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Establishment and validation of
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based prognostic models to
predict progression-free survival
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rectal cancer
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In locally advanced rectal cancer (LARC), an improved ability to predict

prognosis before and after treatment is needed for individualized treatment.

We aimed to utilize pre- and post-treatment clinical predictors and baseline

magnetic resonance imaging (MRI) radiomic features for establishing

prognostic models to predict progression-free survival (PFS) in patients with

LARC. Patients with LARC diagnosed between March 2014 and May 2016 were

included in this retrospective study. A radiomic signature based on extracted

MRI features and clinical prognostic models based on clinical features were

constructed in the training cohort to predict 3-year PFS. C-indices were used

to evaluate the predictive accuracies of the radiomic signature, clinical

prognostic models, and integrated prognostic model (iPostM). In total, 166

consecutive patients were included (110 vs. 56 for training vs. validation). Eleven

radiomic features were filtered out to construct the radiomic signature, which

was significantly related to PFS. The MRI feature-derived radiomic signature

exhibited better prognostic performance than the clinical prognostic models

(P = 0.007 vs. 0.077). Then, we proposed an iPostM that combined the radiomic

signature with tumor regression grade. The iPostM achieved the highest C-

indices in the training and validation cohorts (0.942 and 0.752, respectively),

outperforming other models in predicting PFS (all P < 0.05). Decision curve
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analysis and survival curves of the validation cohort verified that iPostM

demonstrated the best performance and facilitated risk stratification.

Therefore, iPostM provided the most reliable prognostic prediction for PFS

in patients with LARC.
KEYWORDS

magnetic resonance imaging, radiomics, prognostic models, locally advanced rectal
cancer, clinical predictors
Introduction

More than 100,000 cases of rectal cancer are diagnosed

worldwide annually, and approximately 70% are locally advanced

rectal cancer (LARC) (1). The standard treatment for LARC is

neoadjuvant chemoradiotherapy (nCRT) followed by surgery (2, 3).

Adjuvant chemotherapy is recommended for all patients with stage

II/III rectal cancer after neoadjuvant radiochemotherapy and

surgery (4). However, the effect of postoperative chemotherapy

on survival remains controversial (5, 6). Therefore, pre- and post-

treatment prediction models are needed to help determine

treatment strategies and identify patients who may benefit from

postoperative adjuvant chemotherapy.

LARC prognosis is based on the tumor–node–metastasis

(TNM) staging system. Recently, nomograms were proposed to

improve LARC prognosis prediction (7–10), using indexes such

as age, carcinoembryonic antigen (CEA), carbohydrate antigen

19–9 (CA19-9), pathological tumor stage (ypT), pathological

nodal stage (ypN), and tumor regression grade (TRG). However,

contradictory results have been obtained with these models. For

example, in one study, TRG was more efficient than ypTN stage

in predicting the outcome (11), whereas in another study, ypTN

stage contributed more (10), indicating that these nomograms

are not robust enough for clinical application.

Radiomics, a tool that reveals underlying tumor

heterogeneity using medical images (12, 13), serves as a strong

prognostic predictor for malignancies (14). In rectal cancer,

radiomics based on magnetic resonance imaging (MRI) is

highly efficient in evaluating the tumor response to nCRT (14,

15) and can help identify non-responders (16) and pathologic

complete responders (17–20). Prediction models based on

radiomic features have added predictive ability in combined

models, enhancing the accuracy by up to 74% (sensitivity 58%,

specificity 77%) (18). Combined models based on radiomics and

clinical data can independently predict overall survival (21),

disease-free survival (22–24), and progression-free survival

(PFS) (15) in LARC. However, pretreatment radiomics only

reflects the cancer characteristics before surgery. Considering

effective treatments may revise radiomics features, a study

innovatively used delta radiomics based on 4 features to
02
predict distant metastasis (DM) in LARC, obtaining a test set

balanced accuracy, sensitivity and specificity of 78.5%, 71.4%

and 85.7%, respectively (25). However, other prognostic clinical

and histological indicators, including TRG, associated with the

efficacy of nCRT on long term survival, which is important for

determining the follow-up treatment after surgery, have not

been considered in the radiomic prediction model. Thus,

whether the combined model with radiomics and

postoperative TRG data has an improved predictive ability for

risk classification remains to be determined.

