC, Canada: IEEE). pp. 10012–22. doi: 10.1109/
ICCV48922.2021.00986

13. WangW, Xie E, Li X, Fan DP, Song K, Liang D, et al. (2021). Pyramid vision
transformer: A versatile backbone for dense prediction without convolutions, in:
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), (Montreal, QC, Canada: IEEE). pp.
568–78. doi: 10.1109/ICCV48922.2021.00061

14. Graham B, El-Nouby A, Touvron H, Stock P, Joulin A, Jégou H, et al.
(2021). LeViT: a vision transformer in ConvNet’s clothing for faster inference, in:
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), (Montreal, QC, Canada: IEEE). pp.
12259–69. doi: 10.1109/ICCV48922.2021.01204

15. Han K, Xiao A, Wu E, Guo J, Xu C, Wang Y. Transformer in transformer.
Proc Adv Neural Inform. Process Syst (NIPS) (2021) 34:15908–19.

16. Yuan L, Chen Y, Wang T, Yu W, Shi Y, Jiang ZH, et al (2021). Tokens-to-
token ViT: Training vision transformers from scratch on ImageNet, in: Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), (Montreal, QC, Canada: IEEE). pp. 558–67.
doi: 10.1109/ICCV48922.2021.00060
17. Chen H, Wang Y, Guo T, Xu C, Deng Y, Liu Z, et al. (2021). Pre-trained
image processing transformer, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR) , (Nashville, TN, USA: IEEE). pp. 12299–310. doi: 10.1109/
CVPR46437.2021.01212

18. Wang Z, Cun X, Bao J, Liu J. (2022). Uformer: A general U-shaped
transformer for image restoration, in: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), (New Orleans, LA, USA: IEEE). doi: 10.48550/arXiv.2106.03106

19. Chen H, Li C, Li X, Wang G, Hu W, Li Y, et al. GasHis-transformer: A
multi-scale visual transformer approach for gastric histopathology image
classification. arXiv preprint arXiv:2104.14528 (2021). doi: 10.48550/
arXiv.2104.14528

20. Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, et al. Swin-unet: Unet-
like pure transformer for medical image segmentation. arXiv preprint
arXiv:2105.05537 (2021). doi: 10.48550/arXiv.2105.05537

21. Yan X, Tang H, Sun S, Ma H, Kong D, Xie X. After-unet: Axial fusion
transformer unet for medical image segmentation. Proc IEEE Winter Conf Appl
Comput Vis (WACV) (2022), 3971–81. doi: 10.1109/WACV51458.2022.00333

22. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep
convolutional neural networks. Proc Adv Neural Inform. Process Syst (NIPS) (2012)
60:84–90.

23. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
(2017). Attention is all you need. Proc Adv Neural Inform. Process Syst (NIPS)
2017:5998–6008.

24. Ronneberger O, Fischer P, Brox T. (2015). U-Net: Convolutional networks
for biomedical image segmentation, in: Proc. Int. Conf. Med. Image Comput.
Computer-Assisted Interv. (MICCAI), (Munich, Germany: Springer). pp. 234–41.
doi: 10.1007/978-3-319-24574-4_28

25. Hu J, Shen L, Sun G. (2018). Squeeze-and-excitation networks, in: Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), (Salt Lake City, UT, USA:
IEEE). pp. 7132–41. doi: 10.1109/CVPR.2018.00745

26. Li X, Wang W, Hu X, Yang J. (2019). Selective kernel networks, in: Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), (Long Beach, CA, USA: IEEE).
pp. 510–9. doi: 10.1109/CVPR.2019.00060

27. Woo S, Park J, Lee JY, Kweon IS. (2018). CBAM: Convolutional block
attention module, in: Proc. European Conf. Comput. Vis. (ECCV), (Munich,
Germany: Springer). pp. 3–19. doi: 10.1007/978-3-030-01234-2_1

28. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, et al.
Attention U-net: Learning where to look for the pancreas. arXiv preprint
arXiv:1804.03999 (2018). doi: 10.48550/arXiv.1804.03999

