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Introduction:Medulloblastoma (MB) is a malignant, heterogenous brain tumor.

Advances in molecular profiling have led to identifying four molecular

subgroups of MB (WNT, SHH, Group 3, Group 4), each with distinct clinical

behaviors. We hypothesize that (1) aggressive MB tumors, growing

heterogeneously, induce pronounced local structural deformations in the

surrounding parenchyma, and (b) these local deformations as captured on

Gadolinium (Gd)-enhanced-T1w MRI are independently associated with

molecular subgroups, as well as overall survival in MB patients.

Methods: In this work, a total of 88 MB studies from 2 institutions were

analyzed. Following tumor delineation, Gd-T1w scan for every patient was

registered to a normal age-specific T1w-MRI template via deformable

registration. Following patient-atlas registration, local structural deformations

in the brain parenchyma were obtained for every patient by computing

statistics from deformation magnitudes obtained from every 5mm annular

region, 0 < d < 60mm, where d is the distance from the tumor infiltrating edge.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.915143/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.915143/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.915143/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.915143/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.915143/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.915143/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.915143/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.915143&domain=pdf&date_stamp=2022-12-21
mailto:ismail8@wisc.edu
https://doi.org/10.3389/fonc.2022.915143
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.915143
https://www.frontiersin.org/journals/oncology


Iyer et al. 10.3389/fonc.2022.915143

Frontiers in Oncology
Results: Multi-class comparison via ANOVA yielded significant differences

between deformation magnitudes obtained for Group 3, Group 4, and SHH

molecular subgroups, observed up to 60-mm outside the tumor edge.

Additionally, Kaplan-Meier survival analysis showed that the local deformation

statistics, combined with the current clinical risk-stratification approaches

(molecular subgroup information and Chang’s classification), could identify

significant differences between high-risk and low-risk survival groups, achieving

better performance results than using any of these approaches individually.

Discussion: These preliminary findings suggest there exists significant

association of our tumor-induced deformation descriptor with overall

survival in MB, and that there could be an added value in using the proposed

radiomic descriptor along with the current risk classification approaches,

towards more reliable risk assessment in pediatric MB.
KEYWORDS

medulloblastoma, deformation, molecular subgroups, survival, LASSO
1 Introduction

Pediatric Medulloblastoma (MB) is an aggressive Grade IV

cancer with heterogeneous patient outcomes (1). Current

treatment strategies for older children require multimodal

therapy inclusive of surgical resection, chemotherapy, and

craniospinal irradiation, while deferring radiation strategies for

children <3yrs of age (2). These treatment regimens, while effective

in achieving long-term survival in a third of MB patients, are

associated with short- and long-term morbidities that result from

radiation and chemotherapy. For instance, chemotherapy for MB

is associated with sensorineural hearing loss and cardiac toxicity

(3). Additionally, severe endocrinopathies, bone development

deficiencies, and ovarian failure have been reported as side effects

of radiation therapy in pediatric MB patients (3, 4). Consequently,

many survivors suffer from impaired quality of life, secondary

sequelae of radiation injury, and are prone to increased risk for

secondary malignancies (5). Better early risk stratification methods

may help tailor therapy in MB patients and reduce the impact of

therapy for low-risk patients.

Over the last decade, there has been international consensus

(6) on the genomic characterization of MB into four distinct

molecular subgroups: Sonic Hedgehog (SHH), Wingless (WNT),

Group 3, and Group 4 (7). The WNT and SHH sub-groups are

named after the signaling pathways that are thought to play

prominent roles in the pathogenesis of these two subgroups,

while Group 3 and 4 subgroups have been designated generic

names since the underlying biology driving them is still not well

understood (6). Interestingly, few studies have reported that the

four molecular subgroups generally demonstrate different

anatomical origins at diagnosis. For instance, Gibson et al. (8)
02
have shown that WNT subgroup is located within the IV

ventricle towards the brainstem, unlike SHH subgroup that

tends to be far from the brainstem within the cerebellar

hemispheres, which could be indicative of the growth patterns

of these subgroups as well as the neurological deficits associated

with each (9). Additionally, the four MB molecular subgroups

have generally shown different clinical behaviors and may

benefit from subgroup-specific treatments and targeted

therapies (6). Considering these observations, there are

ongoing clinical trials to de-escalate therapies for the

subgroups considered less aggressive (WNT, SHH), while

escalating therapies for the ones that are considered more

aggressive (Group 3, Group 4) (6). Interestingly, Cavalli et al.

(10) have recently highlighted the presence of intertumoral

heterogeneity within the four medulloblastoma subgroups by

delineating the presence of 12 additional subtypes across the four

MB subgroups. However, despite these developments, the degree

of heterogeneity and the extent of overlap within molecular

subgroups, as well as their role in treatment modification, are

still areas of active investigation in MB tumors.

