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Background: Previously, we reported that bevacizumab (Bev) produces histological and
neuroradiographic alterations including changes in tumor oxygenation, induction of an
immunosupportive tumor microenvironment, and inhibition of stemness. To confirm how
those effects vary during Bev therapy, paired samples from the same patients with newly
diagnosed glioblastoma (GBM) who received preoperative neoadjuvant Bev (neoBev)
were investigated with immunohistochemistry before and after recurrence.

Methods: Eighteen samples from nine patients with newly diagnosed GBM who received
preoperative neoBev followed by surgery and chemoradiotherapy and then autopsy or
salvage surgery after recurrence were investigated. The expression of carbonic anhydrase
9 (CA9), hypoxia-inducible factor-1 alpha (HIF-1a), nestin, and Forkhead box M1 (FOXM1)
was evaluated with immunohistochemistry.For comparison between neoBev and
recurrent tumors, we divided the present cohort into two groups based on
neuroradiographic response: good and poor responders (GR and PR, respectively) to
Bev were defined by the tumor regression rate on T1-weighted images with gadolinium
enhancement (T1Gd) and fluid-attenuated inversion recovery images. Patterns of
recurrence after Bev therapy were classified as cT1 flare-up and T2-diffuse/T2-
circumscribed. Furthermore, we explored the possibility of utilizing FOXM1 as a
biomarker of survival in this cohort.
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Results: A characteristic “pseudo-papillary”-like structure containing round-shaped tumor
cells clustered adjacent to blood vessels surrounded by spindle-shaped tumor cells was seen
only in recurrent tumors. Tumor cells at the outer part of the “pseudo-papillary” structure were
CA9-positive (CA9+)/HIF-1a+, whereas cells at the inner part of this structure were CA9−/HIF-
1a+ and nestin+/FOXM1+. CA9 and HIF-1a expression was lower in T1Gd-GR and
decreased in the “T2-circumscribed/T2-diffuse” pattern compared with the “T1 flare-up”
pattern, suggesting that tumor oxygenation was frequently observed in T1Gd-GR in initial
tumors and in the “T2-circumscribed/T2-diffuse” pattern in recurrent tumors. FOXM1 low-
expression tumors tended to have a better prognosis than that of FOXM1 high-expression
tumors.

Conclusion: A “pseudo-papillary” structure was seen in recurrent GBM after anti-vascular
endothelial growth factor therapy. Bev may contribute to tumor oxygenation, leading to
inhibition of stemness and correlation with a neuroimaging response during Bev therapy.
FOXM1 may play a role as a biomarker of survival during Bev therapy.
Keywords: bevacizumab, glioblastoma, FOXM1, magnetic resonance imaging (MRI), tumor microenvironment, pseudo-
papillary structure
INTRODUCTION

Bevacizumab (Bev) is a monoclonal antibody against vascular
endothelial growth factor (VEGF)/vascular permeability factor
and blocks endothelial proliferation and vascular permeability,
thus reducing enhancement and perifocal edema in glioblastoma
(GBM). The effect of Bev on GBM depends on not only
inhibition of tumor angiogenesis but also alteration of the
tumor microenvironment (TME) from immunosuppressive to
immunosupportive (1).

The alteration in the TME induces tumor oxygenation from a
hypoxic TME, leading to inhibition of stemness in the
perivascular niche (2–4) and infiltration of immunosuppressive
cells including regulatory T cells and M2 tumor-associated
macrophages (5, 6). Although these effects including an
immunosupportive TME are sustained for a long time,
improvement in tumor oxygenation is transient (3), indicating
that the therapeutic efficacy of Bev is difficult to maintain over a
long period of time. Bev induces oxygenation of the TME,
leading to tumor dormancy. A hypoxic TME restimulates
stemness, which may be a reason for the dismal clinical
outcome of GBM in a short period of time (7). The duration
of maintenance of the TME in a dormant state may impact the
clinical outcome, regardless of the initial response to Bev on
gadolinium-enhanced neuroimages and perifocal edema.

In recent years, glioma stem cells (GSCs) have become a cell
type of increasing interest. GSCs survive in hypoxic and
starvation conditions (8, 9). A number of molecular markers
are generally used to isolate and characterize GSCs (10, 11). The
TME, including vascularity and tumor oxygenation, is very
important for the survival of GSCs. More importantly, GSCs
are resistant to radiation (RT) and temozolomide (TMZ)
compared with differentiated tumor cells (12). In addition, a
hypoxic TME induces VEGF expression, resulting in resistance
in.org 2
to RT and TMZ and difficulty in controlling GSCs in recurrent
tumors (13, 14).

CD133-positive (CD133+) cells include vascular endothelial
cells and other cells in the perivascular niche that maintain GSC
characteristics via VEGF and NOTCH signaling in the
microenvironment (2). Bev is considered to be a reasonable
treatment to control GSCs and maintain an oxygenated and
immunosupportive TME. However, its efficacy is transient, and
the biomarkers that predict survival remain unknown.

Among these molecular markers, nestin is an intermediate
filament protein expressed in neural progenitor stem cells (15).
Nestin is expressed in many GBMs, and the differentiation of
GBM cells leads to the downregulation of nestin, a potential
marker for GSCs (16). Whether the level of nestin expression is
correlated with the histological grade of malignancy in gliomas
and the clinical outcome is still controversial (17–19). Therefore,
whether nestin expression is a biomarker for survival
is uncertain.

