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Quantitative high-throughput
analysis of tumor infiltrating
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In breast cancer (BC), the development of cancer immunotherapy including

immune checkpoint inhibitors has progressed. Tumor infiltrating lymphocytes

(TILs) is one of the important factors for an immune response between tumor

cells and immune cells in the tumor microenvironment, and the presence of

TILs has been identified as predictors of response to chemotherapy. However,

because complex mechanisms underlies the crosstalk between immune cells

and cancer cells, the relationship between immune profiles in the tumor

microenvironment and the efficacy of the immune checkpoint blocked has

been unclear. Moreover, in many cases of breast cancer, the quantitative

analysis of TILs and immuno-modification markers in a single tissue section

are not studied. Therefore, we quantified detailed subsets of tumor infiltrating

lymphocytes (TILs) from BC tissues and compared among BC subtypes. The

TILs of BC tissues from 86 patients were classified using multiplex

immunohistochemistry and an artificial intelligence-based analysis system

based on T-cell subset markers, immunomodification markers, and the

localization of TILs. The levels of CD4/PD1 and CD8/PD1 double-positive

stromal TILs were significantly lower in the HER2- BC subtype (p <0.01 and

p <0.05, respectively). In triple-negative breast cancer (TNBC), single marker-

positive intratumoral TILs did not affect prognosis, however CD4/PDL1, CD8/

PD1, and CD8/PDL1 double-positive TILs were significantly associated with
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TNBC recurrence (p<0.05, p<0.01, and p<0.001, respectively). TIL profiles

differed among different BC subtypes, suggesting that the localization of TILs

and their tumor-specific subsets influence the BC microenvironment.
KEYWORDS

breast cancer, tumor microenvironment, tumor infiltrating lymphocytes, multiplex
immunohistochemistry, PD1, PDL1, FOXP3
Introduction

Breast cancer (BC) is one of the most common cancers

worldwide. Standard treatment options for BC include surgical

resection, chemotherapy, hormone therapy, and HER2-targeted

immunotherapy (1, 2). In addition to these conventional

therapies, the development of cancer immunotherapy, including

immune checkpoint inhibitors, is expected to improve patient

survival (3–6). However, the mortality rate for BC remains high

due to metastasis and recurrence. The development of new

therapies and an understanding of tumor molecular and

microenvironmental details is, therefore, important.

The tumor microenvironment (TME) is composed of

various cell types such as lymphocytes, macrophages,

fibroblasts, endothelial cells, and pericytes, with abundant

extracellular matrix (7). The complex network of diverse cells

and signaling pathways is closely related to tumor progression

(7). The presence of lymphocytes in the tumor, referred to as

tumor infiltrating lymphocytes (TILs) is evidence of a host

immune response against the tumor cells (8). It has been

reported that a high density of CD8-positive T cells in cancer

nests is correlated with a favorable prognosis in various types of

cancers (9–12). Moreover, the presence of TILs has been

identified as a predictor of response to neoadjuvant

chemotherapy in several human malignancies such as breast

cancers (13, 14), hypopharyngeal cancers (15), and rectal

cancers (8).

However, because complex mechanisms underlie the

crosstalk between immune cells and cancer cells, the

relationship between immune profiles of the TME is not fully

understood. T lymphocytes are classified into CD4- and CD8-

positive T cells based on their classical functional differences,

which are further subcategorized based on various

immunomodulatory functions (16). Regulatory T cells (Tregs)

are a subset of T cells that negatively regulate immunity (17).

Tregs express FOXP3, a transcription factor that plays an

essential role in its differentiation, functional expression, and

maintenance of differentiation state. FOXP3 is strongly and

constantly expressed in Tregs among T cells and has been

used as a marker for Tregs (17). FOXP3 increases the

expression of CD25 and CTLA4 and reduces tumor immunity
02
by suppressing the production of effector cytokines such as IL-2,

IFNg, IL-4, and IL-17. Infiltration of FOXP3-positive cells in

various cancers has been reported to correlate with tumor stage

and poor prognosis (18–20).

Immune checkpoints are known to regulate immune

function via ligands and receptors (21). Regulators include the

PD1-PDL1 system and the CD80-CTLA4 system, both of which

negatively regulate tumor immunity by signaling tumor and

stromal cell ligands to receptors on the T-cell surface (22).