Diagnosis, surgical guidance, and post-treatment follow-up

response assessment in MB tumors is currently investigated

using multi-parametric Magnetic Resonance imaging (MRI)

including gadolinium-based contrast agent (Gd-T1w)

sequences. Recent studies have shown the promise of radiomic

(high throughput feature extraction) features extracted from

routine MRI scans in capturing the underlying tumor

histological and molecular characteristics in MB (11, 12) as

well as adult brain tumors (13, 14). Hence, there may be an

opportunity to complement existing molecular strategies with

radiomic markers extracted from routine MRI scans, to further
frontiersin.org
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improve clinical patient stratification prior to surgery, allowing

for neo-adjuvant subgroup specific therapy, or inform the need

for aggressive surgical resection.

MB tumors are known to grow heterogeneously and may

impact the neighboring structures, when the growing tumor

displaces the surrounding healthy tissue structures (a

phenomenon known as mass effect). Hence, the impact of the

tumor is observed not just within the visible tumor boundaries,

but also in the immediate peri-tumoral, as well as in seemingly

normal-appearing adjacent regions (i.e., brain around tumor

(BAT). For instance, Group 3 tumors that have relatively poor

survival outcomes, are shown to proliferate at a faster rate than

WNT subgroup which is associated with improved prognosis

(15–17), suggesting that aggressive tumor phenotypes may exert

increased tissue distortion on BAT region, compared to the less

aggressive ones (e.g., WNT). On Gd-T1w MRI, this exerted tissue

distortion may be quantified as local structural deformations in

the brain parenchymal region within the vicinity of the tumor.

In this work, we present a novel deformation-based radiomic

descriptor that captures local structural deformations in the BAT

region of pediatric MB patients on routine Gd-T1w MRI scans.

Our work is based on the rationale that the differential growth

patterns across MB molecular subgroups (due to their varying

degrees of malignancy) could be quantified using the local

structural deformations in the BAT region and may exhibit

distinct deformation patterns across the subgroups. Specifically,

we hypothesize that (1) the growth pattern of the more

aggressive and heterogeneous MB tumors will exert more

pronounced structural deformations on the surrounding BAT

regions, as compared to less aggressive MB tumors, and (2) these

distinct local deformation attributes from the normal brain

parenchyma, as captured on Gd-T1w MRI, wil l be
Frontiers in Oncology 03
independently associated with the four molecular subgroups

(that vary in the degree of aggressiveness to some extent), as

well as overall survival in MB patients. Figure 1 shows the

pipeline of the entire framework.
2 Methods

2.1 Study population

Our retrospective study utilized Gd-T1w MRI sequences

from pediatric MB patients from two collaborating institutions.

The cohort from Children’s Hospital of Los Angeles (CHLA)

consisted of 52 studies (mean age = 5.46 years) and the cohort

from Cincinnati Children’s Hospital Medical Center (CCHMC)

consisted of 46 studies (mean age = 5.28 years). The sequences

used in this study were acquired using both 1.5 and 3 Tesla

scanners using the gradient recalled (GR) echo sequence. Table 1

includes additional details on data acquisition and scanner

information. We further triaged studies based on the inclusion

criteria (Figure 1) to only include Gd-T1w MRI sequences with

(1) acceptable diagnostic quality (as identified by collaborating

radiologists), and (2) available overall survival information.

Specifically, a total of 10 cases were excluded from the

analysis; one case was excluded due to poor image quality

during acquisition, one was excluded due to the lack of clinical

information, and the other 8 cases were excluded because of the

missing protocols that were needed to conduct the analysis (axial

T1-weighted post contrast scan). This ultimately resulted in a

cohort of n=88 cases (47 from CHLA and 41 from CCHMC), of

which n=71 cases had the subgroup information available (SHH,

WNT, Group 3, Group 4). Table 1 provides details on the dataset
A B DC

FIGURE 1

Overview of the proposed framework. A breakdown of our datasets is provided (A). Then, segmentation of tumor compartments and the
preprocessing pipeline are shown (B). Deformation features that characterize the tumor impact on BAT region are then extracted (C). Features were
then used to 1) identify the 4 molecular subgroups using ANOVA, and 2) survival risk-stratification using a LASSO model for stratifying MB patients
into low- and high-risk groups based on their overall survival (D)."
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demographics as well as a breakdown of the training and test

cohorts employed in this study. Additionally, in supplementary

documentation, we have provided the clinical information for

the participating cohorts, including Chang risk stratification at

diagnosis, molecular subgroup, extent of surgical resection

(EOR), and presence of metastatic disease. Further, the

original treatment protocol, craniospinal radiation doses, and

information on proton radiation at diagnosis are also provided

for each patient.

Due to the small and disproportionate number of cases

across each of the molecular subgroups from the two

institutions (CHLA, CCHMC), we incorporated the entire

cohort of n=71 patients (for whom the molecular information

was available) for unsupervised statistical analysis, i.e., without

holding out a validation set. Further, in our survival analysis
Frontiers in Oncology 04
experiment, the disproportionate distribution of MB subtypes

was accounted for by dividing the entire cohort of n=88 studies

into training and test set using a 70-30 split; following the

essential caveat that all MB subgroups are proportionally

represented across the training and test sets.
2.2 Pre-processing

For every study used in this work, Gd-T1w MR images were

corrected for inhomogeneities caused by the magnetic field using

N4 bias correction, followed by applying a histogram matching

method for intensity standardization as described in (18).