Here, we investigated the abilities of prognostic models

based on radiomics, pre- and post-treatment clinical factors,

and combination of radiomics and pre- and post-treatment

clinical factors for predicting 3-year early PFS in LARC.

Furthermore, we explored the internal correlations and

differences among the models to determine the effect of

combining different types of markers.
Methods

Patient selection

A total of 166 patients with LARC, based on pathological

examination between March 2014 to August 2016, were enrolled

(Supplementary Figure S1). The inclusion criteria were: (1) age ≥

18 years; (2) newly diagnosed with LARC (staged on MRI as

cT2–4 and/or N+) without distant metastasis and other

malignancies; (3) treatment with preoperative nCRT; (4) high

resolution pelvic MRI examination before nCRT; and (5)

availability of complete electronic medical records and imaging

data. Patients who did not complete nCRT were excluded.

Consider ing only using radiomics feautures from

pretreatment, pelvic MRI after treatment was not mandatory.

Basic clinical information (sex, age, weight, height, BMI, clinical

T stage, and clinical N stage) and laboratory indicators (routine

blood tests, liver and renal function tests, blood glucose

monitoring, C-reactive protein, serum lipid level, CEA, and

CA19-9 levels) were collected before nCRT. This study was

approved by the institutional ethics committee of our hospital.
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As this study was retrospective, the requirement for informed

consent was exempted.
Treatment and follow-up

The preoperative treatment regimen included intensity-

modulated radiation therapy (IMRT) and concurrent

chemotherapy. IMRT doses of 50 Gy for gross tumor volume

(primary tumors and enlarged LNs) and 45 Gy for clinical target

volume were divided into 25 fractions. Two different

chemotherapy regimens were used. Of the 166 patients, 91

received oxaliplatin (OXA) and capecitabine (CAPOX) for 3

weeks; 130 mg/m² OXA was intravenously administered on the

first day, and 1,000 mg/m² capecitabine (CAP) was orally

administered twice a day for the first two weeks. The

remaining 75 patients received oral administration of 1,000

mg/m² CAP twice a day for the first 14 days. Radical rectal

resection was performed 6–8 weeks after the completion of

nCRT. After surgery, ypT stage, ypN stage, and TRG

were evaluated.

The PFS, calculated at the endpoint, was defined as the

interval from surgery to tumor progression, including local

recurrence and/or metastasis or death. Follow-up visits were

performed every 3–6 months in the first 2 years, then every 6

months in the following 3 years, and once a year thereafter.
MRI scanning and segmentation

Pretreatment pelvic MRI was performed using Trio Tim

3.0T (n = 74; Siemens Healthcare GmbH Henkestr) with two

body Matrix coils and two spine Matrix coils or Discovery750

3.0T (n = 92; GE Healthcare) using an 8-channel phased array

body coil in the supine position. Gadolinium-diethylenetriamine

pentaacetic acid was injected as the contrast agent at a dosage of

0.1 mL/kg with a flow velocity of 3.0 mL/s. The scanning

protocol included the axial, coronal, and sagittal T1-weighted

(T1-w) images; T2-weighted (T2-w) images, axial short-axis T2-

weighted images (short-axis T2-w), and contrast-enhanced T1-

weighted (T1C-w) sequences. Short-axis T2–w, a thin section

(3 mm) T2-weighted fast spin echo sequence acquired in a plane

perpendicular to the long axis of the tumor (26), was helpful to

precisely examine the tumor and its relationship with the

intestinal wall, mesorectal fascia, vessels, and adjacent organs.

MR images were retrieved from the picture archiving and

communication system and loaded onto AnalyzePro1 for

manual segmentation. Two radiation oncologists with more

than 10 years of experience outlined the whole-tumor volumes
1 https://analyzedirect.com/analyzepro/
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of interest, representing the contour of the tumor on each slice of

all sequences separately.
Extraction of radiomic features and
radiomic signature construction

Feature extraction in this study was performed using

PyRadiomics2 (27). In total, 14,089 radiomic features were

extracted from the axial T1C-w, T1-w, T2-w, and short-axis

T2-w scans. The parameter settings for image preprocessing and

radiomic feature extraction are presented in the Supplementary

Information. To evaluate the effect of semi-automatic

segmentations on the values of radiomic features, the inter-

class correlation coefficient (ICC) was utilized. For this, 30

patients in the training cohort were randomly selected and

segmented by two other radiation oncologists with more than

10 years of experience (Supplementary Figure S2A). The stability

of each extracted feature was assessed by different expert

radiologists. Stable radiomic features were defined as ICCs >

0.8 (Supplementary Figure S2B).