29. Misra D, Nalamada T, Arasanipalai AU, Hou Q. (2021). Rotate to attend:
Convolutional triplet attention module, in: Proc. IEEE Winter Conf. Appl. Comput.
Vis. (WACV), (Waikoloa, HI, USA: IEEE). pp. 3139–48. doi: 10.1109/
WACV48630.2021.00318

30. Babiloni F, Marras I, Slabaugh G, Zafeiriou S. (2020). TESA: Tensor element
self-attention via matricization, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR) , (Seatt le , WA, USA: IEEE). pp. 13945–54. doi : 10.1109/
CVPR42600.2020.01396

31. Zhou Y, Wu G, Fu Y, Li K, Liu Y. (2021). Cross-MPI: Cross-scale stereo for
image super-resolution using multiplane images, in: Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), (Nashville, USA: IEEE). pp. 14842–51. doi: 10.1109/
CVPR46437.2021.01460

32. Chen CF, Fan Q, Mallinar N, Sercu T, Feris R. (2018). Big-little net: An
efficient multi-scale feature representation for visual and speech recognition, in:
Proc. Int. Conf. Learn. Represent. (ICLR), (Vancouver, BC, Canada:
OpenReview.net).
frontiersin.org

https://doi.org/10.1016/j.jtho.2021.10.010
https://doi.org/10.1016/j.critrevonc.2016.01.012
https://doi.org/10.1016/j.ejcts.2009.05.038
https://doi.org/10.3389/fonc.2019.01041
https://doi.org/10.1186/s13019-016-0533-9
https://doi.org/10.1186/s13019-016-0533-9
https://doi.org/10.3389/fonc.2019.01045
https://doi.org/10.3389/fonc.2020.586292
https://doi.org/10.3389/fmolb.2020.00183
https://doi.org/10.3389/fgene.2019.00080
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00061
https://doi.org/10.1109/ICCV48922.2021.01204
https://doi.org/10.1109/ICCV48922.2021.00060
https://doi.org/10.1109/CVPR46437.2021.01212
https://doi.org/10.1109/CVPR46437.2021.01212
https://doi.org/10.48550/arXiv.2106.03106
https://doi.org/10.48550/arXiv.2104.14528
https://doi.org/10.48550/arXiv.2104.14528
https://doi.org/10.48550/arXiv.2105.05537
https://doi.org/10.1109/WACV51458.2022.00333
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2019.00060
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.1109/WACV48630.2021.00318
https://doi.org/10.1109/WACV48630.2021.00318
https://doi.org/10.1109/CVPR42600.2020.01396
https://doi.org/10.1109/CVPR42600.2020.01396
https://doi.org/10.1109/CVPR46437.2021.01460
https://doi.org/10.1109/CVPR46437.2021.01460
https://doi.org/10.3389/fonc.2022.925903
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.925903
33. Jiang K, Wang Z, Yi P, Chen C, Huang B, Luo Y, et al (2020). Multi-scale
progressive fusion network for single image deraining, in: Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), (Seattle, WA, USA: IEEE), Vol. 2020).
pp. 8346–55. doi: 10.1109/CVPR42600.2020.00837

34. Su R, Zhang D, Liu J, Cheng C. MSU-net: Multi-scale U-net for 2D medical
image segmentation. Front Genet (2021) 140:639930. doi: 10.3389/
fgene.2021.639930

35. Kushnure DT, Talbar SN. MS-UNet: A multi-scale UNet with feature
recalibration approach for automatic liver and tumor segmentation in CT
images. Comput Med Imag Grap. (2021) 89:101885. doi: 10.1016/
j.compmedimag.2021.101885

36. Chu X, Tian Z, Zhang B, Wang X, Wei X, Xia H, et al. Conditional positional
encodings for vision transformers. arXiv preprint arXiv:2102.10882 (2021).
doi: 10.48550/arXiv.2102.10882

37. Xue D, Zhou X, Li C, Yao Y, Rahaman MM, Zhang J, et al. An application of
transfer learning and ensemble learning techniques for cervical histopathology
image classification. IEEE Access (2020) 8:104603–18. doi: 10.1109/
ACCESS.2020.2999816
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