Specifically, we generated a normalized ‘intensity histogram

template’ by randomly selecting 8 patients from our cohort
TABLE 1 (A) Data distribution across training and test cohorts. (B) Patient demographics (age, subgroup, and survival information) as well as
scanner information.

A Data Distribution

Site Training cohort(n=60) Test cohort(n=28)

CHLA 32 15

CCHMC 28 13

Total cases 60 28

B Demographics and Scanner information

Parameter
Training cohort
(n=60)

Test cohort
(n=28)

Age (mean, years) 5.462 5.2895

OS (mean, days) 1573 1384.7

Subgroup:

WNT 4 3

SHH 15 6

Group 3 8 3

Group 4 22 10

Group 3/Group 4 6 3

Missing 5 3

Scanner: 1.5 T Philips Acheiva scanner at CHLA 32 15

Scanner: 3 T Philips Ingenia scanner at CCHMC 28 13

Scan type T1 FFE axial post-contrast * T1 FFE axial post-contrast *

MR acquisition type 2D 2D

Scanning sequence Gradient recalled (GR) Gradient recalled (GR)

Sequence variant Steady state (SS) Steady state (SS)

Pixel spacing (mm) 0.46-1 0.46-1

Slice thickness (mm) 1-5.8 1-5.8

*T1 Fast Field Echo axial post-contrast.
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(~10% of the cohort), to generate a template distribution. Then,

we computed the intensity histograms for these randomly

selected patients and normalized these histograms to obtain a

single histogram which represented the template. Distributions

for all our patient volumes from the two sites were then

nonlinearly mapped to the template distribution using the

intensity normalization method as presented in (18), thus

bringing all patients into the same intensity range. The T2-w/

FLAIR MR images were then employed for annotation of

peritumoral edema, following their registration to Gd-T1w

MRIs, to ensure alignment. Specifically, two experts performed

the manual annotations on every MRI slice, via a hand-

annotation tool in 3D Slicer. Expert 1 (V.S), a board-certified

neuro-radiologist with 10 years of experience, supervised expert

2 (K.B, with 4 years of radiology experience), in annotating the

MRI slices into the following 2 regions: (1) infiltrating T2/FLAIR

hyperintensities (edema), and (2) the normal adjacent region

that exists around the infiltrating tumor margins as BAT.
2.3 Feature extraction

To capture structural deformations in the BAT region, all

Gd-T1w images of the diseased subject brains were registered

to age-appropriate atlases that were obtained from the

neurodevelopmental MRI database (19). Specifically, to

account for anatomical differences across different age

groups due to brain development in pediatric patients, a

total of 4 age-specific atlases (0-1, 1-5, 5-10, 10-18 years)

were used from this database. A two-step registration scheme

was then employed, which is based on diffeomorphic

transformation that guarantees symmetry regardless of the

chosen similarity measure and generates an inverse mapping

(20). In this scheme, the atlases were first non-rigidly

registered to the subjects using mutual information-based

similarity measure within a B-Spline registration scheme (20).

The tumor mask (the infiltrating T2/FLAIR hyperintensities)

was removed from the subject brain during registration such

that only the spatial intensity differences due to structural

deformation caused by mass effect were recovered, when

compared to the atlases. This step yields the forward

transformation of the voxel-wise deformation field

(including the affine components), which maps the

displacements of the voxels between the reference and

floating volumes. The second step of this registration

scheme utilizes the inverse mapping of the diffeomorphic

registration that yields the tissue deformations with respect to

the atlases, by warping the subjects into the atlas space, to

compute subtle per-voxel structural deformations. Per-voxel

deformation magnitudes were then computed, by calculating

the Euclidean norm of the scalar values of the deformation

orientations which resulted from the new voxel positions after

mapping each volume to the atlas space.
Frontiers in Oncology 05
Finally, to capture localized deformation changes around the

infiltrating edge, the region outside the infiltrating T2/FLAIR

hyperintensities was divided into equidistant 12 annular bands.

These bands were created to be 5mm apart from each other,

covering 60 mm outside the tumor margins. The choice for the

size of the annular bands was based on previous studies which

recommended 5mm as the safe clinical target volume margin for

MB tumors (21). The deformation magnitudes of voxels within

each of the bands were aggregated and individually analyzed,

where each band was inclusive of the previous margin. For each

of the 12 bands outside the tumor region, five statistics were

obtained from the extracted deformation field for every band;

mean (M), median (MD), standard deviation (STD), skewness

(SK), and kurtosis (K). These aggregated statistical measures of

deformation magnitudes (n = 60 features (i.e., 5 feature statistics

across the 12-bands)) were then further pruned to identify

independent subsets of local structural deformation attributes

that are significantly associated with 1) the four molecular

subgroups, and 2) overall survival, in MB patients.
2.4 Statistical analysis

Experiment 1: Identifying associations of structural

deformation features with MB molecular subgroups

using ANOVA

In this experiment, we sought to identify if there exist

significant associations between the extracted deformation

features with the four molecular subgroups of MB (SHH,

WNT, Group 3, Group 4). Highly correlated deformation

features from across each of the 12 bands were discarded, and

the remaining features were scaled and normalized. A multiclass

ANOVA test was used to obtain statistically significant

differences in deformation features across the subgroups. This

was followed by a post hoc test, ‘multiple comparison of means’,

to identify if the means of each of the subgroups have significant

statistical differences from other MB subgroups (22).

