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By breaking the traditional medical image analysis framework, precision medicine–
radiomics has attracted much attention in the past decade. The use of various
mathematical algorithms offers radiomics the ability to extract vast amounts of detailed
features from medical images for quantitative analysis and analyzes the confidential
information related to the tumor in the image, which can establish valuable disease
diagnosis and prognosis models to support personalized clinical decisions. This article
summarizes the application of radiomics and dosiomics in radiation oncology. We focus
on the application of radiomics in locally advanced rectal cancer and also summarize the
latest research progress of dosiomics in radiation tumors to provide ideas for the
treatment of future related diseases, especially 125I CT-guided radioactive seed
implant brachytherapy.
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INTRODUCTION

According to the latest global cancer data for 2020 released by the International Agency for Research
on Cancer of the World Health Organization, colorectal cancer ranks third and second in the global
morbidity and mortality rates, respectively (1). In 2020, there were estimated 43,340 cases of rectal
cancer diagnosed in the United States (2). Therefore, early detection of rectal cancer and precise
treatment reducing the incidence, recurrence rate, and mortality rate of rectal cancer are very
critical. There are many ways to treat rectal cancer, and in order to determine the best treatment
regimen and optimize patient outcomes, efficient imaging biomarkers are needed to contribute to
cancer detection, diagnosis, the choice of therapeutic strategy, prognosis inference, the prediction of
response, and surveillance (3).

With the rapid development of imaging technology, medical imaging including computed
tomography (CT), magnetic resonance imaging (MRI), or positron-emission tomography (PET)
images play a significant role in clinical applications, particularly in cancer prognosis. Radiographic
imaging technology mainly evaluates the grade of morphology of the tumor and its surrounding
environment. However, it is difficult to convert the microheterogeneity and biological
characteristics of the tumor into a quantitative mode (4). On the other hand, visual analysis is
insufficient to capture the deep information of the lesions; thus, it cannot meet the requirement of
accurate medicine and personalized treatment.
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In recent years, advances in the use of artificial intelligence
(AI) and computing methods in medical image processing and
analysis transformed these images into quantitative data (5). Due
to radiomics covering almost all solid tumors, it has been widely
applied in oncology. Radiomics based on high-throughput
feature extraction algorithms (manually defined and deep
learning) enables the integration of imaging and clinical
features to decode information hardly recognized by the naked
eye and then use machine learning to model these proposed
features, thus improving the efficiency of assessing prognosis and
response. The current research model established through deep
learning features has gradually been developed, but compared
with huge radiomics features, this method-related research is still
small (6–8).

The outcome of radiation therapy for tumors is closely related
to dose distribution, but simple dose statistics alone cannot make
accurate predictions about the outcome of radiation therapy. In
response to this problem, the dosiomics approach can describe
the dose distribution by the dose characteristics of intensity,
texture, and shape, with higher accuracy, granularity, and spatial
information, and is an effective method for parametric
radiotherapy dose distribution (9). At present, there is still a
gap in the application of dosiomics in rectal cancer.

Rectal cancer is the most common gastrointestinal malignant
tumor in the world. More than 100,000 people are diagnosed
with rectal cancer every year, 70% of which are locally advanced
(T3–4 or N+) rectal cancer (LARC) (10). Unfortunately, the
initial clinical symptoms of rectal cancer are not typical, and
many patients are already in the locally advanced stage when
they are first diagnosed, with estimated 149,500 new rectal cancer
(RC) cases and 52,980 expected deaths in the United States in
2021 (11). In colorectal cancer, rectal cancer incidence is slightly
higher than that of colon cancer. Rectal cancer has an insidious
early onset, clinical symptoms are atypical, and many patients
are already in the local progression stage when they got their first
diagnoses. In this paper, we review the research status and
progress of radiomics in the differential diagnosis, efficacy
evaluation, and prognosis evaluation of LARC in recent years
and look forward to the current research status of dosiomics and
the future application of prognosis prediction of rectal cancer.
RADIOMICS

“Omic” generally refers to the mining of more parameters or
features from the research target as a whole to further enrich the
dimensions for research or reference. Similarly, radiomics refers
to extracting quantitative information from morphological and
functional imaging and is combined with clinical features,
protein genome information, and identifying feature subsets
related to prognosis through machine learning. Radiomics can
be performed for both healthy human tissues and diseased
tissues. It is a multidisciplinary and multi-imaging technology.
Its primary analysis process is as follows (12): (1) identifying
clinical problems; (2) access and process to high-quality
standardized medical image data; (3) the segmentation of ROIs
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(regions of interest); (4) high-throughput radiomics feature
extraction; (5) feature selection; and (6) prediction model
establishment and statistical analysis. Radiomics enables the
rich information in medical images to be fully displayed and
provides deep quantitative features that cannot be recognized
from visual inspection. Compared with traditional imaging
methods, radiomics is a promising alternative, which can
provide the basis for treatment plans, curative effects, and
prognosis assessment for various diseases. Therefore, every
radiomics step in the process is extremely of vital importance
and needs to be performed rigorously. A workflow diagram
illustrating the radiomics and dosiomics analysis process is
shown in Figure 1.