We also focused on the possibility that Forkhead box M1
(FOXM1) may be a biomarker of survival during Bev therapy.
FOXM1 is a key transcription factor, plays a critical role in
tumorigenesis and transformation of normal astrocytes, and is
overexpressed in GBM (20). FOXM1 also binds to the VEGF
promoter and contributes to angiogenesis and growth of GSCs in
GBM by upregulation of VEGF (21). Furthermore, FOXM1 is
upregulated in recurrent GBM, both at the mRNA and protein
levels, and a high level of FOXM1 expression is associated with
poor prognosis in recurrent GBM (22). However, no previous
studies have investigated alterations in FOXM1 expression or its
reliability as a predictive biomarker of survival in GBM during
anti-VEGF therapy.

Previously, we reported that Bev induces tumor oxygenation
in accordance with a decrease in microvessel density (MVD) and
inhibition of immunosuppressive cell and stem cell infiltration
June 2022 | Volume 12 | Article 898614
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by comparative analyses among initial GBM (naive-Bev), GBM
with radiological effectiveness of Bev at the time of treatment
with preoperative neoadjuvant Bev (neoBev, effective-Bev), and
recurrent GBM after Bev failure (refractory-Bev) (3, 5). However,
in our previous studies, all samples of refractory-Bev were
derived from patients who did not receive neoBev.

As far as we know, the present study is the first report to
investigate the neuroradiographic response before and after
recurrence with a comparison of paired samples from the same
patients who received preoperative neoBev followed by surgery
combined with RT, TMZ, and Bev, and then autopsy or salvage
surgery after Bev failure. The purpose of this study was to investigate
the following: 1) the difference between neoBev and refractory-Bev
according to histological and immunohistochemical findings, 2)
changes in FOXM1 expression during anti-VEGF therapy and its
potential as a biomarker of survival, and 3) TME change in
accordance with the neuroradiographic response during
Bev therapy.
METHODS

Patient Characteristics and
Treatment Protocol
The present study used 18 paired surgical samples from nine
patients with newly diagnosed GBM obtained from surgery at the
time of initial and recurrent tumors, including nine tumor
samples obtained from surgery following neoBev, eight tumor
samples obtained from autopsy, and one recurrent tumor. Four
of these nine patients were included in the Japan Registry of
Clinical Trials (jRCT1031180233).

All patients were treated with preoperative neoBev at a dose
of 10 mg/kg on day 0. Surgical resection was performed 3–4
weeks after neoBev. Concomitant RT and TMZ were
commenced more than 2 weeks after surgery. Maintenance
treatment with TMZ began more than 4 weeks after
completion of RT at a starting dose of 150 mg/m2 for 5
consecutive days of a 28-day cycle. Bev (at a dose of 10 mg/kg)
concomitant with TMZ (every 4 weeks at a dose of 150 mg/m2)
was readministered every 2 weeks at the time of recurrence and
continued until reprogression or beyond reprogression in
tolerant patients. The mean number of cycles of Bev was 16.1
(range, 7~38 cycles).
Neuroradiological Assessment
The tumor volumes of T1-weighted images with gadolinium
enhancement (T1Gd) or fluid-attenuated inversion recovery
(FLAIR) were estimated by the sum of each slice on
neuroimages and multiplication of longitudinal and transverse
slices. Tumor volume was assessed by the sum of perpendicular
diameters as previously described (23). The tumor regression
rate with neoBev was evaluated by the change in tumor volume
before and after treatment. Patterns of recurrence after Bev
therapy were classified as cT1 flare-up, T2-diffuse, or T2-
circumscribed as previously described (3, 24).
Frontiers in Oncology | www.frontiersin.org 3
Briefly, the cT1 flare-up is characterized by an initial decrease
in contrast enhancement (CE) on T1-weighted images after
treatment initiation and an increase (flare-up) of CE again at
tumor progression. T2 signal stays stable or increased. T2-diffuse
is characterized by a signal increase on T2-weighted images with
a poorly defined border despite the fact that CE on T1-weighted
images remains decreased. Hypointensity on T1-weighted
images is faint and disproportionally smaller than T2
hyperintensity. T2-circumscribed is characterized by a signal
increase on T2-weighted images with a bulky structure and sharp
borders that correspond to a T1 hypointense signal. CE on T1-
weighted images remains decreased, or only a few faintly
speckled CE lesions are visible.

Immunohistochemical Analyses
Immunohistochemical analyses were performed on 4-µm
sections of formalin-fixed, paraffin-embedded tissue from 18
tumors. Sections were stained with anti-FOXM1 antibody
(1:250, #ab207298, abcam), anti-hypoxia-inducible factor-1
alpha (HIF-1a) antibody (1:100, #ab82832, Dako), anti-nestin
antibody (1:1,000, MAB5326, Chemical), anti-carbonic
anhydrase 9 (CA9) antibody (1:1,000, #ab15086, abcam), and
anti-CD34 antibody (1:100, M7165, abcam). Antigen retrieval
was performed in 10 mM citrate buffer (pH 6.0) using an
autoclave for FOXM1, HIF-1a , and CD34 staining.
Immunohistochemical staining was assessed by three authors
(JT, NF, and TT) who were blinded to the clinical information,
and the results of consensus among these authors
were reported.