Additionally, we conducted a comparative experiment in

light of the work by Dasgupta et al. (23), where we extracted

semantic features and correlated their impact on molecular

subgroups of our MB cohort. Specifically, five semantic

features were extracted from all cases that had subgroup

information available, including Group 3/Group 4 patients

(n=81) across both datasets: (1) tumor’s horizontal position

Midline/Lateral, (2) tumor’s vertical position: Superior/

Central/Inferior, (3) necrosis: Present/Absent, (4) brainstem

involvement: Present/Absent, and (5) contrast uptake: Low/

Medium/High. The distribution of semantic MRI features

amongst the five molecular subgroups was compared using the

Pearson Chi-square test and Fisher’s exact test as appropriate.

The Fisher’s exact test was used when a semantic feature had two

classes (binomial classification) and the Pearson’s chi-square test

was used when a semantic feature had more than two classes
frontiersin.org
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(non-binomial classification). The five subgroups (including the

transitional G3/G4) were analyzed in a one vs all setting with a

95% confidence interval.

Experiment 2: Identifying the added-value of structural

deformation features for MB survival risk-stratification in

conjunction with existing approaches, and comparison with

clinical variables

First, to evaluate the associations of the local deformation

features in the context of survival analysis in MB, we employed

a least absolute shrinkage and selection operator (LASSO)

regression model (24), along with a cox proportional hazards

model. We implemented LASSO using the glmnet package in R

(25), where only a subset of the features was selected, while

forcing the coefficients of other features to be zeroes. The

LASSO model was run on the training set using a 3-fold cross-

validation scheme to avoid selection bias. A radiomic risk score

(RRS) was then generated using the top features selected by the

LASSO model, where the weighted sum of these features was

used to create a continuous risk score for each patient in both

training and test cohorts. Finally, we used the X-tile software

(version 3.6.1) to find an optimal threshold using a grid-search

across all the risk score values to classify patients into high-risk

and low-risk groups in the training cohort. Kaplan–Meier

survival analysis was employed to examine the differences in

overall survival between the identified low- and high-

risk groups.

Additionally, to assess the performance of RRS and the

added value of combining it with the current stratification

approaches for pediatric MB, we performed the following

analyses, for MB survival prognostication: (1) RRS alone, (2)

RRS + Chang’s stratification, (3) RRS + molecular subgroup

information, and (4) RRS + Chang’s stratification + molecular

subgroup information. For our multivariate cox proportional

hazards models, we reported multiple hazard ratios as we

obtained distinct hazard ratios for each stratum of every

independent covariate. Within each covariate, one stratum will

have the ‘baseline’ hazard ratio of 1 against which the other

strata are compared. A hazard ratio > 1 indicates increased
Frontiers in Oncology 06
hazard while a hazard ratio <1 indicates a lower hazard than the

baseline strata.

Further, for sake of completeness, we utilized the available

clinical information for our participating cohorts, to assess their

performance in survival prediction on our cohort. Namely, the

following parameters were individually employed, i.e., in a

univariate setting, into our survival model: (1) Chang’s

stratification, (2) molecular subgroup information, (3) tumor

volume, (4) EOR, and (5) presence of metastasis.

Experiment 3: Assessing associations between RRS and

existing risk-stratification approaches (Chang, and molecular

risk-assessment)

To assess if there exist any statistically significant

relationships between the survival predictions of RRS versus

the current stratification approaches, we performed the

following experiments: (a) McNemar’s test for correlated

proportions on RRS outcomes and Chang’s stratification

outcomes (null hypothesis being that the two models are

equal), and (b) Chi-square test for independence between RRS

and molecular subgroup stratification. For McNemar’s test, a 2 x

2 contingency table was constructed based on the predictions of

low-, and high-risk groups via both stratification approaches.

Similarly, for Chi-square test, a 4 x 2 contingency table was

constructed for comparing predictions from each of the 4

molecular sub-types as well as RRS. For both tests, the chi-

squared statistic and the associated p-values were reported.
3 Results

3.1 Experiment 1: Identifying significant
associations of structural deformation
features with MB molecular subgroups
using ANOVA

Table 2 shows the statistically significant deformation

features across the 4 molecular sub-types along with their p-

values. Interestingly, skewness of deformation magnitudes was
TABLE 2 ANOVA results for identifying the four molecular MB subgroups.