Identifying Clinical Problems
At present, various radiomics methods have been explored,
aiming at realizing personalized medicine, such as the
diagnosis (13–15), treatment response (16–18), and prognosis
prediction (19, 20) of tumor cancers. At the stage of model
construction, there are many similarities among diagnostic
models, mainly faced with the selection of predictive factors
(feature selection), the formulation of modeling strategies
(algorithms), and the evaluation of the final model performance.

To solve clinical problems, the correlation between models
and problems should be explored. Clinical problems determine
the radiomic research direction and route, so different problems
require different types of research design. Currently, the
application of radiomics in rectal cancer is mainly the
prognosis prediction of patients with LARC to neoadjuvant
chemoradiotherapy (NCRT). Although the local recurrence
(LR) rate of rectal cancer has been significantly reduced and
the disease-free survival (DFS) rate has been significantly
increased with the advances of clinical medicine and medical
technologies, the LR of rectal cancer and the associated
prognostic risk factors are still the major concerns for clinical
rectal cancer treatments.

Acquiring and Processing Data
Building an adequate database is the prerequisite for radiomics
research. This is due to insufficient data capacity, which may
reduce the model prediction accuracy and increases overfitting
risk. The collected data are supposed to contain high-quality,
standardized medical images and necessary clinical information,
such as, pathological data and biological and genomic medical
records. Commonly used medical images include CT, MRI, and
PET/CT. Currently, rectal MRI is the preferred imaging modality
for the local staging of rectal cancer. MRI is the superior imaging
modality for the evaluation of primary tumor location, extension,
and mesorectal fascia involvement (21) and is considered as the
standard for the evaluation and staging of rectal cancer. For
patients with local recurrent rectal cancer, most of the
intraluminal recurrent tumors are diagnosed by rectal
examination or direct visualization on rectosigmoidoscopy and
MRI is the most accurate imaging method to detect and identify
patients with extravascular recurrence (22), but its cost limits its
application in routine follow-up; thus, usually, pelvic CT
examination is performed after rectal cancer surgery. High-
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spatial-resolution T2 weighted imaging is the most important
MRI sequence in the evaluation of rectal cancer and anatomic
structures (23).

High quality and standardization of medical images is vital
for feature extraction and quantification in radiomics. Ideally,
the same scanning machine should be used as far as possible, and
reasonable layer thickness, pixel size, tube voltage, and other
parameters should be selected to obtain more ideal analysis
results. However, this is not the case in many practical
situations. Therefore, corrections should be considered in the
subsequent analysis and modeling steps. Data preprocessing
includes removing artifacts from the images, correcting
inhomogeneity, intensity normalization, spatial smoothing,
spatial resampling, noise reduction, and MRI field non-
uniform registration (rigid, deformable, or mutual intensity
algorithm) and reslicing, and so on (9, 24). Otherwise, the
extracted features and the generated model will not be
reproducible and non-generalizable.

The Image Biomarker Standardization Initiative (IBSI) has
defined reporting guidelines that work toward standardizing the
extraction of image biomarkers from acquired imaging to high-
throughput quantitative image analysis (radiomics). Alex
Zwanenburg et al. standardized 169 radiomics features to
verify and calibrate different kinds of radiomics software,
which will increase the reproducibility of radiomics studies and
facilitate the clinical translation of radiomics (25).

Segmenting Regions of Interest
The ROI segmentation uncertainty and time efficiency from the
revised image data set are the most critical. There are two main
areas of interest in the clinic: the tumor target area and the
nearby organs at risk. At present, most researchers extract
features from the gross tumor volume (GTV) to build models.
The GTV is the position and extent of the primary rectal tumor.
The clinical target volume (CTV) describes the extent of
microscopic, unimageable tumor spread, and the planning
Frontiers in Oncology | www.frontiersin.org 3
target volume (PTV) allows for uncertainties in planning
delivery. Additionally, the normal tissue structures in the
vicinity of the target must be considered. The current methods
used to segment ROI are mainly divided into automatic
segmentation and manual segmentation. Although semi-
automatic and fully automatic segmentation software have
been widely used in radiomics research, especially for tumors
with clear boundaries and regular morphology, the automatic
segmentation method is relatively efficient and highly repeatable.
It can meet the requirements of massive data segmentation (26).
Of course, there are also studies based on the ROI sketched
manually by doctors on the radiotherapy planning system. The
advantage of manual segmentation is that the accuracy is high,
but the results are easily affected by doctors’ subjective factors.
For instance, interobserver delineation in cervical cancer can lead
to significant differences and is reported to differ up to 4 cm (27).
The intraclass correlation coefficient (ICC) can be used to reject
non-reproducible features. For lesions where the boundary is not
easy to detect, manual segmentation can be used; for tumors with
clear boundaries and regular morphology, semi-automatic or
automatic segmentation methods are efficient and highly
reproducible, which can meet the requirements of massive data
segmentation (26). Deep learning has been used to segment
rectal tumors automatically. Weijun Chen et al. evaluated the
results of two automatic contouring softwares (deep learning
auto-segmentations and Atlas) on the OAR definition of CT
images of lung cancer and rectal cancer patients (28). The results
show that deep learning auto-segmentations were better than
that of Atlas and can be used clinically. Hai-Tao Zhu et al.
proposed a volumetric U-Net model that can automatically
segment the rectal tumor region on the diffusion-weighted
imaging images of LARC (29).