Immunohistochemical findings were assessed as previously
described (5, 25, 26). For FOXM1 quantitative evaluation, the
percentage of tumor nuclei reactive to FOXM1 antibody was
estimated following examination of a middle-power field (×200)
using the software Gunma labeling index (27). The expression of
nestin was assessed as a positive cell ratio analyzed in five high-
power fields (×400) and calculated as the mean value of [(positive
cells/positive cell + negative cell) × 100] from five areas. The
expression of HIF-1a was predominantly detected in the nuclei of
tumor cells around sites of necrosis and was also found in tumor
cells not directly adjacent to necrotic areas. The degree of
expression was assessed as follows: ++, expression in >10% of
tumor cells; +, expression in ≤10% of tumor cells; −, negative
staining. The membranous expression of CA9 was predominantly
found in perinecrotic tumor cells as previously reported (28). The
degree of expression was assessed as follows: ++, universal strong
expression around necrotic regions; +, occasional expression
(typically around necrotic regions); −, negative staining. For
quantitative evaluation of CD34+ vessels, the stained sections
were screened in a low-power field (×40), and five middle-
power fields (×200) with the most dense spots were assessed.
The mean MVD in these areas was determined using Fiji software
(version 2.0.0-re-69/1.52p) (29).
Statistical Analyses
Continuous data are described as the mean ± standard deviation,
median, and interquartile range, and categorical data as numbers
June 2022 | Volume 12 | Article 898614
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and percentages. The Mann–Whitney U test and Wilcoxon
signed rank test were used for comparison of continuous data
between two groups. Fisher’s exact test was used to determine if
non-random associations were present between two categorical
variables. All p-values were two-sided with the significance level
set to ≤0.05. Statistical analyses were performed with STATA 14
(Stata Corp. LP, College Station, TX, USA).
RESULTS

Description of the Present Cohort
The characteristics of the patients in the present study are
summarized in Table 1. Patients who were enrolled in the
present study consisted of eight men and one woman with a
mean age of 65.6 years (range, 50–78 years). Histological findings
revealed that all tumors were diagnosed as GBM, isocitrate
dehydrogenase (IDH)-wild type. Median tumor regression
rates after neoBev were 38% and 54% on T1Gd and FLAIR
magnetic resonance imaging (MRI), respectively. Median
progression-free survival (PFS) (the interval from initial Bev
administration to recurrence) was 9.8 months. Median overall
survival (OS) (the interval from initial Bev to death) was
16.6 months.
Illustrative Neuroimages After NeoBev
Patients receiving neoBev were selected according to MRI
findings that represented “typical” GBM including a ring-
enhanced tumor (Figures 1A, B) with perifocal edema
(Figures 1C, D). After a single dose of Bev (10 mg/kg), the
tumor and the perifocal edema regressed as shown by a
representative maximal (Figures 1E, F) and minimal response
(Figures 1G, H) 2 weeks after treatment.
Frontiers in Oncology | www.frontiersin.org 4
Typical Histological Findings of
“Pseudo-Papillary Structures” at the Time
of Recurrence After NeoBev
Demonstrating Colocalization of FOXM1,
Nestin, CA9, and HIF-1a Expression
Histological findings of initial tumors after neoBev
demonstrated that typical glomeruloid microvasculature was
seldom observed. Tumor cells predominantly accumulated
around the vessels (the so-called vascular co-option), and
CD34+ cel ls were observed along the vessel wal ls
(Figures 2A, B). The expression of CA9 was predominantly
found in perinecrotic tumor cells (Figure 2C), but the positive
expression of HIF-1a, nestin, and FOXM1 was widely
distributed (Figures 2F).

Round-shaped tumor cells clustered adjacent to the blood vessels
were further surrounded by spindle-shaped tumor cells
(Figures 2G, H). We defined these characteristic histological
findings as “pseudo-papillary” structures that were seen only in
recurrent tumors but not in initial tumors. On the whole sections,
these structures were observed in three out of nine recurrent
tumors (33%).

Spindle-shaped cells were CA9+, and HIF-1a was strongly
positive away from the blood vessels (Figures 2I, J). The distance
from the blood vessel to the CA9+ cells was approximately 150
mm (data not shown). Interestingly, we noted a discrepancy in
which the cells in the outer part of “pseudo-papillary” structures
were CA9+/HIF-1a+, whereas the cells in the inner part of the
structures were CA9−/HIF-1a+ (Figures 2I, J).

In the inner part of “pseudo-papillary” structures, nestin+
and FOXM1+ cells were clustered in round-shaped tumor cells
adjacent to the blood vessels (Figures 2K, L), suggesting that
proliferating GSCs adjacent to the microvasculature were
surrounded by hypoxic tumor cells in recurrent tumors at the
time of Bev failure.
TABLE 1 | Patient characteristics.

Total (n = 9)

No. of Patients (%)

Age (years) Mean 65.6
SD 10.8

Sex Women 1 11.1
Men 8 88.9

Neuroradiographic response after neoBev
T1Gd Median 38%

IQR 15-56
FLAIR Median 54%

IQR 27-63
Recurrence pattern Nonresponder 0 0

T2-circumscribed 2 22.2
T2-diffuse 2 22.2
cT1 flare-up 5 55.6

PFS (months) Mean 9.8
SD 4.6

OS (months) Mean 16.6
SD 5.1
June 2022 | Volume 12 | Article 89
FLAIR, fluid-attenuated inversion recovery; neoBev, neoadjuvant bevacizumab; OS, overall survival; PFS, progression-free survival; SD, standard deviation; T1Gd, T1-weighted image with
gadolinium enhancement.
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MVD was not different between tumors with and without
“pseudo-papillary” structures. However, the expression of
FOXM1, nestin, and hypoxic markers including CA9 and HIF-
1a tended to be higher in recurrent tumors with “pseudo-
papillary” structures (Figures 2M–Q).