Deformation features Molecular subgroups p-value

Skewness at 15 mm Group 3 vs. SHH and Group 4 0.028

Skewness at 20 mm Group 3 vs. SHH and Group 4 0.007

Skewness at 25 mm Group 3 vs. SHH and Group 4 0.004

Kurtosis at 15 mm Group 3 and Group 4 0.05

Kurtosis at 25 mm Group 3 vs. SHH and Group 4 0.0183

Median at 25 mm Group 3 and Group 4 0.05

Six features showed statistically significant differences among the subgroups.
fron
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found to be statistically significantly different between the

molecular subgroups at several distances from the tumor

margin, including at 15 mm (SK15), at 20 mm (SK20), and at

25 mm (SK25), between Group 3 vs. SHH and Group 4.

Additionally, kurtosis of deformation showed significant

differences between the molecular subgroups, where K15 was

statistically significantly different between Group 3 and Group 4,

and K25 was statistically significantly different between Group 3

vs. SHH and Group 4. Another top feature was median of

deformation, where MD25 was statistically significantly different

between Group 3 and Group 4. Figure 2 includes the box plots of

the top deformation features among the four MB subgroups.

Additionally, Figure 3 shows the qualitative differences among

the four MB subgroups. WNT, the least aggressive subgroup,

seemed to exhibit lower deformation magnitude values, whereas
Frontiers in Oncology 07
more aggressive subgroups (e.g., Group 3 and Group 4)

exhibited higher deformation magnitude values. Figure 4

shows the hierarchical clustering of the different MB

subgroups, based on the statistically significant deformation

features that resulted from ANOVA.

Our analysis pertaining to the association of tumor location-

specific semantic features with molecular sub-types yielded

statistically significant association between Group 4 tumors

and midline horizontal location (p-value = 0.0034) as well as

between Group 4 tumors and presence of brainstem

involvement (p-value = 0.0034). Additionally, we identified

statistically significant associations between Group 3 tumors

and high contrast uptake (p-value = 0.00001), and a

statistically significant association between SHH tumors and

medium contrast uptake (p-value = 0.000549).
A B

DC

FIGURE 2

Box plots representing the top deformation features that were found to be discriminative between the MB subgroups. Specifically, skewness of
deformation was statistically significant at (A) 15 mm between Group 3 vs. SHH and Group 4 (p-value = 0.028), (B) 20 mm between Group 3 vs.
SHH and Group 4 (p-value = 0.007), and (C) 25 mm between Group 3 vs. SHH and Group 4 (p-value = 0.004). Kurtosis of deformation was
statistically significant at (D) 25 mm between Group 3 vs. SHH and Group 4 (p-value = 0.018).
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3.2 Experiment 2: Identifying the added-
value of structural deformation features
for MB survival risk-stratification in
conjunction with existing approaches,
and comparison with clinical variables

Employing deformation features alone (RRS): When applied

on the training set, LASSO survival analysis yielded 3 top

deformation features (K10, K20, and MD25). The KM curve

obtained for the training set based on these features

(Figure 5A) demonstrated significant differences between the

two groups, p-value = 2.9 × 10-4. The C-index obtained was 0.7,

with a hazard ratio (HR) of 5.9. However, for the test set,

significant differences were not observed between the low-risk

and high-risk survival groups (Figure 5B), perhaps on account

of the small testing cohort. Boxplots for the most

discriminative deformation feature (K10) are shown in

Figure 6 for both training and test sets, where p-values for

the training and test sets were found to be 0.02 and

0.017 respectively.

Qualitative differences for the deformation fields for two MB

subjects, one with poor-survival (top row) and one with prolonged

survival (bottom row), are shown in Figure 7. The patient with

poor survival seemed to exhibit higher values of the deformation

fieldmagnitudes for kurtosis of deformation (kurtosis is a measure
Frontiers in Oncology 08
of extreme values in a dataset) and seemed to reflect higher values

for the patient with worse survival, compared to that for the

patient with improved survival.

Employing clinical features in a univariate setting for survival

analysis: When Chang’s classification (n = 88), molecular

subgroup information (n = 71), EOR (n =88), presence of

metastatic disease (n = 88), and tumor volume (n = 88) were

individually employed to survival analysis in a univariate setting,

significant differences were not observed between the two

survival risk groups. Table 3 shows the performance metrics

for each of these experiments. Additionally, Figure 8 shows the

KM estimates for survival, when employing Chang ’s

stratification as well as molecular subgroup information, in a

univariate setting to prognosticate survival. Additional

performance metrics of each of these models are available in

supplementary documentation.