Accurate image segmentation ROI is the premise of radiomics
analysis, and the segmentation algorithm with high accuracy and
good repeatability still needs to be further studied. Noise,
artifacts, and tumor infiltration to the surrounding normal
FIGURE 1 | Workflow for radiomics and dosiomics analysis with feature-based (machine learning) and featureless (deep learning) approaches.
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tissues often conceal the lesion’s real edge, which brings great
difficulty to image segmentation. The features extracted depend
on the segmented area, rather than unclear or complex tumor
boundaries, which can lead to inconsistent and low
reproducibility of the results. Therefore, when different
methods are selected for target area sketching (manual, semi-
automatic, automatic sketching), the selection should be based
on the required precision and time. At present, the commonly
used segmentation method for many clearer tumor contours is
through computer-assisted edge detection and then further
manual adjustment. For patients with locally recurring rectal
cancer (LRRC) treated with seed implantation, because the
tumor structure has been interfered many times in previous
treatments (including surgery, external radiotherapy, and seed
implantation), the tumor margin merged with the normal tissue
structure, resulting in the tumor border not being clear enough.
Furthermore, these patients need to consider whether there are
blood vessels, bones, or organs in the direction of the needles, so
manual segmentation remains the gold standard.

Feature Extraction
The core step of radiomics is to extract features from the ROI and
then use them for quantitative analysis.

1. The manually extracted features mainly include 5 types: shape
features (30), first-order statistics features or histogram-based
features (31), second-order statistics features or textural
features (32, 33), transform-based features (34), and some
features that are obtained from PET images (SUV value) (35)
and are only applicable to the fractal and fusion features of
multi-mode images. Published studies are not only based on
the radiomics features of PET but also based on the combined
radiomics features of CT and MRI for the improvement of the
accuracy for the rectal cancer prognostic model.

2. Deep learning features: the features extracted based on deep
learning are different from handcrafted radiomics. It directly
builds a deep learning model for the entire medical image.
This method of extracting features requires a large data set.
However, the database for treating LRRC with particle
implantation is not enough. The extracted features are
usually non-interpretable. At present, the deep learning of
medical images usually utilizes convolutional neural networks
(CNNs), which are neural networks with automatic feature
extractors specially designed for images. Xception, VGG16,
VGG19, ResNet50, InceptionV3, and Inception ResNetV2 are
six commonly used CNNs (36). Deep learning is relatively
new and has tremendous potential waiting to be explored
(37).

The deep learning features are able to be combined with other
relevant data, including necessary clinical information,
pathological data, biological or genomics medical records,
dosimetry, and so on to construct a robust model.

Feature Selection
A feature is necessary to screen the imaging features acquired in
ROI, make the established model universal, and avoid overfitting
Frontiers in Oncology | www.frontiersin.org 4
(38). Feature selection refers to the dimensionality reduction of
many feature data extracted in ROI to obtain features related to
the research endpoint.

In general, the methods of feature dimensionality reduction
are divided into two categories: supervised and unsupervised.
There are three supervised feature selection methods: filter,
embedded, and wrapper methods (39).

(1) The filtering method is usually utilized as a preprocessing
step, and feature selection is completely independent of any
machine learning algorithm. It selects features based on the
scores in various statistical tests and various indicators of
correlation. Correlation filtering judges the correlation
between features and tags. Commonly used methods
include the mutual information method, chi-square
filtering, F-test, Wilcoxon rank-sum test, the Fisher score,
the Student’s t-test, and so on (40, 41). The relevance filtering
method is a univariate feature selection method, meaning it
does not consider the correlation between each feature.

(2) The embedding method is a method that allows the algorithm
to decide which features to be used, that is, feature selection
and algorithm training are performed at the same time. When
using the embedding method, some machine learning
algorithms and models are used for training to obtain the
weight coefficients of each feature. Compared with the
filtering method, the result of the embedding method will
be more accurate to the model’s utility, which has a better
effect on improving the model’s effectiveness. Using the
embedding method, it is easy to achieve feature selection:
reduce the amount of calculation and improve the model’s
performance. Commonly used embedded methods are ridge
regression, tree-based algorithms such as the random forest
(RF) classifier, or the least absolute shrinkage and selection
operator (40, 41).