Patient characteristics, neuroradiological response rate after
neoBev, recurrent pattern after Bev failure, and extent of
resection were compared between the presence and absence of
“pseudo-papillary” structures. The clinical outcome and clinical
parameters were not significantly different (Table 2).

Comparison of Tumor Vascularity
and Tumor Oxygenation Between Initial
Tumors After NeoBev and Recurrent
Tumors After NeoBev
To assess vascular density and stemness in accordance with tumor
oxygenation, the expression levels of FOXM1, nestin, CD34, CA9,
and HIF-1a were analyzed with immunohistochemistry using
paired samples from the same patients treated with neoBev
followed by surgery, RT, TMZ, and TMZ/Bev combined therapy,
and then salvage surgery or autopsy at the time of recurrence after
Bev (Figure 3).

FOXM1 tended to decrease at the time of recurrence
(Figure 3A), and nestin was found to be significantly decreased at
the time of recurrence (Figure 3B). MVD diminished during Bev
therapy, but the difference was not statistically significant
(Figure 3C). The expression of CA9 (++) was slightly higher in
Frontiers in Oncology | www.frontiersin.org 5
recurrent tumors compared with initial tumors, but HIF-1a
expression decreased in recurrent tumors (Figures 3D, E). To
determine whether or not these parameters have prognostic
significance, we investigated CD34, CA9, HIF-1a, nestin, and
FOXM1. We divided the current cohort into two groups
according to the median index score of those parameters in initial
specimens. FOXM1 low-expression tumors tended to occur in
patients with a better prognosis than FOXM1 high-expression
tumors (p = 0.053, log-rank test) (Figure 3F). Whereas other
parameters including expression levels of nestin (p = 0.89, log-
rank test) (Figure 3G), microvascular density as quantified by CD34
positivity (p = 0.43, log-rank test) (Figure 3H), qualitative reaction
of CA9 (p = 0.72, log-rank test) (Figure 3I), and qualitative reaction
of HIF-1a (p = 0.83, log-rank test) (Figure 3J) were not associated
with OS in the current cohort.

T1Gd-GR vs. T1Gd-PR in the
Tumor Microenvironment Including Tumor
Oxygenation, Stemness, and Tumor
Vascularity
To analyze the correlation between the TME assessed with
immunohistochemistry and responsiveness to neoBev assessed
with T1Gd and FLAIR, the expression of FOXM1, nestin, CD34,
CA9, and HIF-1a was compared between GR and PR
after neoBev.

We divided this cohort into two groups according to the
imaging neoadjuvant therapy response rate. Thus, T1Gd good
A C DB

E G HF

FIGURE 1 | “Typical” GBM demonstrating a huge enhanced tumor with perifocal edema before (A–D) and after (E–H) neoBev. Regression rates of T1Gd-GR (A, E),
T1Gd-PR (C, G), FLAIR-GR (B, F), and FLAIR-PR (D, H) after neoBev were −61%, −14%, −71%, and −26%, respectively. FLAIR, fluid-attenuated inversion
recovery; GBM, glioblastoma; GR, good rensponder; PR, poor responder; T1Gd, T1-weighted images with gadolinium enhancement.
June 2022 | Volume 12 | Article 898614
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FIGURE 2 | Histological finding of initial tumors revealing that tumor cells predominantly accumulated around the vessels (so-called vascular co-option). Hematoxylin
and eosin staining (A) and CD34 (B), CA9 (C), HIF-1a (D), nestin (E), and FOXM1 expression (F). Photomicrograph of immunohistochemistry (×200) (bar = 100 mm).
Note that CA9 expression was found in the perinecrotic tumor cells, and the expression of HIF-1a, nestin, and FOXM1 was widely distributed. Typical histological
findings of “pseudo-papillary” structures resembling “vascular co-option” in recurrent tumors. Hematoxylin and eosin staining (G) and CD34 (H), CA9 (I), HIF-1a (J),
nestin (K), and FOXM1 expression (L). Photomicrograph of immunohistochemistry (×200; bar = 100 mm); (×400; bar = 100 mm). Note that colocalization of FOXM1-
and HIF-1a-positive cells was prominent in the perivascular area. Comparison of expression of FOXM1, MVD, and tumor oxygenation between the presence and
absence of “pseudo-papillary” structures. FOXM1 (M), nestin (N), MVD (O), CA9 (P), and HIF-1a expression (Q). Error bar; standard deviation. CA9, carbonic
anhydrase 9; FOXM1, Forkhead box M1; HIF-1a, hypoxia inducible factor-1 alpha; MVD, microvessel density.
Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 8986146
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responders (T1Gd-GRs) and T1Gd poor responders (T1Gd-PRs)
were defined as having a response rate of ≥35% and
<35%, respectively.

Regarding stemness, FOXM1 in recurrent tumors was
significantly decreased in T1Gd-GRs, whereas no significant
difference was found in T1Gd-PRs (Figure 4A). Nestin
expression in recurrent tumors tended to be decreased in both
T1Gd-GRs and PRs (Figure 4B). MVD showed no significant
difference between T1Gd-GRs and T1Gd-PRs (Figure 4C).