The RAD score was computed for each patient using a linear

combination of selected features, weighted by their respective

coefficients, and used to construct a radiomic signature. The

potential association of the radiomic signature with 3-year early

PFS was evaluated in the training cohort and then validated in

the validation cohort.
Statistical analysis

The LASSO Cox regression method (Supplementary

Information) was applied to select the most effective

combination of prognostic features. The models were

determined using the backward stepwise Akaike information

criterion method, in which the least significant variables were

removed one by one after fitting a full model with the candidate

variables. The Mann-Whitney U test for continuous variables

and the chi-square test for categorical variables were used to

compare clinical characteristics between the training and

validation cohorts. Considering multiple factors (including

clinical T stage, clinical N stage, TRG, CEA, CA19-9, GLO,

ypT stage, ypN stage), univariate and multivariate analyses were

performed with the Cox proportional hazards model, and the

hazard ratios (HRs) and 95% confidence intervals (CIs) were

calculated. Harrell’s concordance indices were used to assess the

predictive power of each model. Statistical analyses were

performed using R version 4.0.23. R packages, including
2 https://github.com/Radiomics/pyradiomics

3 http://www.r-project.org/
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glmnet, caret, survival, rms, Hmisc, corrplot, pheatmap, and

rmda, were used. All statistical tests were two-sided, and P < 0.05

was considered statistically significant.
Results

A total of 166 consecutive patients (median age, 58

[interquartile range, 49‒64] years; 117 [70.48%] men) were

included in the analysis. The patients were randomly divided

in a 2:1 ratio, with 110 in the training cohort and 56 in the

validation cohort. Table 1 summarizes the clinical characteristics

of the patients with LRAC in the training and validation cohorts.

There were no differences in those characteristics between the

training and validation cohorts (P = 0.202–0.930).

The median follow-up duration was 32.3 months (range,

2.6–58.8 months). During the last follow-up, disease progression

was confirmed in 24 patients (21.8%) in the training cohort and

14 (25.0%) in the validation cohort (P = 0.708).

After univariate analysis in the training cohort, candidate

variables with a P value < 0.1 were included in the multivariate

model analysis. Pretreatment variables, including clinical T stage,

CEA, CA 19-9, and globulin, and post-treatment predictors,

including pathologic T stage and TRG, were selected as

summarized in Supplementary Table S1. The pretreatment

clinical prognostic model (PreM) for 3-year PFS prediction was

established based on the four pretreatment variables. Multivariate

analysis identified CEA and globulin as independent predictors

(Supplementary Table S2). The clinical stage prognosticmodel was

built based on the clinical T and N stages.

The C-indices of PreM and the clinical stage prognostic

model were 0.627 (95% confidence interval [CI]: 0.572–0.682)

and 0.578 (95% CI: 0.522–0.634) in the training cohort, and

0.552 (95% CI: 0.482–0.622) and 0.611 (95% CI: 0.531–0.691) in

the validation cohort, respectively (Table 2). The nomograms

and corresponding calibration curves for the probability of 3-

year PFS generated using the pretreatment clinical prognostic

models are shown in Supplementary Figure S3.

Additionally, by integrating the clinical variables for pre- and

post-treatment, we established post-treatment prognostic models.

The pathologic stage prognostic model was built based on the

pathologic T and N stages. Stepwise multivariable analyses

identified pathologic T stage, CEA, and globulin as independent

predictors for PFS in the first post-treatment prognostic model

(PostM1). In the validation cohort, PostM1 showed a higher

predictive power for PFS than PreM (P = 0.307) and the

pathologic stage prognostic model (P = 0.156), but it was

slightly lower than that of the clinical stage prognostic model (P

= 0.429). When the influences of clinical T stage and pathologic T

stage were excluded, TRG, CEA, and globulin remained

significant for PFS after performing multivariate Cox regression.