(3) The wrapper method is a method of feature selection and
algorithm training at the same time. The packaging method
often uses an objective function to select the best feature
subset instead of inputting a certain evaluation index or
statistic threshold. The most typical objective function is the
recursive feature elimination method, and some other
wrapper methods include forward feature selection,
backward feature elimination, exhaustive feature selection,
bidirectional search feature selection, or bidirectional search
(39, 40). The effect of the wrapper method is the most
conducive to improve the model’s performance among all
the feature selection methods. It can use very few features to
achieve excellent results. In addition, when the number of
features is the same, the performances of the packaging
method and the embedding method are comparable, but it
is faster than the embedding method, although its calculation
amount is also very large, not suitable for too- large data.

Unsupervised feature selection methods are mainly principal
component analysis (PCA) and cluster analysis. Each feature
selection method has its strengths and weaknesses, and the
performance depends on the type of the data set and the
constraints related to the scenario.
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Model Generation and Evaluation
After feature extraction, a radiomics model must be established.
Many studies use machine learning and deep learning methods to
build prediction and classification models, which is currently the
mainstream of published studies. Research endpoints usually
include but are not limited to disease diagnosis (classification)
and prognosis prediction [overall survival (OS), local control (LC),
distant metastasis (DM), treatment response]. For example, for the
disease of LARC, many studies have used radiomics to evaluate
treatment response after neoadjuvant therapy. Other research
endpoints are mainly DM, OS, and so on.

The machine learning algorithm models for predicting the
treatment response of LARC after neoadjuvant radiotherapy and
chemotherapy mainly include logistic regression, RF, and support
vector machine (SVM) methods. To predict DM and the survival
time of patients after radical resection for rectal cancer, Mou Li
et al. used multivariate logistic regression (LR) analysis to establish
a combined model of radiomic characteristics (Rad-score) and
clinical factors (42).

The workflow of radiomics based on deep learning is
essentially different from the workflow described above. Deep
learning is based on representation learning in which the
algorithm learns the best features to carry out a given task on
its own by navigating the provided data (43). In deep learning–
based radiomics, different network architectures, such as CNNs
or autoencoders, are used to find the most relevant input data
features. It does not need to define or select features in advance,
but some studies are still related to statistics. Whereas radiomics
captures quantitative values of shape and texture based on
predefined mathematical terms, neural networks have recently
been used to directly learn and identify predictive features from
medical images (44). In addition, the process of data
representation and prediction is carried out jointly (45). Of
course, the features extracted by deep learning methods can be
further analyzed and classified by the neural network, or they can
leave the network and use different classifiers, such as decision
trees, regression models, or support vector machines, to make
predictions. If enough patients are included in the cohort,
solutions leveraging deep learning should be the preferred
method in the years to come (46).

Of course, the AI algorithm is not widely used in feature analysis.
In many prognostic analysis cases, statistical methods such as
Spearman correlation and univariate and multivariate Cox
regression or most machine learning methods (logistic regression)
are used for analysis. However, many studies have shown that the
predictive performance of AI models is superior to traditional
statistics. For example, Quirino Lai et al. conducted a systematic
review of the role of AI in the prognosis of liver cancer patients and
concluded that AI has a perfect role in clinical research and the
application of hepatocellular carcinoma (HCC) (47). The accuracy
of the prediction model is related to the sample size and feature
parameter selection and also to machine learning algorithms.

Delta-radiomics
There are usually two types of extracted features. One is the
single-time-point radiomics, where features are extracted from a
Frontiers in Oncology | www.frontiersin.org 5
particular image (e.g., pretreatment), and the other is delta-
radiomics (48). The delta-radiomics feature is defined as the
difference in radiomics feature before and after a specific
treatment method. They can be calculated between the
pretreatment and post-treatment features. With the changes of
radiomic features over time in longitudinal images, delta
radiomics can potentially be used as a biomarker to predict
treatment response and offer abundant information to identify,
quantify, and potentially predict therapy-induced changes
throughout treatment (49). Radiomics features extracted only
before the treatment cannot reflect the overall treatment details,
while delta-radiomics can describe the changes in the image
during the process, which is relatively more rigorous. The
process of delta-radiomics and radiomic research is the same.
After extracting the delta-radiomics features from the original
ROI, due to the large number of radiomic features extracted from
the images, many methods mentioned above are used to rule out
redundant delta-radiomic features (DRFs). The selected DRFs
are then tested to determine their significance as a treatment
response function using linear regression models, t-test, and
mixed-effect models (50). Significant DRFs are further tested and
modeled using machine-learning algorithms to create a model
that can predict the outcome of a new patient.