Immune checkpoint therapy, which activates tumor immunity

by inhibiting this system, has recently been focused on as a

therapeutic strategy for refractory cancers (23). TILs are

classified into stromal TILs (sTILs), which invade the stroma

near the tumor, and intratumoral TILs (iTILs), which invade the

tumor itself (24). The clinical and biological significance of sTILs

and iTILs have been studied, and various significant differences

have been reported for each TIL subtype (25, 26). While TILs

have complex temporal and spatial effects due to their various

functions and localization, their significance is not yet clear,

owing to technical limitations in previous studies. To overcome

these limitations, it is necessary to evaluate TIL profiles by using

high-quality multiple staining on the same section, objective

measurement of complex markers, and localization of TILs.

In this study, we used state-of-the-art methods to quantify a

detailed subset of TILs and to understand how they differ

among BC subtypes. Furthermore, the significance of TILs in

the clinical outcomes of triple-negative breast cancer (TNBC)

was examined.
Materials and methods

Samples

Formalin-fixed paraffin-embedded (FFPE) samples (n = 86)

of breast invasive ductal carcinoma obtained from the Tokyo

Medical and Dental University Hospital, Tokyo, between 2014

and 2017, were used in this study. The specimens were obtained

by surgical resection, routinely fixed in 10% neutralized

formalin, and then embedded in paraffin for conventional

histopathological examination. For immunohistochemistry and
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multiplex immunohistochemistry, FFPE tissue (4 mm in

thickness) was sliced, and the sections were placed on silane-

coated slides. This study was approved by the ethics committees

of Tokyo Medical and Dental University (M2018-141) and

Daiichi Sankyo RD Novare Co. Ltd. (N18-0082-00), and all

procedures were performed in accordance with the ethical

standards established by these committees.
Immunohistochemistry for ER, PgR,
HER2, and case categorization

To classify BC samples into each subtype, immunostaining

for estrogen receptor (ER), progesterone receptor (PR), and

HER2/neu (HER2) was performed. For ER and PR, the

commercially available immunostaining kit (® Histofine ER/

PgR (MONO)) and universal kit (Nichirei Biosciences Japan,

Tokyo, Japan)) were used. HER2 IHC staining was performed

with VENTANA anti-HER2/neu (4B5) Rabbit Monoclonal

Primary Antibody [VENTANA pathway HER2 (clone: 4B5)]

(Roche Diagnostics, Japan) and ultra VIEW DAB Detection Kits

(Roche Diagnostics) using an automated slide stainer, Ventana

BenchMark ULTRA (Roche Diagnostics). The sections were

incubated with primary antibody [PATHWAY HER2 (4B5),

Roche diagnostics] for 16 min at 36°C. Expression levels of

HER2 in tumor cells were defined as 0 (absent), 1 (weak,

incomplete membrane staining), 2 (weak to moderate,

complete membrane staining), and 3 (strong and complete

membrane staining). Based on the American Society of

Clinical Oncology (ASCO)/College of American Pathologists

(CAP) guidelines, HER2 status was classified into 4 groups,

IHC 3+ (intensity 3 staining observed in > 10% of tumor cells),

IHC 2+ (intensity 2 staining in >10% of tumor cells), IHC 1+

(intensity 1 staining in ≤10% of tumor cells), and IHC 0 (no

staining was observed). If HER2 status was 3+, these cases were

defined as HER2-positive BC (HER2). When HER2 status was 2

+, HER2 fluorescence in situ hybridization was performed by an

external company (SRL Tokyo, Japan). If the HER2 signal was

more than 1.7, these cases were also defined as HER2. When the

HER2 status was 0, 1+, and 2, ER or PgR-positive cases were

defined as ER/PgR-positive BC (ER/PR), and ER or PgR-

negative cases were defined as TNBC. These determinations

were made by two pathologists (KY and MORITO

KURATA(MK)).
Multiplex immunohistochemistry

In this study, mIHC staining was performed using the Opal

7-color Automation IHC kit (Akoya Bioscences, MA, USA) with

an automated slide stainer, BOND RX (Leica, Wetzlar,

Germany). The primary antibodies used in this study were as

follows: PD1(1:200, NAT105, Abcam, Cambridge, UK), CD8
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(1:350, C8/144B, Agilent, Santa Clara, CA, USA), CD4 (1:50,

4B12, Leica), FOXP3 (1:300, D608R, Cell Signaling

Technologies, Beverly, MA, USA), PDL1 (1:100, SP142,

Abcam), and pan-cytokeratin (Pan-CK) (1:4, AE1/AE3,

Agilent). The staining protocol was performed in accordance

with the manufacturer’s instructions by using the Opal 7-color

automation IHC kit and BOND research detection kit. Each

primary antibody was incubated for 30 min at room

temperature. Slides were mounted with ProLong Diamond

Antifade Mountant (Thermo Fisher Scientific, Waltham,

MA, USA).
Quantitative image analysis

The 86 stained slides were subjected to 7-color multispectral

image analysis using an automated quantitative pathology

imaging system, Vectra Polaris (Akoya Bioscences, MA, USA).