Employing RRS with clinical features in a multivariate setting

for survival analysis:
(a) RRS + Chang’s stratification: Significant differences were

identified between the two risk groups of the training

cohort (p-value = 0.002, C-index = 0.695). However,

RRS + Chang’s stratification did not yield significant

differences between the low-risk and high-risk groups

on the test cohort (p-value = 0.7, C-index =0.53).
FIGURE 3

(Top) Four MB subjects representing the four MB molecular subgroups, WNT (A), SHH (C), Group 3 (E), and Group 4 (G), respectively. The
corresponding deformation magnitude maps for each of the four molecular sub-types are provided in (B, D, F, H) respectively. For the patient
with Group 3 (the most aggressive subgroup) (E), higher magnitude values (represented in red) were observed in close proximity of the tumor
(F), whereas lower values were observed (blue) in (B) for the patient with WNT (the least aggressive subgroup) (A).
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(b) RRS + molecular subgroup information: Significant

differences were observed between the two risk groups of

the training cohort using this RRS + molecular subgroup

information (p-value = 0.002, C-index = 0.751),

demonstrating an improvement in C-index value from

the model in (a). While the RRS + molecular subgroup

analysis, similarly, did not show significant differences on

the test cohort (p-value = 0.4), substantial improvement in

the C-index (0.81) was observed on the test set, compared

to the values obtained when employing either RRS or

molecular information in a univariate setting.

(c) RRS + Chang’s stratification + molecular subgroup

information: Significant differences were observed

between the two risk groups on the training cohort (p-

value = 0.005, C-index = 0.75). While the RRS + Chang’s

stratification + molecular subgroup analysis did not

significant differences on the test cohort, substantial
tiers in Oncology 09
improvement in the C-index (0.792) was observed on

the test set, compared to the values obtained when

employing either RRS, molecular information, or

Chang stratification, in a univariate setting.
Table 4 lists Hazard ratios, concordance-index, and the

corresponding p-values for all the conducted survival

experiments in a multivariate setting.
3.3 Experiment 3: Assessing associations
between RRS and existing risk-
stratification approaches (Chang, and
molecular risk-assessment)

McNemar’s test for correlated proportions on RRS outcomes

and Chang’s stratification outcomes did not yield statistical
A

B

FIGURE 4

Hierarchical clustering of different MB subgroups based on the conducted ANOVA. In (A), the statistically significant features between Group 3
and Group 4 were used to create a dendrogram that clusters the patients into their subgroups. Overall survival (OS) information for patients is
also displayed, where patients clustered into Group 3 have lower OS than those clustered into Group 4. The statistically significant features
between SHH and Group 3 are used in (B) to create a dendrogram that clusters the patients into their subgroups. OS information is also
displayed for each patient, where Group 3 shows worse OS than SHH that is usually associated with better prognosis.
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significance (p = 0.44), suggesting that the predictions of the two

models do not hold significant associations between their

assessments. Similarly, the chi-squared test between survival

predictions of the RRS and molecular sub-group analysis did

not yield significant associations (p = 0.86), suggesting that RRS

may provide complementary risk-assessment, independent of

the existing approaches. The associated contingency tables for

the two tests are provided in supplementary documentation.
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4 Discussion and conclusions

Medulloblastoma (MB) is an aggressive brain tumor in

children, that can have both local mass effect as well as

potential for metastasis through the CNS. Locally, this results

in variable degree of normal brain parenchymal displacement,

that can ultimately lead to worse prognosis and poor survival

(26). In this work, we presented a deformation-based image
A

B

FIGURE 5

Kaplan Meier curves that illustrate survival analysis conducted using the top deformation features that created the radiomic risk scores (RRS) for
both training (A) and test (B) sets. X-axis represents overall survival in years, and Y-axis represents the estimated survival function.
FIGURE 6

Box plots of the most significantly different deformation feature (kurtosis at 10 mm) between MB patients with poor OS and those with
prolonged OS, of the training and test sets respectively, based on the LASSO regression model. p-values for the differences across the 2 risk
groups are 0.02 and 0.017 for training and test sets respectively.
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FIGURE 7

(A, B) show Gd-T1w MR scans of the two MB patients; a patient with poor survival (top row), and a patient with prolonged survival (bottom row).
(C, D) illustrate the extracted deformation field magnitudes for each of the two patients, respectively. For the patient with poor survival (C),
higher magnitude values (represented in red) were observed in close proximity of the tumor, whereas lower values were observed (blue) for the
patient with prolonged survival (D).
TABLE 3 p-value, concordance indices, and hazard ratios for the survival experiments conducted in a univariate setting using Chang’s
classification, molecular subgroup information, and the tumor volume information.

Analysis Feature Stratum Entire Cohort

HR C-index p-value

Uni-variable Chang’s(n = 88) Standard-risk 1 0.546 ± 0.072 0.97

High-risk 0.98

Molecular subgroup(n = 71) Group 3 1 0.624 ± 0.064 0.79

Group 4 0.59

WNT 0.48

SHH 0.80

Tumor Volume(n = 88) – 1.17 0.55 ± 0.065 0.2

Distinct hazard ratios are reported for each stratum, in the event there is more than one independent covariate in the survival analysis model.
F
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descriptor that leverages the structural deformation attributes

from the brain around tumor (BAT) regions, with the

underlying hypothesis that the growth patterns of more

aggressive and heterogeneous MB subgroups will lead to more

pronounced structural deformations in the surrounding BAT

regions, as compared to less aggressive subgroups. While

previous approaches have explored local structural

deformations as a radiomic descriptor to prognosticate

survival in adult Glioblastoma tumors (13, 14), a common

symptom among brain tumors is the elevated intra-cranial

pressure (27). Additionally, the study by (28) demonstrated

that elevated intra-cranial pressure is a major cause of

structural malformations in MB patients. We thus rationalized

that it might be reasonable to explore the associations of

structural deformations with patient prognosis in the context

of MB tumors as well, as these tumors similarly tend to be

aggressive and highly malignant. To our knowledge, our work

presents the first attempt at exploiting distinct local tissue-

induced deformation signatures for identifying associations of

deformation features with molecular subgroups, as well as with

overall survival, in the context of pediatric MB tumors.