Some studies investigate the effectiveness of delta-radiomics
compared to single-time-point radiomics, and the results
indicated that delta features could provide better treatment
assessment than single-time-point features. Studies on delta-
radiomics have been reported since 2017. These articles have
all been published in the last 5 years and are gradually increasing
every year. Among the 54 articles screened, a total of 7 (13%)
studies reported on the use of delta-radiomics in rectal cancer. A
total of 10 (19%) studies referring to the use of delta-radiomics in
the prediction among patients with lung cancer were excluded in
this review. Other studies using delta-radiomics in grade
osteosarcoma and pancreatic and gastric cancer were also
excluded. Some studies have shown that delta-radiomics can
successfully predict the prognostic response of rectal cancer,
including the complete pathological response (pCR), DM, LR,
and DFS (51–56). For instance, Seung Hyuck Jeon et al.
developed delta-radiomics signatures to predict treatment
outcomes after preoperative chemoradiotherapy and surgery in
LARC (52). Giuditta Chiloiro et al. used delta-radiomics to
investigate the correlation between changes in magnetic
resonance imaging (MRI) radiomic characteristics before and
after neoadjuvant radiotherapy (NCRT) LARC patients and the
2-year DM rate (53).
RADIOMICS IN RECTAL CANCER

Radiomics, based on advanced pattern recognition tools, has
been widely studied for clinical prediction models in diagnosis
and treatment prognosis/selection in oncology. In recent years,
radiomics has been gradually applied to histopathological
grading (57–59), pretreatment staging prediction, differential
diagnosis, efficacy evaluation, and prognosis evaluation for
August 2022 | Volume 12 | Article 913683

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Qin et al. Radiomics of Rectal Cancer
rectal cancer. Many studies have shown that radiomic features
can objectively provide texture information related to
histopathological and immunohistochemical markers and can
non-invasively evaluate biological characteristics such as tumor
proliferation, migration, and angiogenesis before treatment. This
section will discuss an overview of notable studies about LARC
published in this area.

Radiomics Prediction of Locally Advanced
Rectal Cancer After Neoadjuvant
Chemoradiotherapy
NCRT can reduce the tumor size and recurrence and increase the
tumor resection rate and anus retention rate with a very slight
side effect (60). Therefore, it is very necessary to refine the
selection of appropriate patients and irradiation mode of
NCRT. Since most patients with rectal cancer have locally
advanced diseases at the time of diagnosis, NCRT is the
standard recommendation to improve the prognosis of patients.

However, in the context of precision medicine, it is an urgent
problem in clinical work to find a method that can predict the
therapeutic effect early and avoid the therapeutic risk, effectively
guide the individual treatment, and improve the prognosis of
patients to the greatest extent. Therefore, it is crucial to screen
LARC patients with therapeutic responses to NCRT. The
evaluation of treatment response to NCRT is still challenging.
The complete pathologic response (pCR) to NCRT is assessed
during the pathological examination after surgery. Identifying
patients in pCR with a high accuracy rate could lead to improved
clinical outcome (61). Radiomics also has important clinical
significance in evaluating NCRT efficacy and the prognosis of
rectal cancer. The most commonly used medical images are CT
and MRI. In recent years, many studies have predicted and
verified the efficacy of NCRT in LARC through radiomics.

According to the WHO, the solid tumor efficacy evaluation
criteria are divided into complete remission (complete response,
CR): tumor disappears completely, lasting more than 4 weeks;
partial remission (partial response, PR): tumor shrinkage ≥50%,
lasting more than 4 weeks; stable (stable disease, SD): tumor
enlargement <25%, shrinkage <50%; progress [progressive
disease (PD)]: tumor increases by more than 25% (62). PR and
SD are considered effective. PD means that the treatment is
ineffective. Whether a patient has achieved pCR is often
determined by postoperative pathological examination, and it
is not known whether it is remission before surgery. Many recent
studies have found that radiomics can help clinicians predict
whether patients will be pCR after NCRT before surgery to avoid
excessive treatment and the burden and pain caused by surgery
and improve treatment accuracy (61–73). CT-based radiomics
has shown promise in LARC. The following table study endpoint
is from the four aspects: pCR DFS, downstaging, and distant
control. Table 1 shows the studies of LARC radiomics using CT
images in the PubMed database.

An overview of the main studies proposing MRI radiomics for
the pCR of NCRT prediction outcomes is reported in Table 2. In
all studies, three-dimensional (3D) manual segmentation of the
primary tumor was performed to extract radiomic features and
Frontiers in Oncology | www.frontiersin.org 6
the performance of the models were calculated by receiver
operating characteristic curves.

It was concluded that the features of MRI prior to treatment
could effectively predict patients who were unresponsive to
NCRT. Therefore, MRI−based radiomics has important clinical
significance in the NCRT efficacy evaluation and prognosis
evaluation of rectal cancer. This could provide an improved
basis for personalized treatment. Certainly, radiomics has a
predictive value for the NCRT curative effect of LARC and
shows good predictive value in terms of tumor staging,
postoperative metastasis, and prognosis after treatment.
DEVELOPMENT AND CHALLENGES OF
LOCALLY RECURRENT RECTAL CANCER

Despite advances in surgical techniques and chemoradiation
therapy, recurrent rectal cancer remains a cause of morbidity
and mortality (74). LRRC is the recurrence of a tumor of the
same pathologic nature in the primary tumor after surgery, in the
pelvis, in the field of operation. Neoadjuvant therapy and surgical
treatment for rectal cancer have been improved and the concept
of comprehensive treatment has been promoted, and the survival
of patients with rectal cancer has been improved. However, rectal
cancer recurrence remains a common clinical problem, and
patients generally have a dismal prognosis and a poor quality
of life.