Regarding the hypoxic TME, comparing initial tumors, the
expression of CA9 and HIF-1a was higher in T1Gd-PRs, and
tumor oxygenation was frequently observed in T1Gd-GRs,
although no significant difference was found between the two
groups (Figures 4D, E). Thus, these results suggested that the
responsiveness to neoBev determined on T1Gd may reflect
tumor oxygenation.

FLAIR-GR vs. FLAIR-PR in the Tumor
Microenvironment Including Tumor
Oxygenation, Stemness, and
Tumor Vascularity
FLAIR good responders (FLAIR-GRs) and FLAIR poor
responders (FLAIR-PRs) were defined as having a response
rate of ≥50% and <50%, respectively. No significant difference
in FOXM1 or nestin expression was found between FLAIR-GRs
and FLAIR-PRs in the initial tumors. However, the expression of
both FOXM1 and nestin significantly decreased in FLAIR-GRs at
the time of recurrence (Figures 5A, B). MVD showed no
Frontiers in Oncology | www.frontiersin.org 7
significant difference between FLAIR-GR and FLAIR-
PR (Figure 5C).

Regarding the hypoxic TME, CA9 and HIF-1a expression
tended to decrease in FLAIR-PRs compared with that in FLAIR-
GRs in both initial and recurrent tumors (Figures 5D, E). No
significant difference was found between groups. Thus,
neuroradiographic response on T1Gd and FLAIR to neoBev
may illustrate opposite changes in both CA9 and HIF-
1a expressions.

Recurrence Pattern in Tumor Oxygenation,
Stemness, and Immunological Tumor
Microenvironment
To analyze the correlation between the TME assessed with
immunohistochemistry and the recurrence pattern after Bev
therapy as previously described (24), the expression of
FOXM1, nestin, CD34, CA9, and HIF-1a was compared
between “T1 flare-up” and “T2-circumscribed/T2-diffuse”
patterns. FOXM1 expression tended to decrease in the “T2-
circumscribed/T2-diffuse” pattern at the time of recurrence
(Figure 6A). Nestin expression was reduced at recurrence in
both patterns, but this reduction was not statistically
significant (Figure 6B).

MVD was not significantly different between the two
groups (Figure 6C).

Regarding the hypoxic TME, CA9 and HIF-1a expression
decreased in the “T2-circumscribed/T2-diffuse” pattern
compared with that in the “T1 flare-up” pattern in recurrent
TABLE 2 | Comparison of clinical characteristics between positive and negative “pseudo-papillary” structures.

Pseudo-papillary structures

Positive (n = 3) Negative (n = 6) p value
No. of Patients (%) No. of Patients (%)

Age (years) Mean 57.7 69.5 0.121*
SD 10.8 9.2

Sex Women 0.0 0.0 1 16.7 1.000†
Men 3.0 100.0 5 83.3

Neuroradiographic response after neoBev
T1Gd Mean 12.7% 41.7% 0.302*

SD 37.8 23.1
FLAIR Mean 47.3% 46.7% 0.796*

SD 20.8 20.2
Surgical removal Total 2 66.7 4 66.7 1.000†

Not total 1 33.3 2 33.3
Recurrence pattern Not described 0 0 0 0.0 0.762†

T2-circumscribed 0 0 2 33.3
T2-diffuse 0 0 2 33.3
cT1 flare-up 3 100 2 33.3

PFS (months) Mean 8.7 10.4 0.663‡
SD 1.5 5.6

OS (months) Mean 15.7 17.1 0.927‡
SD 5.1 5.8

FOXM1 index score at the time of recurrence
Mean 21.2 10.3 0.197*
SD 10.3 8.4
June 2022 | Volu
me 12 | Article
*Mann–Whitney U test.
†Fisher’s exact test.
‡Log-rank test.
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FIGURE 3 | Comparison of expression of FOXM1, tumor vascularity, and tumor oxygenation between initial tumors after neoBev and recurrent tumors after neoBev.
FOXM1 (A), nestin (B), MVD (C), CA9 (D), and HIF-1a expression (E). Error bar; standard deviation. Kaplan–Meier survival curves showing overall survival stratified
by labeling index of FOXM1 expression (p = 0.053, log-rank test) (F), labeling index of nestin expression (p = 0.89, log-rank test) (G), microvascular density (p = 0.43,
log-rank test) (H), qualitative reaction of CA9 expression (p = 0.72, log-rank test) (I), and qualitative reaction of HIF-1a expression (p = 0.83, log-rank test) (J). CA9,
carbonic anhydrase 9; FOXM1, Forkhead box M1; HIF-1a, hypoxia inducible factor-1 alpha; MVD, microvessel density; neoBev, neoadjuvant bevacizumab.
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tumors (Figures 6D, E). HIF-1a expression in particular
significantly indicated oxygenation (p = 0.024, Fisher’s exact
test). Thus, the recurrence pattern after Bev therapy may be
correlated with tumor oxygenation after multidisciplinary
treatment of GBM including Bev.
DISCUSSION

Histological Assessment and
Bevacizumab Responsiveness
Our previous reports described histological findings of GBM
with resistance to Bev (refractory-Bev) because Bev is usually
administered to patients with recurrent GBM (3, 26). Over the
Frontiers in Oncology | www.frontiersin.org 9
past decade, the measurement of tumor vascularity with MVD
has been suggested to provide histological assessment, be
correlated with the invasiveness of cancer, and provide
prognostic information (30). In addition, histological
assessment of both tumor oxygenation and angiogenesis may
be useful for the assessment of the effectiveness of antiangiogenic
therapy such as Bev. However, in the present study, no
relationship between hypoxia and MVD was found, as
previously described (31). More reliable histological parameters
are required.