Each whole slide imaging was scanned at 10× magnification in

order to select high-powered multispectral imaging at 20×

(resolution of 0.5 mm per pixel, 931 mm × 698 mm) by using

Phenochart viewer (version 1.0, Akoya Bioscences, MA, USA).

One sample was excluded because there were almost no cancer

cells in the specimen. For quantitative imaging, five areas per

slide were randomly selected as each sTIL area and iTIL area as

regions of interest (ROIs) for each section according to a method

proposed by the International TILs Working Group 2014 (27).

None of the sections contained normal epithelial cells. After

scanning the slides, image files generated by Vectra Polaris were

analyzed using the image analysis software inForm (version

2.4.0., Akoya Bioscences). Specifically, 7-color image

preparation, trainable tissue segmentation using an AI-based

algorithm, adaptive cell segmentation, and scoring for positive

cell percentage of tumor and stroma area were performed

(Figures 1A–D). Pan-CK staining results were used to

recognize tumoral areas during segmentation and for AI

training. After the above trainable methods, the scoring

method counted the positive cells in each ROI (0.246 mm2),

which were corrected per 1 mm2 above a specific threshold of

each marker. Single positive scoring (CD4, CD8, FOXP3, PD1,

PDL1) of each marker and double positive scoring (CD4-PD1,

CD4-PDL1, CD4-FOXP3, CD8-PD1, CD8-PDL1, CD8-FOXP3)

were calculated.
Relapse-free survival analysis

The recurrence period after surgery for TN subtype 22 cases

were investigated and classified into “high” and “low” groups by

the amount of each TIL. The two groups were classified based on

the median. These were then used to compare the prognosis of

each recurrence-free survival by using the Kaplan-

Meier method.
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Data analysis and
statistical procedures

All scoring data generated by inForm were collected and

analyzed. The status of the number of positive cells per 1 mm2

for TIL markers in each cancer subtype (ER/PR, HER2, TN)

were compared. One-way ANOVA and Tukey’s multiple

comparison tests were used to determine statistically

significant differences in the unpaired data for scoring of each

marker. Statistical analyses were performed using GraphPad

Prism version 9.2 (GraphPad Software), and statistical

significance was set at p < 0.05.
Results

Patient characteristics

The characteristics of the cases used in this study are

summarized in Table 1. A total of 86 breast invasive ductal

carcinoma (BIDC) patients with T stage I (46 patients), T stage II

(30 patients), T stage III (8 patients), and T stage IV (2 patients)

were included in this study. The study group consisted of women

with a median age of 61 years (range, 32–88 years). Lymph node

metastasis was positive in 25 cases and negative in 50 cases.

Immunostaining revealed the ER/PR subtype in 46 cases (53%),

HER2 subtype in 18 cases (21%), and TNBC subtype in 22 cases

(26%). Multi-colored immunohistochemical analyses were
Frontiers in Oncology 04
performed on these cases as described in the materials and

methods section and discussed in the results below.
Representative histology of
multi-colored immunostaining

As shown in Figure 2A, single tissue sections were

successfully stained with PD1 (green), CD8 (yellow), CD4

(blue), PDL1 (orange), FOXP3 (pink), Pan-CK (red). The

virtual pathological image of each staining was performed to
TABLE 1 Clinicopathological features of patients included in
this study.