LRRC has various treatment methods, including surgery,
external beam radiotherapy, intraoperative radiotherapy, Iodine-
125 (I-125) seed implantation, heat therapy, and radiofrequency
ablation (75). For patients with postoperative recurrence, due to
the damage to the normal anatomical structure and the adhesion
of recurrent lesions and surrounding tissues, the reoperation
resection rate is low. Therefore, the treatment means and effect
are not satisfactory. For those who have received external beam
radiotherapy, it is difficult to improve the treatment effect due to
increasing the local dose. For patients with recurrent rectal cancer
after surgical resection or external radiotherapy, LRRC prognosis
is poor, while CT-guided 125I seed implantation therapy has
become a recommended therapy. The I-125 seed Model 6711
consists of a titanium cylindrical tube with 0.8-mm radius and 4.5-
mm length, with an average energy of 28 Kev and a half-life of 59.4
days is commonly used throughout oncology centers worldwide. A
dose prescription of 110–160 Gy was considered, with an initial
source activity of 0.4–0.7 mCi. The particle spacing is usually 1 cm,
which is easier to identify particles. Therefore, permanent 125I
seed interstitial brachytherapy is a potential salvage modality
because of its unique physical and clinical characteristics. The
2016 National Comprehensive Cancer Network Clinical Practice
Guidelines in Oncology has recommended radioactive 125I seed
(RIS) implantation for the treatment of LRRC (76).

Many factors affect survival, following the treatment of LRRC.
We can also consider the background liver condition, the
radiologic and histologic characteristics of the tumor, biologic
markers, and comorbidities. Traditionally, conventional linear
models, such as the survival analysis and the Cox proportional
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hazard models, have been used to evaluate LRRC prognosis.
Nevertheless, linear systems can have considerable limitations
and often fail to capture the complexity of clinicopathological
characteristics. Therefore, it is very necessary to analyze the
prognosis of LRRC, and there is still a gap in the application of
radiomics in the prognosis of LRRC.
DOSIOMICS AND ITS APPLICATION

Inspired by radiomics, the concept of dosiomics was formally
proposed in 2017. It builds a radiotherapy result prediction
model by extracting the characteristics of dose distribution,
thus guiding the formulation of personalized radiotherapy
plans. The patients’ 3D dose distributions can be considered as
images with spatial and statistical distributions of dose levels. For
radiotherapy for cancer, parameters such as the prescription
dose, dose distribution, and dose–volume histogram (DVH) can
also be used to assess the treatment response and prognostic
analysis of cancer. Dosimetry texture features include: volume,
dose, variance, center point position, contour boundary, spatially
weighted DVH skewness, and kurtosis (77). Combining the
characteristics of radiology and dosimetry can obtain more
comprehensive information related to tumor radiotherapy,
which helps to improve the accuracy of prediction.
Unfortunately, there have been only 13 studies on dosiomics
from 2018 to 2022, and there is no research on dosiomics in
rectal cancer.
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Linda Rossi et al. in 2018, applied dosimetric texture analysis
(TA) features and DVH parameters to improve the prediction
modeling of treatment complication rates in prostate cancer
radiotherapy (78). Dosimetric texture analysis features
characterizes the grayscale distribution in a patient’s 3D dose
distribution image and derives image features to improve the
features of the predictive model. The main dosimetric texture
analysis features extracted by Linda Rossi et al. are the gray-
level frequency histogram, gray-level co-occurrence matrix
(GLCM), gray-level run length matrix (GLRLM), gray- level
size zone matrix (GLSZM), and neighborhood gray tone
difference matrix (NGTDM). Bin Liang et al. extracted the
spatial characteristics of dose distribution in the ipsilateral,
contralateral, and whole lung by dosimetry and then used them
to construct a prediction model by single-factor and multifactor
LR (79). The results showed that the spatial characteristics of
dose distribution extracted by dosimetry effectively improved
the predictive ability. Aiqian Wua et al. investigated whether
dosiomics can predict an IMRT-treated patient’s locoregional
recurrences (LRs) and get a comprehensive dosimetry and
radiomics model can successfully divide patients into high-
and low-risk groups(log-rank test, p=0.025), but the radiomics
model alone cannot get same result (80). Furthermore, Lee et al.
proposed a multiperspective data analysis method to predict
weight loss in the acute phase of radiotherapy for lung cancer
using radiomics and dosimetry texture features. In short, many
studies on tumor radiotherapy are more effective in predicting
models established by combining radiomics, dosimetry, and
TABLE 1 | Summaries of selected locally advanced rectal cancer (LARC) radiomics studies (CT).

Conclusion Entropy, uniformity, and
standard deviation were
independent texture features in
predicting DFS

Low- and
high-risk
groups for
DFS
in the training
set ([HR]
56.83; P <
0.001)
in the
validation set
(HR52.92; P
< 0.001).