Consequently, PostM2 was built with these three factors. The C-

indices of the three post-treatment prognostic models are
Frontiers in Oncology 04
summarized in Table 2. The nomograms and corresponding

calibration curves for the 3-year PFS probability generated using

the post-treatment clinical prognostic models are shown in

Figure 1 and Supplementary Figure S4. The multivariable Cox

regression results of the pre- and post-treatment clinical

prognostic models are summarized in Supplementary Table S2.

Notably, compared with PreM without TRG, PostM2 achieved a

better predictive performance (P = 0.356), which indicates that

TRG is an important prognostic factor for predicting PFS.

In the training cohort, we selected 11 radiomic features based

onMRI thatwere significantly associatedwithPFS (Supplementary

Table S3). The detailed selection process and LASSO results are

shown in Supplementary Figures S5 and S6, respectively. The

formula for the Rad score calculation of the radiomic prognostic

model is shown in the Supplementary Information. In the training

cohort, the radiomic signature yielded a C-index of 0.937 (95% CI:

0.917–0.957). The good prognostic performance of this radiomic

signature was validated with a corresponding C-index of 0.730

(95% CI: 0.651‒0.809) in the validation cohort. The radiomic

nomogram showed significant improvement compared to the

clinical prognostic models (P = 0.007‒0.039), except for PostM2

(P = 0.077) (Table 2). Thus, the developed radiomic signature was

more accurate than the clinical prognosticmodels for evaluating 3-

year PFS.

Next, we built two integrated prognostic models that

combined the radiomic signature based on MRI features with

important pre- and post-treatment clinical factors. Using the

multivariate Cox proportional hazard model based on

pretreatment clinical factors and radiomic signature, we found

that only the radiomic signature remained significant for PFS

after adjusting for various cofactors. The integrated PostM

(iPostM) was constructed using the radiomic signature and

TRG (Table 3). The iPostM showed significant improvement

compared to the radiomic signature in terms of evaluating 3-

year PFS (C-index: 0.752; 95% CI: 0.684‒0.820), with a P value <

0.05 (Table 2).

The result of iPostM is visually represented by a nomogram,

as shown in Figure 1A. The calibration curve for the 3-year PFS

probability showed good agreement between the evaluation

based on nomogram and actual survival (Figure 1B).

Then, we calculated the risk scores of all the prognostic

models for each patient in both the training and validation

cohorts and then classified the patients into categories: low-risk

(patients with a score < 0) and high-risk (patients with a score ≥

0), with zero as the risk score cutoff. The survival curves between

patients in the low- and high-risk categories, generated using

clinical and radiomic prognostic models in the training and

validation cohorts, are shown in Supplementary Figures S7 and

S8, and Figure 2. The patients with disease progression after

treatment were concentrated in the high score area, and the

survival curve showed good prognostic stratification of patients

in the low-and high-risk groups in the validation cohort of

iPostM. However, such trends were not observed in the
frontiersin.org
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validation cohort of other clinical prognostic models and

radiomic signature.

Decision curve analysis of the validation cohort in all the

prognostic models showed that iPostM was the most efficient
Frontiers in Oncology 05
(Figure 3). The iPostM exhibited the highest efficacy especially in

high risk areas. Using a heatmap to determine the association

between the radiomic signature and clinical data, we found no

significant correlation between the radiomic signature and
TABLE 1 Clinical and pathological characteristics of patients in the training and validation cohorts.

Total Training cohort Validation cohort P
Characteristics (N = 166) (N = 110) (N = 56) values

No. (%) No. (%) No. (%)

Gender 0.582

Female 49 (29.52) 34 (30.91) 15 (26.79)

Male 117 (70.48) 76 (69.09) 41 (73.21)

Age (years)

Median (IQR) 58 (49-64) 58 (49-64) 57 (49-64) 0.792

TRG 0.514

1 41 (24.70) 30 (27.27) 11 (19.64)

2 48 (28.92) 28 (25.45) 20 (35.71)

3 53 (31.93) 36 (32.73) 17 (30.36)

4 24 (14.46) 16 (14.55) 8 (14.29)

Clinical T stage 0.202

T2 9 (5.42) 7 (6.36) 2 (3.57)

T3 109 (65.66) 76 (69.09) 33 (58.93)

T4 48 (28.92) 27 (24.55) 21 (37.50)

Clinical N stage 0.511

N0 41 (24.7) 28 (25.45) 13 (23.21)

N1 56 (33.73) 40 (36.36) 16 (28.57)