Clinicopathological
feature

ER/PR
(n=46)

HER2
(n=18)

TN
(n=22)

Age Median
(range)

58 (32-86) 52 (33-71) 63 (36-
88)

pT classification T1 26 11 9

T2 15 7 8

T3 4 0 4

T4 1 0 1

Neoadjuvant
chemotherapy

+ 6 2 8

– 40 16 14

Lymph node metastasis Positive 15 6 4

Negative 29 9 12

NX 2 3 6
front
FIGURE 1

Workflow of an automated multispectral imaging system. Fluorescence multiplexed immunohistochemistry and merged images. Whole section
was segmented based on the expression of cytokeratin (segmentation); each image was captured (cell detection) and unmixed spectrally to
quantify each marker (phenotyping).
iersin.org

https://doi.org/10.3389/fonc.2022.901591
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hayashi et al. 10.3389/fonc.2022.901591
FIGURE 2

Representative multi-colored immunostaining and virtual pathological images. (A) Composite image (7-color image) of representative lesion.
Virtual pathological image of (B) CD4, (C) CD8, (D) PD1, (E) PDL1, (F) FOXP3, (G) Pan-CK in a single tissue section. Brownish-colored areas
indicate a positive signal. Scale bars indicate 100mm.
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confirm that each immunostaining was reasonably functional

(Figures 2B–G).
Quantitative comparison of sTILs among
BC subtypes

The amounts of sTILs in the three subtypes are shown in

Supplementary Figures 1A–C. In each group, CD4+ sTILs were

the most common, followed by CD8+ sTILs (ER/PR; 2418.7±

4233.2, HER2; 3374.2 ± 4906.2, TN; 3345.6 ± 5873.6). Next, the

quantitative differences between the subtypes of each sTILs were

examined. As shown in Supplementary Figures 2A–E and, the

number of CD8+ sTILs in the ER/PR subtype were significantly

lower than that in HER2 (p<0.001) and TN subtypes (p=0.024)

(Supplementary Figure 2B). The number of PD1+ sTILs in the

HER2 subtype was significantly lower than that in the ER/PR

(p=0.017) and TN (p=0.003) subtypes (Supplementary

Figure 2C). The number of PDL1+ sTILs in the ER/PR

subtype were significantly lower than that in the HER2

(p<0.001) and TN (p<0.001) subtypes (Supplementary

Figure 2D), and the number of FOXP3+ sTILs in the HER2

subtype were significantly higher than that in the ER/PR

(p<0.001) and TN (p=0.001) subtypes (Supplementary

Figure 2E). The proportions of cells with each sTIL among the

subtypes are shown in Supplementary Table 1.

To elucidate the detailed subpopulation of sTILs, double-

positive sTILs were analyzed. Images for double-positive

visualization are shown in Figures 3A–F. Supplementary
Frontiers in Oncology 06
Figure 3 shows the number of double-positive sTILs in each of

the three subtypes. CD8/PD1-double positive sTIL levels were

higher in the ER/PR and TN subtypes (ER/PR; 783.2 ± 2017.1,

TN; 1399.6 ± 3706.2). CD4/PDL1 positive sTIL levels were the

highest in the HER2 subtype (389.4 ± 1056.2). Among the three

subtypes (Figures 4A–F), CD4/PD1-double positive sTIL levels

were significantly lower in HER2 than in the ER/PR (p=0.004)

and TN subtypes (p=0.002) (Figure 4A). The number of CD4/

PDL1-double positive sTILs in the HER2 subtype were

significantly higher than that in the ER/PR (p=0.008) and TN

(p=0.03) subtypes (Figure 4B). The number of CD8/PD1-double

positive sTILs in HER2 were significantly lower than that in the

ER/PR (p=0.025) and TN (p=0.005) subtypes (Figure 4D). The

number of CD8/PDL1-double positive sTILs in the TN subtype

were significantly higher than that in both the ER/PR (p<0.001)

and HER2 (p=0.023) subtypes (Figure 4E). The proportions of

cells with each sTIL among the subtypes are shown in

Supplementary Table 2.
Quantitative comparison of iTILs among
BC subtypes

The amounts of iTILs in the three subtypes are shown in

Supplementary Figures 4A–C. Unlike sTILs, PD1 positive iTIL

levels were the highest in the ER/PR and TN subtypes (ER/PR:

2242.5 ± 7657.8, TN: 1826.8 ± 11564.4), while FOXP3-positive

iTIL levels were highest in the HER2 subtype (365.9 ± 647.7).