The DNN predicted
complete response
with an 80%
accuracy.

Radscore ([OR] =
13.25; [95%
CI],4.06–71.64; p
< 0.001)
Age (OR = 1.10/1
year; 1.03–1.20; p
= 0.008)

OS from 0.672 [0.617
0.728] with clinical
features only to 0.730
0.658 0.801]

83.9% accuracy in
predicting TRG 0
vs. TRG 1–3 in
validation.

AUC=0.842
(training set)
AUC=0.802
(validation
set)

Feature
selection
model

LoG spatial filter ICC
LASSO Cox
model

Wilcoxon test,
p<0.05
ICC

Penalized logistic
regression

Spearman correlation
coefficient

Keep high ROC LASSO

Statistical
method

independent t-test
log-rank test
MCPHM

Chi-square
log-rank
tests

DNN
SVM
LR

Univariable
analysis
MLR

Unsupervised and
supervised method

LOR
RF
SVM

MLR

Imaging
modality

CT CT CT CT CT CT CT

Number of
patients

95 108 95 121 411 91 148

Study
endpoint

Response, DFS DFS PCR Downstaging LC, DFS ,OS
Distant control

PR Distant
metastases,
OS

Accepted August 10, 2017 January 22,
2018

August 3, 2018 March 11, 2019 October 25, 2019 April 6, 2020 August 13,
2020

Author Chee et al. Yankai Meng,
et al.

Jean et al. Ben et al. Jiazhou et al. Zhigang et al. Mou Li,
et al.
August 2
022 | Volume 12 | A
ICC, intraclass correlation coefficient; DNN, deep neural network; SVM, support vector machine; LIR, linear regression; LOR, logistic regression; RF, random forest; HR, hazard ratio; OR,
odds ratio MLR, multivariate logistic regression; MCPHM, multivariable Cox proportional hazards model; LoG, Laplacian of Gaussian; ROC, receiver operating characteristic.
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clinical data (81). Jin et al. extracted 42 radiomic features from
CT images of 94 patients with esophageal cancer and combined
them with 18 dosimetry parameters to predict the patient’s
response to radiotherapy; the study results showed that the
radiomic features were combined with dosimetry parameters.
The subsequent AUC can reach 0.71, while the AUC using only
radiomics is 0.69 (82). So far, the research on dosiomics in
rectal cancer is vacant.

The authors found that found that compared with the
predictive model established by radiomics alone, the model
established by integrating the characteristic parameters of
radiomics and radiotherapy dosimetry can effectively improve
the predictive evaluation of tumors after radiotherapy. However,
relatively few studies combine radiomics and dosiomics, and the
application of dosiomic characteristics to predict the efficacy of
radiotherapy is still in its initial stage. Therefore, the role of
dosiomic characteristics in radiation oncology should be
further studied.
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LIMITATIONS OF RADIOMICS

When applying radiomics research results to clinical practice,
there are still some limitations and challenges in some aspects,
mainly including the following:

1.Most of the previous studies were conducted retrospective
analysis, and most of the included data came from the same
institution. Therefore, a large sample and multicenter
prospective research test are essential. It requires extensive
cooperation in multiple disciplines and fields and is also an
essential part of applying radiomics to clinical practice.

2.The reproducibility and repeatability of radiomics features still
need to be discussed. This issue depends on the used imaging
modality, sequence, scanning parameters, reconstruction
algorithm spatial resolution, size of the image, image
quality, reconstruction and correction parameters, and
motion artifacts, and software used to extract radiomic
TABLE 2 | Summaries of selected LARC radiomics studies (MRI).

Validation Internal
validation
(4-fold
validation)

Internal
validation
(train/test
split)

Internal
validation
(train/test
split)

Internal
validation
(train/test
split)

Internal
validation
(train/test
split)

Internal
validation
(4-fold
validation)

Internal
validation
(train/test
split)

Internal
validation
(train/test
split)

Internal
validation
(train/test
split)

External
validation

Performance AUC =0.84
for pCR
AUC =0.89
for GR

AUC =
0.9756
(training)
AUC =
0.9799 (test)

AUC=0.93
[95% CI:
0.84, 1]

AUC= 0.948
[95% CI,
0.9070.989]
AUC= 0.966
[95%CI,
0.924-1.000]

AUC =
0.908,
0.902, 0.930

Handcrafted
features
AUC: 0.64
DL-based
features
AUC: of 0.73

AUC =0.75
(training)
AUC = 0.75
(test)

Training
cohort AUC
=0.94
(95% CI:
0.82–0.99)
validation
cohort
AUC=0.80
(95% CI:
0.58–0.94)

AUC =
0.84,0.88
(training)
AUC =
0.81,0.75
(test)

Training
cohort AUC=
0·868
[95%CI
0·825–0·912]
validation
cohort 1
AUC=0·860
[95%CI
0·828–0·892]
validation
cohort 2
AUC=0·872
[95%CI
0·810–0·934]