Further, previous studies have employed radiomic and deep-

learning approaches to distinguish molecular subgroups of MB

using features obtained from within the visible peri-tumor

confines alone (11, 29, 30). For instance (11), combined a set

of imaging attributes such as tumor location and cavities, into a

logistic regression model to identify significant predictors of the

MB subgroups. Similarly (31), extracted a set of 590 radiomic
Frontiers in Oncology 12
features from the tumor regions, including intensity-based

histograms and local area integral invariant features, that were

fed to a classifier to obtain the features that are prognosticative of

the MB subgroups. The study in (30) employed a regional

convolutional neural network to determine the molecular MB

subgroups by utilizing prognosis information, masks confining

only lesion areas, as well as genotyping information. These

works reported significant differences among the MB

subgroups yet have mainly focused on attributes from within

the tumor confines without considering the tumor mass effect on

the normal BAT area.

The analysis conducted in our work was limited to Gd-T1w

images because the well-curated age-appropriate pediatric

database (19) only included Gd-T1w MRI protocol for atlas

construction. Unfortunately, corresponding age-appropriate

atlases were not readily available for T2-w and FLAIR scans

and hence these protocols could not be employed for our

analysis. Interestingly, our deformation features captured from

the BAT region showed significant differences among the

different molecular subgroups of MB. Specifically, skewness of

deformation (which indicates lack of data symmetry (i.e.,

heterogeneity)) emerged as a statistically significant feature

between SHH and Group 3, and Group 3 and Group 4. The

higher skewness values exhibited by the Group 3 at several

distances from the tumor margin (Figures 2B–D) could be linked

to the way such aggressive tumors proliferate and exert pressure

on BAT, and hence may lead to a highly skewed distribution of

the deformation magnitude values at these regions, compared to
A

B

FIGURE 8

Kaplan Meier curves that illustrate survival analysis conducted using (A) Chang’s stratification information, and (B) molecular subgroup
information for the MB subjects from both datasets. X-axis represents overall survival in years, and Y-axis represents the estimated survival
function.
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less aggressive, heterogeneous subgroups. Additionally, kurtosis

was also statistically significant between Group 3 and Group 4,

and SHH and Group 3. The higher values exhibited by Group 3

(Figure 2A) could be on account of the highly aggressive nature

of this group, which leads to higher extremes in the deformation

magnitude values associated with it. Our deformation descriptor

could thus be part of an integrative analysis that explores the

association of high-risk MB subgroups with dysregulated

signaling pathways that are known to play important parts in

the carcinogenesis or progression of MB (12). For example, it is

known that PI3K/AKT pathway is activated during MB cell

proliferation, which might be linked to the higher deformation

magnitudes’ statistics values found on MB aggressive subtypes

(e.g., Group 3 and Group 4), that exert pressure around the

tumor. This pathway is also specifically related to poor prognosis

in Group 3 and Group 4 (32, 33).

Apart from identifying MB subgroups, previous works in

the context of MB survival analysis have investigated clinical
Frontiers in Oncology 13
and biological predictors or gene expression profiling analysis

(34, 35). More recently, one study developed a radiomic

signature for survival analysis in MB using a combination

of shape features extracted from the tumor contour, as well as

intensity and texture features extracted from both the original

images and the Laplacian-transformed images (12). This

study further extended their analysis to obtain dysregulated

pathways across the low-, and high-risk categories obtained

from the radiomic signature. Additionally, the study

demonstrated that a combined radiomics-clinical-molecular

signature improved survival risk-stratification as compared to

employing radiomic features alone. These results are in line

with our findings in this work, which suggest that the

radiomic attributes obtained from imaging (represented in

our deformation descriptor) may serve as a complementary

tool to the current clinical approaches used in risk

assessment, towards more reliable risk stratification in

pediatric medulloblastoma.
TABLE 4 p-values, concordance indices, and hazard ratios for the survival experiments conducted using our radiomic risk score (RRS), in both
univariate and multivariate settings.