N2 69 (41.57) 42 (38.18) 27 (48.21)

ypT stage 0.311

T0 33 (19.88) 26 (23.64) 7 (12.50)

T1 19 (11.45) 12 (10.91) 7 (12.50)

T2 55 (33.13) 38 (34.55) 17 (30.36)

T3 51 (30.72) 29 (26.36) 22 (39.29)

T4 8 (4.82) 5 (4.55) 3 (5.36)

ypN stage 0.930

N0 135 (81.33) 90 (81.82) 45 (80.36)

N1 27 (16.27) 17 (15.45) 10 (17.86)

N2 4 (2.41) 3 (2.73) 1 (1.79)

CEA 0.505

≤ 5ng/ml 89 (53.61) 61 (55.45) 28 (50.00)

> 5ng/ml 77 (46.39) 49 (44.55) 28 (50.00)

CA19-9 0.496

≤ 35U/ml 138 (83.13) 93 (84.55) 45 (80.36)

> 35U/ml 28 (16.87) 17 (15.45) 11 (19.64)

Treatment 0.921

CAP 75 (45.18) 50 (45.45) 25 (44.64)

CAPOX 91 (54.82) 60 (54.55) 31 (55.36)

Follow-up time (month)

Median (IQR) 36.3 (28.1-43.6) 36.1 (29.0-43.8) 37.0 (25.9-43.6) 0.870
frontie
Data are n (%) unless otherwise indicated. P values were calculated by the Mann-Whitney U test for continuous variables and Chi-square test for categorical variables. No significant
differences were found between the training cohort and the validation cohort (P = 0.202–0.930).
IQR, inter-quartile range; TRG, tumor regression grade; ypT/N stage, the pathologic classification after nCRT; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9;
CAPOX, oxaliplatin and capecitabine chemotherapy; CAP, capecitabine chemotherapy.
rsin.org
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TABLE 2 C-index for each prognostic model for survival prediction.

Models for survival prediction Predictors in each
model

Training cohort Validation cohort

C-
index

95% CI C-
index

95% CI P values

Pretreatment clinical prognostic
models

cTN cT + cN 0.578 (0.522-
0.634)

0.611 (0.531-
0.691)

.429 .503 .039* <.001*

PreM CEA+GLO 0.627 (0.572-
0.682)

0.552 (0.482-
0.622)

.307 .356 .007* <.001*

Posttreatment clinical prognostic
models

ypTN ypT+ypN 0.675 (0.615-
0.735)

0.532 (0.441-
0.623)

.156 .636 .033* <.001*

PostM1 CEA+GLO+ypT 0.737 (0.679-
0.795)

0.603 (0.534-
0.672)

ref .647 .027* <.001*

PostM2 TRG+CEA+GLO 0.664 (0.603-
0.725)

0.609 (0.542-
0.676)

.647 ref .077 .009*

Radiomics signature Radscore Radscore 0.937 (0.917-
0.957)

0.730 (0.651-
0.809)

.010* .077 ref .014*

Integrated prognostic model iPostM Radscore+TRG 0.942 (0.922-
0.962)

0.752 (0.684-
0.820)

<.001* .009* .014* ref
Frontiers in Oncology
 06
 frontiers
P values were calculated by comparing with the corresponding reference prognostic model in each column in the validation cohort (ref represents the reference model). A P value < 0.05
indicates a significant difference.
*Represent P < 0.05. In the validation cohort, five clinical prognostic models showed similar PFS predictive power. Notably, compared with PreM without TRG, the constructed PostM2
achieved better predictive performance (P = 0.356). The developed radiomics signature appeared to be more accurate than clinical prognostic models (P = 0.007 to 0.077). The integrated
model (iPostM) combining radiomics signature and TRG gained the highest C-index in the validation cohort (0.752), outperforming the radiomics signature and all other clinical
prognostic models in term of evaluating 3-year PFS (all P < 0.05).
cTN, the clinical stage prognostic model; PreM, the pre-treatment clinical prognostic model; ypTN, the pathologic stage prognostic model; PostM1, the post-treatment clinical prognostic
model; PostM2, the post-treatment clinical prognostic model without pathologic stage; iPostM, the integrated prognostic model combining TRG and radiomics signature; CI, confidence
interval; GLO, globulin; TRG, tumor regression grade; cT/N: clinical T/N stage; ypT/N, the pathologic classification after nCRT; CEA, carcinoembryonic antigen; CA19-9, carbohydrate
antigen 19-9.
A