Model Artificial
neural
network

Logistic
regression

Random
forest
classifier

Radiomics
nomogram

SVM LASSO-
logistic
regression
models

SVM LASSO
logistic
regression

Logistic
regression

RAPIDS
prediction
signature

ROI
software

Manual
segmentation

Manual
segmentation

Manual
segmentation

Manual
segmentation

Manual
segmentation

Manual
segmentation

Manual
segmentation

Manual
segmentation

Manual
segmentation

Manual
segmentation

Number of
patients

48 222 114 186 134 43 102 67 165 933

MRI Imaging
modality

Pre- CRT
MRI (T1
\T2WI, DWI,
and DCE)

Pre- and
after CRT
MRI (T2WI
and DWI )

After CRT
MRI (T2WI)

Pre-CRT
MRI (T1
\T2WI, DWI,
and ADC)

Preoperative
MRI (T2WI)

MRI (DWI
and ADC
map)

Pre- CRT
MRI (T2WI)

Pre- CRT
MRI (T2WI)

Pre- and
after CRT
MRI (T2WI
and DWI )

Pre- CRT
MRI (T1
\T2WI and
DWI)

Study
endpoint

PCR
GR

PCR PCR PCR PCR, GR
downstaging

PCR PCR Non-
responders

PCR PCR

Accepted
time

May 19,
2016

September
22, 2017

January 2,
2018

July 27,
2018

June 6, 2019 February 24,
2020

April 15,
2020

May 14,
2020

October 20,
2020

January 4,
2022

Author Ke Nie, et al. Zhenyu Liu,
et al.

Natally, et al. Yanfen Cui,
et al.

Xiaoping Yi,
et al.

Jie Fu, et al. Iva
Petkovska,
et al.

Bianca
Petresc,
et al.

Lijuan Wan,
et al.

Lili Feng,
et al.
August 2022 |
 Volume 12 | A
PCR, pathological complete response; GR, good response; AUC, area under the curve; CI, confidence interval; ROI, region of interest; T1WI, T1-weighted imaging; DWI, diffusion-
weighted imaging; T2WI, T2-weighted imaging; DCE, dynamic contrast enhanced.
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features (83). The IBSI proposes the computed features of
different institutions on a common data set. To expand this
effort, a review proposes to include benchmarking data sets
collected by different institutions to guarantee the maximum
heterogeneity in terms of the acquisition parameters and
develop an infrastructure, based on workflow programming
language, that allows users to connect to the mentioned
repository and run their feature extraction software (84). In
terms of repeatability and reproducibility, deep learning-
based radiomics may be advantageous. The self-learning
neural networks show a better capability for generalization
(85).

3.There is no theoretical basis to explain the biological meaning
of radiomic features, which also hinders the further
development of radiomics. Many models have been created
and published, but these studies often lack standardized
evaluation on external cohorts of patients, which also
explains why not a single model has been translated to
clinical practice. Published Radiomics quality score (RQS)
and Transparent Reporting of a multivariable prediction
model forindividual prognosis or diagnosis (TRIPOD)
guidelines improve the validity of radiomics as a clinically
accepted field. We need to overcome the challenges before
radiomics can be successfully introduced into clinical settings.
Efforts are being made to overcome these limitations
CONCLUSIONS

With the rapid development of AI technology, radiomics based on
machine learning and deep learning has broad application
prospects. In the current background of advocating precision
medicine and personalized treatment, in evaluating the efficacy of
NCRT in LARC patients, a non-invasive, efficient, and accurate
imaging omics prediction model is established for clinical
application, and it has developed into a clinically useful model.

In summary, radiomics is an emerging diagnostic imaging
technology that plays an essential role in predicting the effect of
NCRT on LARC and can optimize treatment plans through
process management, thereby improving the short-term and
long-term prognosis of patients. This review also emphasizes
the necessity of applying radiomics and dosiomics to the
prognostic model of LRRC. In short, the application of
radiomics and dosimetry in radiation oncology is of great
value for doctors’ clinical decision-making, treatment planning,
Frontiers in Oncology | www.frontiersin.org 9
and follow-up workflow. However, published retrospective
studies presented their own model with a certain degree of
heterogeneity and do not facilitate translation into clinical
practice. Therefore, the study design needs to be further
improved, and the promotion and validation of prediction
models need to be further explored, so as to strengthen the
clinical application of radiomics.
FUTURE DIRECTION

With the continuous advancement in AI, radiomic and dosiomic
diagnosis and predictionmethods based on deep machine learning
are the effective way to develop clinical research in the future.
Drawing on the application of radiomics and dosiomics in other
cancers, in terms of evaluating the efficacy of LRRC patients
through seed implantation and second-course radiotherapy,
establishes a fast, efficient, and accurate radiomics prediction
model for clinical application. Furthermore, establishing
additional predictive tools that can be used in clinics in a true
sense, especially in the current background of advocating precision
medicine and personalized treatment, will become a low-cost,
non-invasive, and convenient new diagnostic evaluation method,
thereby improving the prognosis of patients.
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