Vascular co-option has received particular attention as a
major mechanism of resistance to antiangiogenic treatment
(32–34). Vascular co-option is a mechanism by which tumors
incorporate the existing vessels of the host organs, preserving the
A B

C

E

D

FIGURE 4 | T1Gd-GRs vs. T1Gd-PRs in tumor oxygenation, stemness, and immunological TME. FOXM1 (A), nestin (B), MVD (C), CA9 (D), and HIF-1a expression
(E). Error bar; standard deviation. CA9, carbonic anhydrase 9; FOXM1, Forkhead box M1; GR, good rensponder; HIF-1a, hypoxia inducible factor-1 alpha; MVD,
microvessel density; PR, poor responder; TME, tumor microenvironment; T1Gd, T1-weighted images with gadolinium enhancement.
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vascular scaffold of the surrounding tissue. Vascular co-option
may be an adaptive mechanism that enables tumors to survive
and progress when angiogenesis is inhibited. In the present
study, “pseudo-papillary” structures containing nestin
+/FOXM1+ cells in the perivascular niche and CA9/HIF-1a
positivity in the area surrounding stem cell accumulation
resembled co-opted tumor vessels and were observed in
refractory-Bev (Figure 2). Recurrent GBM may exploit
vascular co-option as a strategy to escape anti-VEGF
treatment. Optimization of anticancer therapy should consider
the importance of hypoxia as a master driver of tumor
angiogenesis and immunoregulatory response.

In the present study, we found that “pseudo-papillary”
structures were only present in recurrent tumors. Because they
Frontiers in Oncology | www.frontiersin.org 10
are not found in initial tumors after neoBev, this phenomenon
may be the result of long-term anti-VEGF therapy. A peculiar
point regarding “pseudo-papillary” structures is the discrepancy
in the expression pattern between CA9 and HIF-1a and nestin
+/FOXM1+ cells revealed by immunohistochemical staining.
The outer cells were CA9+/HIF-1a+/nestin−/FOXM1−, and
the inner cells were CA9−/HIF-1a+/nestin+/FOXM1+. The
discrepancy between CA9 and HIF-1a expression has been
reported by Kaluz et al. (35) and reproduced in vivo. HIF-1a
expression is induced not only in hypoxic conditions but also for
various reasons, especially in RAS and phosphoinositol-3 kinase
(PI3K) hyperactivation (35). Furthermore, nestin+ GSCs located
in the perivascular niche adjacent to the blood vessels may
survive via PI3K pathway hyperactivation after RT (36).
A B

C

E

D

FIGURE 5 | FLAIR-GRs vs. FLAIR-PRs in tumor oxygenation, stemness, and immunological TME. FOXM1 (A), nestin (B), MVD (C), CA9 (D), and HIF-1a expression
(E). Error bar; standard deviation. CA9, carbonic anhydrase 9; FLAIR, fluid-attenuated inversion recovery; FOXM1, Forkhead box M1; GR, good rensponder; HIF-1a,
hypoxia inducible factor-1 alpha; MVD, microvessel density; PR, poor responder; TME, tumor microenvironment.
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In addition, the distance of more than 150 mm of cells from
the blood vessels indicates that the cells are in a hypoxic TME
(37–39). The present study demonstrated that CA9+ cells were
present at 150 mm from the blood vessels in the “pseudo-
papillary” structures, which is in agreement with a previous
theory. CA9 is also induced by downregulation of tumor
suppressor genes such as p53 and PTEN, induction of
oncogenic pathways including PI3K, and other environmental
conditions including acidosis and glucose deprivation (35).
These findings suggest that the inner cells of “pseudo-
papillary” structures may consist of nestin+ GSCs with
enhanced PI3K activity in a hypoxic environment as evidenced
by high expression of HIF-1a. In other words, “pseudo-
papillary” structures may reflect a mechanism of resistance of
Frontiers in Oncology | www.frontiersin.org 11
tumor cells to anti-VEGF therapy by producing a favorable TME
for GSCs.

FOXM1 as a Potential Biomarker
for Survival
In the present study, we investigated FOXM1 and nestin
expression and found that changes in the expression of both
were similar during Bev therapy. FOXM1 is involved in
tumorigenesis and transformation of normal astrocytes, reflects
the histological malignancy of glioma, and is proposed to be a
surrogate marker for OS (20, 22). Interestingly, FOXM1 also
binds the VEGF promoter and contributes to the angiogenesis
and growth of GSCs in GBM by upregulation of VEGF (21).
Thus, FOXM1 may be a marker for GSCs with growth potential
A B

C

E

D

FIGURE 6 | Recurrence pattern on MRI after Bev therapy; “cT1 flare-up” vs. “T2-diffuse/T2-circumscribed” in tumor oxygenation, stemness, and immunological
TME. Recurrent GBM after Bev therapy in cT1 flare-up and T2-diffuse GBM. FOXM1 (A), nestin (B), MVD (C), CA9 (D), and HIF-1a expression (E). Error bar;
standard deviation. Bev, bevacizumab; CA9, carbonic anhydrase 9; FOXM1, Forkhead box M1; GBM, glioblastoma; HIF-1a, hypoxia inducible factor-1 alpha; MRI,
magnetic resonance imaging; MVD, microvessel density; TME, tumor microenvironment.
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and a prediction biomarker for survival and may thus be useful
for optimizing VEGF-targeted antiangiogenic therapy including
neoBev in newly diagnosed GBM.