Next, the quantitative differences between the iTIL subtypes
FIGURE 3

Representative TIL marker double-positive cells obtained using an automated quantitative pathology imaging system and image analysis
software. (A) CD4 (yellow)/PD1 (green), (B) CD4 (yellow)/PDL1 (orange), (C) CD4 (yellow)/FOXP3 (pink), (D) CD8 (light blue)/PD1 (green), (E) CD8
(light blue)/PDL1 (orange), and (F) CD8 (light blue)/FOXP3 (pink) double positive cells in BC tissue.
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were examined. As shown in Supplementary Figures 5A–E, the

number of CD4+ iTILs in the TN subtype was significantly

higher than that in the ER/PR subtype (p<0.005)

(Supplementary Figure 5A). The number of CD8+ iTILs in the

TN subtype was significantly higher than that in the ER/PR

subtype (p=0.01) (Supplementary Figure 5B), and there were

significantly more FOXP3+ iTILs in the TN subtype than in the

ER/PR (p=0.036) and HER2 subtypes (p=0.028) (Supplementary

Figure 5E). The proportions of cells with each iTIL among the

subtypes are shown in Supplementary Table 3.

To elucidate the detailed subpopulation of iTILs, double-

positive iTILs were analyzed. Supplementary Figure 6 shows the

number of double-positive iTILs in each of the three subtypes.

CD4/PD1-double positive iTIL levels were higher in the ER/PR

and HER2 subtypes (ER/PR, 2164.5± 7549.8; HER2, 160.1±

384.7). CD8/PD1 positive iTIL levels were the highest in the

TN subtype (444.7 ± 1880.1). Among the three subtypes

(Figures 5A–F), CD4/PD1-double positive iTIL levels were

significantly higher in the ER/PR subtype than in the HER2

(p=0.009) and TN subtypes (p=0.004) (Figure 5A). The number

of CD8/PD1-double positive iTILs were significantly higher in

the ER/PR subtype than in the HER2 subtype (p=0.035)

(Figure 5D). The number of CD8/PDL1-double positive iTILs

were significantly lower in the ER/PR subtype than in the HER2

(p=0.003) and TN (p=0.006) subtypes (Figure 5E). The
Frontiers in Oncology 07
proportions of cells with each iTIL among the subtypes are

shown in Supplementary Table 4.
Relationship between TIL and recurrence
in the TN subtype

Of the three subtypes, the relationship between the number

of TILs and recurrence was investigated in the TN subtype,

which has a relatively higher rate of recurrence and

metastasis (28).

First, the amount of sTILs and recurrence-free survival rates

were investigated (Supplementary Figures 7A–E). For the single

staining analysis in all sTILs, the “low” groups had a higher rate

of recurrence than the “high” groups (CD4; p=0.007, CD8;

p<0.001, FOXP3; p=0.094, PD1; p=0.006, PDL1; p=0.074). In

double staining analysis, in all sTILs except CD4/PDL1, the

“low” groups had a statistically higher rate of recurrence than the

“high” groups (Figures 6A–F).

Next, the amounts of sTILs and iTILs were each stratified

and examined. In the analysis by single staining (iTILs), no

significant difference in recurrence tendency was observed due

to the difference in the amount of iTILs (Supplementary

Figures 8A–E). Interestingly, in the double staining iTIL

analysis, a low number of CD4/PDL1, CD8/PD1, and CD8/
B C

D E F

A

FIGURE 4

Comparison of stromal TIL (sTIL) marker double-positive cells among ER/PR, HER2, and TN subtypes. Average number of (A) CD4/PD1, (B) CD4/
PDL1, (C) CD4/FOXP3, (D) CD8/PD1, (E) CD8/PDL1, and (F) CD8/FOXP3 double-positive sTILs among each subtype (ER/PR: n=46, HER2: n=18,
TN: n=22). *, **, and **** indicate p < 0.05, p < 0.01, and, p< 0.0001 respectively (One way ANOVA test and Tukey’s multiple comparison test).
Error bars represent standard deviation.
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B C

D E F

A

FIGURE 5

Comparison of TIL marker double-positive cells amongst intratumoral TILs (iTILs) in ER/PR, HER2, and TN subtypes. Average number of (A)
CD4/PD1, (B) CD4/PDL1, (C) CD4/FOXP3, (D) CD8/PD1, (E) CD8/PDL1, and (F) CD8/FOXP3 double-positive iTILs among each subtype (ER/PR:
n=46, HER2: n=18, TN: n=22). *, **, and indicate p < 0.05, p < 0.01, respectively (One-way ANOVA and Tukey’s multiple comparison test). Error
bars represent standard deviation.
B C