Analysis Feature Stratum Training Testing

HR C-
index

p-
value

HR C-
index

p-
value

Univariable RRS (n = 88)Training: n = 60Testing: n = 28 Standard-risk 1 0.7 07 ±
0.08

2.9 ×
10-4

1 0.44 ±
0.1

0.48

High-risk 5.9 1.9

RRS + Chang’s(n = 88)Training: n = 60Testing: n = 28 RRS 2.5 0.695 ±
0.08

0.002 0.82 0.53 ±
0.15

0.7

Chang’s high-
risk

1 1

Chang’s
standard-risk

1.2 0.47

Multivariable RRS + molecular information(n = 71)Training: n = 49Testing:
n = 22

RRS 2.5 0.761 ±
0.08

0.002 0.82 0.812 ±
0.087

0.4

Group 3 1 1

Group 4 0.2 0.92

WNT 0.2 1.3

SHH 0.15 2.7

RRS + Chang’s + molecular information(n = 71)Training: n =
49Testing: n = 22

RRS 2.57 0.746 ±
0.079

0.005 0.84 0. ± 0.09 0.5

Chang’s high-
risk

1 1

Chang’s
standard-risk

0.98 0.63

Group 3 1 1

Group 4 0.23 1.4

WNT 0.16 2.1

SHH 0.16 3.5

The univariate model includes RRS only. The experiments conducted in a multivariate setting used a combination of RRS and clinical information such as Chang’s classification and
molecular subgroup information. Distinct hazard ratios are reported for each stratum, in the event there is more than one independent covariate in the survival analysis model.
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In the context of our presented survival analysis, kurtosis

and median of the deformation descriptor were identified as top

features by the LASSO regression model, on the training cohort.

Interestingly, kurtosis of deformation at 10 mm was statistically

significantly different between high- and low-risk survival

categories (Figure 6), with higher values for the high-risk

survival group (as visually detected on Figure 7). This could be

on account of the higher heterogeneity of deformations within

the BAT regions in patients with poor survival, due to the

structural distortions beyond tumor confines.

Additionally, when combining our deformation descriptor

with the current risk assessment approaches that are used in a

clinical setting (molecular subgroup information, Chang’s

stratification), substantially improved performance metrics

(i.e., C-index) were obtained for survival risk-assessment,

compared to any of these three approaches in a univariate

setting. This demonstrates the added value of combining the

proposed radiomic descriptor with the current stratification

approaches, towards more reliable risk assessment in

pediatric MB.

Our study did have some limitations. Our results were

limited to identifying significant associations of deformation

features with molecular subgroups and overall survival using a

relatively small cohort of retrospective studies (from 2

institutions) and will need to be validated on a larger multi-

institutional cohort. Further, when employing the RRS survival

model, either alone, or combined with the current clinical

stratification approaches (molecular subgroup information and

Chang’s classification system), significant differences were not

observed between the two risk groups, on the test set, on

account of the limited sample size (n = 28 for models

involving RRS or RRS + Chang’s and n = 21 for the models

that involved molecular information). In fact, it is well

documented that larger sample sizes are required for a

multivariate regression model to fit well to the data (~10-15

cases per covariate is recommended) (36), which was

unfortunately not available with our limited cohort size in

this study. Interestingly, our analyses also revealed that known

prognostic markers (EOR, presence of metastatic disease) as

well as clinical risk-stratification approaches (i.e., Chang and

molecular stratification), in a uni-variate setting, were

independently not prognostic of survival. While some works

in the literature have reported similar findings and varied

outcomes using these stratification approaches (10, 37, 38),

we plan to further investigate the efficacy of these approaches

on larger cohorts in the future. Another limitation was that the

mutation information related to the sub-stratification of the 4

molecular subgroups was not available for our cohorts, e.g., the

sub-stratification of SHH subgroup for tp53 mutation and

MYCN amplification. Hence, additional analyses relating

patient prognosis to mutation-specific sub-stratification could

not be performed. Lastly, the lack of uniformity in the

treatment strategies applied to the different MB subgroups
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might be a confounder and was not specifically accounted for

in our survival analysis.

Our future work will aim to apply our proposed deformation

descriptor to a group of uniformly treated patients with pediatric

medulloblastoma. In addition, a larger cohort that evaluates

progression free survival (along with overall survival) will be

employed, to further demonstrate the importance of RRS,

complementary to, and in conjunction with existing clinical

prognostic markers (EOR. presence of metastasis), as well as

Chang and molecular stratification. Also, we aim to integrate

deformation descriptors with radiomic texture and shape

features from the tumor regions using multi-parametric MRI

sequences (T2w, FLAIR, perfusion) for molecular and survival

risk-stratification. Further, to ensure clinical utility of our

approaches, we aim to build an automated segmentation

pipeline for pediatric brain tumors, utilizing our currently

curated dataset that includes carefully annotated tumor sub-

compartments by expert neuro-radiologists. We also will seek to

investigate other clinical attributes as manifested on imaging,

such as CSF seeding, and incorporating them as complementary

features to our deformation descriptor, for MB survival

prognostication and subgroup stratification. Lastly, we will

seek to include pathway-specific information in our curated

studies, to establish associations between signaling pathways and

our deformation descriptor in MB tumors.

To conclude, in this preliminary feasibility study, we

identified associations between our local tissue deformation

features extracted from routine Gd-T1w protocol with overall

survival in MB patients. Following rigorous prospective multi-

site evaluation, the deformation features associated with

molecular subtypes could provide complementary information

beyond molecular and histological phenotypes towards reliable

survival risk stratification and help guide therapeutic treatment

management in MB patients.
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