B D

C

FIGURE 1

Nomogram for 3-year progression-free survival (PFS) in (A) iPostM and (C) PostM2. The nomogram allows the user to determine the probability
of 3-year PFS corresponding to a patient’s combination of covariates. Calibration curves for predicting 3-year PFS in (B) iPostM and (D) PostM2
in the training and validation cohorts. The y-axis shows observed survival estimated using the Kaplan-Meier method, and the x-axis shows
predicted survival calculated using the prognostic model. The closer fit to the diagonal dotted line indicates a better assessment. iPostM,
integrated prognostic model combining tumor regression grade (TRG) and radiomic signature; PostM2, post-treatment clinical prognostic
model without pathologic stage.
in.org
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clinical factors (Supplementary Figure 9). In contrast, TRG and

pathologic T stage showed a strong correlation (r = 0.69).

Discussion

In thepresent study,we established effective prognosticmodels for

predicting 3-year PFS in patientswith LARC. Further, we proposed an

integratedprognosticmodel that combined theradiomic signatureand

TRG and yielded the highest C-index with a value of 0.752 in the

validation cohort, outperforming the radiomic signature and all other

clinical prognostic models. There was a strong correlation between

TRG and pathologic T stage (r = 0.69). Notably, only the integrated

post-treatment prognosticmodel could stratify patients into high- and

low-risk groups based on significantly different 3-year PFS rates.
A B

DC

FIGURE 2

Stratified Kaplan-Meier analyses of the prognostic models to estimate 3-year progression-free survival (PFS) in various risk stratification
subgroups in the validation cohort. Patients with high and low risks of PFS were stratified by the prognostic models (A) Pathologic TN, (B)
PostM2, (C) Radiomics signature, (D) iPostM models. Only the iPostM could stratify patients into high- and low-risk groups based on significantly
different 3-year PFS rates (P < 0.05). The log-rank test was used to calculate P values. Pathologic TN, pathologic stage prognostic model;
PostM2, post-treatment clinical prognostic model without pathologic stage; iPostM, integrated prognostic model combining tumor regression
grade (TRG) and radiomic signature.
TABLE 3 Multivariate Cox regression analysis of the final integrated
model.

Variables Coefficient HR (95% CI) P values

Radiomics signature

(per 1 increase) 1.029 2.797 (1.934-4.046) 4.74E-08

TRG

1

2 0.543 1.721 (0.555-5.339) 0.347

3 0.551 1.735 (0.445-6.758) 0.427

4 1.417 4.125 (1.043-16.303) 0.043
Hazard ratios estimated by Cox proportional hazards regression. All statistical tests were
two-sided. The results of the multivariate Cox analysis correspond to the nomogram in
Figure 1A.
HR, hazard ratio; CI, confidence interval; TRG, tumor regression grade.
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The prognostic models, based on only clinical and

pathological factors, showed relatively weak predictive

performance, indicating the need to find more useful markers.

Additionally, the C-indices of PostMs were higher than those of

PreM, possibly because pathological information can better reflect

the preoperative state of the tumor. The models with TRG, used as

a qualitative evaluation of tumor cells replaced by fibrosis that can

reflect the sensitivity of tumors to nCRT, showed higher C-

indexes, confirming the findings of previous studies (11, 28–30).

TRG was significantly correlated with ypT, which may lead to the

absence of ypT in multi-parameter models. Different from some

previous studies (10, 24, 31), the discriminatory power of ypN was

weakened and not included in the final model, which may

attributed to the heterogenous distribution of ypN stage, the

adding of TRG and radiomics in our model. For example, Cui

et al. (24) included ypN in the prediction model instead of TRG.

In their study, the percentages of ypN 0 in the training and

validation groups were 60.3% and 50.9%, respectively, which were

lower than those in our study (81.33% and 80.36%) and previous

findings (96.9% and 94.6%) (9). Thus, to make radiomics-based

model more robust, larger sample size and external validation are

needed to confirm the results.