D E F

A

FIGURE 6

Kaplan-Meier analysis for recurrence-free survival categorized by the amount of stromal TIL (sTIL) marker double-positive cells in triple-negative
cases. In TN subtypes (n=22), each sTIL marker was classified into “low” (n=10) and “high” (n=12)and analyzed as follows. (A) CD4/PD1-double
positive sTIL low; <80 cells, high; >=80 cells, (B) CD4/PDL1-double positive sTIL low; <50 cells, high; >=50 cells, (C) CD4/FOXP3-double
positive sTIL low; <60 cells, high; >=60 cells, (D) CD8/PD1-double positive sTIL low; <120 cells, high; >=120 cells, (E) CD8/PDL1-double positive
sTIL low; <85 cells, high; >=85 cells, (F) CD8/FOXP3-double positive sTIL low; =<0 cells, high; >0 cells.
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PDL1-double positive iTILs had a higher rate of recurrence than

the ones with higher numbers (CD4/PDL1, p=0.041; CD8/PD1,

p=0.006; CD8/PDL1, p<0.001) (Figures 7A–E).
Discussion

In investigating the biological properties of tumors, it is very

important to understand the environmental factors surrounding

the tumor in addition to the properties of the tumor cells

themselves (mRNA and protein expression, metabolism, and

genome alteration). In addition to various humoral factors such

as oxygen status, nutritional status, pH, cytokines, and

hormones around tumor cells, cell elements such as TILs are

involved in crosstalk with tumor cells to create what is referred

to as the TME (29). Since TILs dynamically control both

humoral and cellular responses, detailed profiling, including

functional analysis of TILs, has provided insights for

understanding the role of TME in various cancers (30–34).

In this study, we quantified sTILs and iTILs in different

histological subtypes of BC by using mIHC and AI-equipped

high-throughput immuhistochemical analysis (HTIA). There are

many reports on the correlation between a TIL-rich environment

and better clinical outcomes and prognosis in BC. Presence of TILs

is an independent predictor of response to neoadjuvant therapy (9)

and a good prognostic factor in TN (35, 36) andmolecular-targeted

therapy in the HER2 subtype (14, 37). Regarding the relationship

between the quantitative viewpoint of TILs and prognostic factors,

the data obtained in this study are limited to recurrence of TN;
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however, the results are consistent with those previously reported

(36). Regarding the number of TILs determined for each subtype, it

has been reported that the number of sTILs and iTILs tend to be

higher in HER2 and TN subtypes than in ER/ER subtypes, with the

numbers in TN subtypes being the highest (38). In this single-factor

analysis after multiple staining, HER2 or TN subtypes had more

TILs than the ER/PR subtypes for CD8, PDL1, and FOXP3, and the

technical aspect of multiple staining was also regarded

as acceptable.

There are two important points in advancing the detailed

analysis of TILs. The first is an evaluation using different parts of

the sTILs and iTILs, and the other is an evaluation using

multiple markers by mIHC. The former contributes to the

spatial assessment within the main tumor tissue, and the latter

adds depth to the biological functions of TILs. In iTILs, a

detailed definition of TILs was presented at the International

TILs Working Group in 2014 (27). Furthermore, sTILs have

better measurement reproducibility than iTILs, and unlike iTILs,

they are not affected by tumor cell density or growth pattern,

therefore, the evaluation of sTILs was considered better (27). In

fact, there is a report suggesting discrepancy between observers

regarding iTILs in BC (39). However, recent studies have

reported that the CD4/CD8 ratio of sTILs is a poor prognostic

marker of TN (40), and that both sTILs and iTILs are factors that

predict the pathological response to Neoadjubant chemotherapy

(NAC) (41). This suggests that both sTILs and iTILs are involved

in shaping the TME and determining clinical outcomes. In this

study, single marker analysis correlated sTILs depletion with a

poor prognosis and increased recurrence probability.
B C

D E

A

FIGURE 7

Kaplan-Meier analysis for recurrence-free survival categorized by the amount of intratumoral TIL (iTIL) marker double-positive cells in triple-
negative cases. In TN subtypes (n=22), each sTIL marker was classified into “low” (n=10) and “high”(n=12) and analyzed as follows. (A) CD4/PD1-
double positive iTIL low; <15 cells, high; >=15 cells, (B) CD4/PDL1-double positive iTIL low; =<0 cells, high; >0 cells, (C) CD4/FOXP3-double
positive iTIL low; <30 cells, high; >=30 cells, (D) CD8/PD1-double positive iTIL low; <30 cells, high; >=30 cells, (E) CD8/PDL1-double positive
iTIL low; <6 cells, high; >=6 cells.
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Comparisons with multiple marker analyses, as described below,

could provide further insights into the role of iTILs in prognosis.