To verify this hypothesis, the present cohort was restricted to
preoperative and recurrent GBM after neoBev in the same
patients. The cohort was divided into high and low levels of
FOXM1 in initial samples to compare OS. Patients in the group
with lower expression of FOXM1 after neoBev tended to show
better OS than those with higher expression of FOXM1,
suggesting that FOXM1 as a marker of proliferating GSCs may
be a predictive factor for long-term survival during Bev therapy
for newly diagnosed GBM. No previous studies have investigated
this point.

An additional interesting finding about FOXM1 in the
present study was that FOXM1 expression tended to decrease
in recurrent samples and was significantly decreased in T1Gd-
GRs and FLAIR-GRs. This finding is contrary to that of Zhang
et al. (22) who found that FOXM1 expression is upregulated in
recurrent GBM samples. This inconsistency may be due to the
presence or absence of anti-VEGF therapy. The previous study
by Zhang et al. (22) included 38 pairs of primary and recurrent
GBM tumor samples, and all 38 patients received concomitant
RT and TMZ after surgery. The present study included nine
patients who received neoBev, followed by TMZ plus RT after
surgery, and then subsequent Bev. Hence, anti-VEGF therapy for
GBM may inhibit FOXM1 expression for a long period of time
up to the point of recurrence, or recurrent GBM may be able to
proliferate without FOXM1 upregulation during anti-VEGF
therapy. Further investigation is needed to address this question.

Neuroimaging and Bevacizumab
Responsiveness
With regard to the therapeutic response to Bev assessed with
neuroimaging, the type of radiological progression after Bev
therapy and its relationship to PFS and OS were investigated.
Newly diagnosed GBM responded to Bev therapy, but the
therapeutic effects are usually transient. GBM progression
during Bev therapy can exhibit non-enhancing T2-weighted
image/FLAIR-bright growth with invasion or restricted
enhancement with contrast medium. The difference between
non-enhancing and enhancing lesions after Bev therapy in
terms of PFS and OS is controversial (40, 41). Whether
favorable and poor responsiveness during Bev therapy
determines the clinical outcome is still controversial. Previous
studies in the cohort of newly diagnosed and recurrent GBM
concluded that complete resolution of CE during treatment is a
favorable factor for the clinical outcome (40, 42).

In contrast, Ellingson et al. (43) insisted that objective
response rates are not clinically meaningful in newly diagnosed
GBM and suggested that a measure of early PFS or treatment
failure rates during the maintenance phase may be extremely
useful for predicting the long-term outcome. Despite this
observation, a survival difference in patients with growing vs.
shrinking tumors was not maintained, suggesting that this may
not be the most sensitive method for evaluating efficacy and
predicting OS in newly diagnosed GBM (43). The mechanism of
Frontiers in Oncology | www.frontiersin.org 12
sustaining tumor dormancy is probably related to the TME and
is an important issue to be investigated. Understanding the
mechanism of sustaining tumor dormancy by comparing
histological or molecular features between the effective and
refractory phase during Bev therapy may be useful. Volumetric
analyses as described above investigated newly diagnosed and
recurrent GBM in different therapeutic situations of Bev
combined with surgical resection followed by RT and TMZ. To
the best of our knowledge, the present study is the first report to
include an exploratory volumetric analysis during Bev treatment
alone in newly diagnosed GBM.

One of the most important issues for comprehending the
mechanism of Bev effectiveness and resistance is the variable
TME from hypoxic and normoxic conditions with reversible
alterations. Tumor oxygenation in relation to Bev effectiveness
was demonstrated by neuroimaging using a representative
hypoxia positron emission tomography (PET) tracer, 18F-
fluoromisonidazole (FMISO) PET. According to a previous
investigation regarding the association between FMISO PET
findings and Bev treatment for high-grade glioma, recurrent
gliomas with decreasing FMISO accumulation after short-term
Bev application derive a survival benefit from Bev therapy (44).
In addition, a correlation was found between FMISO uptake and
HIF-1a/VEGF expression detected with immunohistochemistry
in newly diagnosed GBM (45). These results suggested that
tumor oxygenation was maintained during Bev effectiveness as
evidenced by histological findings with support of neuroimaging.

In the present study, the difference in stemness and
oxygenation during effectiveness and refractoriness was
demonstrated with immunohistochemistry. In addition,
responsiveness to neoBev was also represented by
neuroradiological findings including T1Gd. A comparison of
stemness/oxygenation of the TME assessed with FMISO PET
and immunohistochemistry between the Bev-effective and Bev-
refractory periods is of great interest.

A hypoxic TME causes resistance to Bev due to stem cell
accumulation (46). We previously reported that Bev-effective
GBM exhibits reduced hypoxia along with reduced infiltration of
GSCs compared with naive-Bev GBM (3). Very few reports have
demonstrated that tumor oxygenation is maintained during Bev
effect iveness in GBM by histological analysis with
molecular profiling.