Our study indicates that radiomics is an independent

prognostic factor for predicting 3-year early PFS in LARC, which

is in accordance with a previous study (23). MRI is the standard

imaging method for post-nCRT evaluation in LARC, and MRI-

based radiomics, can provide minable information from

conventional medical images and dig out quantitative features

which can reflect tumor heterogeneity, other intrinsic
Frontiers in Oncology 08
characteristics and microenvironment related with individualized

biological behavior of tumor (12–14, 25, 32). It is reported that

higher levels of radiomics heterogeneity (ie, higher entropy) was

associated with worse response to treatment and/or survival (33,

34), which may caused by the occurrence of constant complex

mutations within a tumor to remain resistant to treatment (34).

The correlation coefficient between the RAD score and clinical data

was low, indicating that radiomic features include details derived

from images rather than the clinical TNM stage derived from the

macro level (35). Further, compared clinical and pathological

models with underfitting, the iPostM obtained enough fitting in

training cohort and achieved the highest C-index in the validation

cohort, in which the RAD score contributed significantly to the

nomogram. The reason may be that the RAD score comprises

multiple underlying tumor characteristics associated with disease

risks (32, 36, 37), whereas TRG is merely a pathological signature.

Additionally, radiomics may decrease the discriminatory power of

previously proven independent prognostic indicators (8, 38, 39) as

shown in Supplementary Table S4. Thus, radiomics was the most

influential indicator in the nomogram, followed by TRG and

others. Based on the relatively comprehensive information,

iPostM may identify patients in high-risk groups and suggest the

administration of adjuvant chemotherapy after TME (4) to reduce

the risk of occurrence of distant metastasis and recurrence.

Based on the strengths of similar prognostic prediction

models for LARC (23, 24), we included multiparametric MR

images for extracting radiomic features, with the addition of T1-

w, T2-w, and short-axis T2-w, while other studies included

relatively fewer sequences. Multiple MRI sequences can detect
FIGURE 3

The DCA curves of the nomograms compared for 3-year progression-free survival (PFS) in the validation cohort. The x-axis represents the
threshold probabilities, and the y-axis indicates the net benefit. The net benefit is calculated by adding the benefits (true-positive results) and
subtracting the risks (false-positive results), with the latter weighted by a factor related to the harm of an undetected cancer relative to the harm
of unnecessary treatment. Clinical TN, clinical stage prognostic model; PreM, pretreatment clinical prognostic model; ypTN, pathologic stage
prognostic model; PostM1, post-treatment clinical prognostic model; PostM2, post-treatment clinical prognostic model without pathologic
stage; iPostM, integrated prognostic model combining tumor regression grade (TRG) and radiomic signature.
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anatomical details and provide more specific histological

information, such as necrosis , cystic degeneration,

hemorrhage, and tumor angiogenesis (40). Notably, previous

studies have proven that the predictive performance of a

radiomic model derived from multi-modal MRI is superior to

that based on mono-modal MRI (8, 38). Hence, our model could

improve the prognosis ability for patients with LARC.

Nevertheless, there are some limitations to our study. First, it

was a relatively small retrospective study performed and

validated at a single center with short follow-up duration;

however, we enrolled the patients consecutively to reduce

underlying selective bias. Second, we only extracted signatures

from preoperative primary tumors, lacking lymph nodes,

functional MRI images, such as diffusion weighted imaging

and apparent diffusion coefficient, which would provide more

signatures and inner information. In addition, the value of post-

treatment radiomics features need to be further confirmed.

Third, we focused on random combinations of imaging

features with clinical data rather than genetic heterogeneity.

Furthermore, TRG, which is included in our best performing

model, was not available to predict the prognosis for the “wait

and see” patients. Future studies need to be carried out to

validate the prognostic value of our iPostM model in multiple

centers with longer follow-up duration.

In summary, we developed pre- and post-treatment

prediction models based on clinical and radiomic features.

Post-treatment prognostic models with postoperative

pathological factors showed better predictive performance than

pretreatment prognostic models, and TRG was important for

predicting the 3-year PFS of LARC. The multi-modal MRI

radiomic model with improved predictive ability could act as a

pretreatment-independent prognostic factor for LARC and

assist clinicians in determining appropriate neoadjuvant

chemoradiotherapy regimens. In addition, the integrated post-

treatment prognostic model has potential for recognizing high-

risk patients who may benefit from postoperative adjuvant

therapy. In future studies, we will validate the performance of

our model and explore its clinical applications.
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