With the development of immunostaining in recent years,

mIHC using fluorescent dyes has been used for pathological

research, including TME analysis (33, 42–44). In lung cancer, it

was reported that RNA sequences in TILs correlate with protein

expression, as determined by mIHC, providing evidence for the

clinical utility of mIHC (31). Furthermore, mIHC is also a useful

tool to elucidate the mechanism of TME formation (45). Analysis

of TILs by mIHC has also been performed in BC (46); however, the

types of antibodies are limited. In this study, mIHC was performed

with T-cell markers (CD4, CD8) and immune modification

markers (PD1, PDL1, and FOXP3). Analysis of double-positive

cells was performed using the AI-equipped HTIA system.We were

able to perform objective, detailed, and functional TIL analysis

through this methodology. It was shown that the decrease in CD4/

FOXP3-double positive TILs, which are known to exist in the

intratumoral region, and CD8/PD1-double positive TILs, which

have most recently been reported (47), correlates with recurrence.

It has been reported that CD8/PD1-double positive cells express T-

cell exhaustion markers, such as TIM3, in the TME of primary

brain lymphoma, resulting in an attenuated function in tumor

immunity (34). Furthermore, it has been reported that invasive

BCs do not have many CD8-positive sTILs but do have many

CD8-positive iTILs which are a negative prognostic marker (26).

Moreover, a recent study reported that CD103-positive iTILs are a

favorable prognostic factor for TN subtypes (48). In this study,

although the difference was not statistically significant, cases with

high CD8-positive iTILs and low FOXP3-positive iTILs showed a

tendency to recur, it is possible that CD8-positive iTILs are

classified into positive and negative subtypes for tumor immune

function, which can be clarified by prospective analysis using

mIHC together with additional markers. Although these reports

are contrary to the results of this study, it is possible that CD8-

positive iTILs are classified into positive and negative subtypes for

tumor immune function, which can be clarified by prospective

analysis using mIHC together with additional markers.

CD4/PDL1-double positive TILs and CD8/PDL1-double

positives have not been reported as subsets of lymphocytes.

Although the numbers of these subsets are considerably lower

than that of CD4/PD1-positive or CD8/PD1-positive TILs, they

may be novel subsets specific to the TME. A detailed subset

analysis using mIHC and flow cytometry with other markers in

different cancer types is expected to provide more insights into

the roles of these TILs in the TME.

This study has some limitations. First, TILs from five random

areas per section were examined for every case; however, it is not

clear whether these results reflect the entire TME. Recent

developments in image analysis technology have made it

possible to analyze TILs from the whole section (49). It is

expected that a more accurate TME evaluation will be possible

using this technology. In addition, macrophages in the TME—the

tumor-associated macrophages (TAMs)—are also known to play
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important roles in tumor progression (50). Indeed, it has been

revealed that TAMs express various effector molecules that inhibit

the antitumor immune response (50–52). Multiplex

immunohistochemical analysis for both TILs and TAMs will

resolve the complexity of the TME in BC. In addition, eight

from 22 cases of the TN cases were treated with NAC, and it is

possible that NAC affected the TME. It would be very important

to analyze the changes in TIL caused by NAC, as it may lead to the

prediction of the therapeutic effect of NAC. Further investigation

of the correlation between TIL changes before and after NAC, and

treatment response is expected. Finally, in recent years, immune

checkpoint inhibitors (ICIs) have become widely used as

therapeutic molecules in BC, including the TN subtype. It has

been reported that there is a close relationship between the

therapeutic effect of ICI and TILs in various cancer types (42,

53). It is supposed that the techniques used in this study can be

applied to advanced research areas. For example, by examining

how the amount and distribution of various lymphocyte subsets

change before and after administration of an immune checkpoint

inhibitor (ICI), we can determine the histological characteristics

and distribution of lymphocytes that directly reflect the effect of

the drug. If this becomes clear, it may be possible to predict the

efficacy of ICIs not only from tumor cell characteristics, but also

from TME. It is expected that the findings from this study will

provide basic insights into the TME in BC. Further studies will

focus on elucidating the significance of TILs into a more detailed

subset based on their classification, and its effect on therapies such

as ICI and NAC to resolve unknown functions of TME.
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