We investigated the expression levels of hypoxic markers (CA9
and HIF-1a) and a GSC marker (nestin) using GBM samples
obtained from three different settings including tumors before Bev
therapy (naive-Bev), tumors resected following neoBev (effective-
Bev), and recurrent tumors following Bev therapy (refractory-Bev)
(3). Recurrent tumors after neoBev were not included in those
studies. The clinical outcome following neoBev and the impact of a
change in response on OS assessed with neuroradiological findings
and the TME, including oxygenation and stemness with
immunohistochemical analysis, has not been previously
investigated. Thus, to confirm whether a change in the TME
determines disease control during Bev therapy, paired samples
between effective-Bev and refractory-Bev were compared using
neuroradiological and histological analyses.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Takei et al. Neoadjuvant Bevacizumab in Glioblastoma
Recurrent Pattern and Change in the
Tumor Microenvironment After
Bevacizumab Failure
Regarding molecular features when the tumor recurred during
Bev therapy, DeLay et al. (41) showed that non-enhancing Bev-
resistant GBM and enhancing Bev-resistant GBMhave different
molecular features and that the TME including vessel density
and hypoxia is also different. Compared with paired samples
before Bev therapy, non-enhancing Bev-resistant GBM
exhibited reduced vessel density and increased hypoxia as
evidenced by increased CA9 and HIF-1a staining. In contrast,
enhancing Bev-resistant and naive-Bev GBM exhibited
unchanged vessel density and hypoxia. Interestingly, VEGF/
VEGF receptor expression was not altered in pre-Bev compared
to post-Bev therapy tumors in their series. However, invasion
molecules including integrin b1 were elevated in non-
enhancing Bev-resistant GBM, indicating that neuroimaging
reflects molecular profiling (41). In the present study, CA9 and
HIF-1a expression decreased in the “T2-circumscribed/T2-
diffuse” pattern compared with the “T1 flare-up” pattern in
recurrent tumors (Figure 6). This result seemed to be
inconsistent with the previous study by DeLay et al. (41), but
the background was different in two ways. First, the present
study focused on paired comparisons of GBM during
effectiveness (effective-Bev) and refractoriness of Bev
(refractory-Bev), whereas DeLay et al. (41) described naive-
Bev and refractory-Bev. Second, the current study followed the
definition of the recurrence pattern as described by Nowosielski
et al. (24), whereas DeLay et al. (41) used the percentage of
FLAIR-bright volume exhibiting T1Gd enhancement.
Therefore, our results suggested that the growth potential was
preserved in recurrent GBM with the “T2-circumscribed/T2-
diffuse” pattern in the absence of severe hypoxia at the time
of recurrence.

Mechanism of Duration of Bevacizumab
Effectiveness in Light of Metabolic
Adaptation
According to a previous report (47), mutant epidermal growth
factor receptor variant III (EGFR vIII) mutation and EGFR
overexpression glioma cells impaired physiological adaptation to
starvation and rendered cells sensitive to hypoxia-induced cell
death. Theoretically, the activation of EGFR enhances
vulnerability to hypoxia-inducing therapies via a decrease in
Nicotinamide adenine dinucleotide phosphate (NAPDH) levels.
Therefore, we should consider the possibility of the biological
behavior of tumor cells related to their metabolism adaptation
during Bev therapy.

As we indicated in the current and previous papers, Bev could
change from normoxic during its effectiveness to hypoxic TME
after its failure (3). The duration of Bev effectiveness might be
associated with the status of EGFR overexpression or EGFR vIII
mutation in GBM probably due to the impact of Bev on
metabolism adaptation (48). To address these issues, further
investigation is needed.
Frontiers in Oncology | www.frontiersin.org 13
Limitations
The present study using infrequently available clinical specimens
has some limitations. The first limitation is the paucity of the
number of paired samples from the same patients due to the
extreme rarity of salvage surgery or autopsy for recurrent GBM
after the failure of RT and TMZ with Bev. The second limitation is
that the influence of RT and TMZ combined with Bev was not
considered. The third limitation is that the present study evaluated
surgically resectable large enhanced tumors with expanding
perifocal edema as seen with neuroimaging, which adds bias.

The fourth limitation is that an initial favorable
neuroradiographic response to neoBev on a FLAIR image does
not always reflect prolonged PFS and OS, thus initial
neuroradiological responsiveness after Bev therapy could not
reflect a clinical benefit of Bev, especially for newly diagnosed
GBM. Based on the present study, FOXM1 seemed to be a
predictive prognostic biomarker, but it was not verified whether
the expression level of this biomarker should determine the
duration of Bev effectiveness and advantage of neoBev. Further
investigation would be needed to solve this clinical question.

In summary, whether a visible favorable response on
neuroimaging following Bev therapy predicts the clinical
outcome is uncertain. However, this is the first report
regarding an investigation of neuroradiographic response to
neoBev associated with hypoxic and stem cell markers as
evidenced by immunohistochemistry. Based on results in the
present study demonstrating that Bev produced an oxygenated
TME in addition to stemness inhibition, combination therapy
with Bev and immunotherapy may contribute to improvements
in the currently dismal clinical outcome of GBM.
CONCLUSION

“Pseudo-papillary” structures were seen in recurrent GBM after
anti-VEGF therapy. An interesting discrepancy in CA9 and HIF-
1a expression in these “pseudo-papillary” structures was
observed. A neuroradiographic response after neoBev may
reflect the status of the TME including stemness and
oxygenation. Bev may produce tumor oxygenation, leading to
suppression of proliferation of GSCs. Results in the present study
suggested that FOXM1 plays a potential role as a biomarker of
survival during anti-VEGF therapy.
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