AUTHOR=Li Jun , Zhang Xile , Pan Yuxi , Zhuang Hongqing , Yang Ruijie TITLE=Comparison of Ray Tracing and Monte Carlo Calculation Algorithms for Spine Lesions Treated With CyberKnife JOURNAL=Frontiers in Oncology VOLUME=12 YEAR=2022 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.898175 DOI=10.3389/fonc.2022.898175 ISSN=2234-943X ABSTRACT=Purpose

This study attempts to evaluate Ray Tracing (RT) and Monte Carlo (MC) algorithms for CyberKnife treatments of spine lesions and determine whether the MC algorithm is necessary for all spine treatment and compare the RT algorithm and MC algorithm at various spine lesion sites.

Methods

The CyberKnife is used for stereotactic body radiotherapy for lesions in the cervical spine (30), thoracic spine (50), lumbar spine (30), and sacral spine (15). Dose was calculated using RT and MC algorithms for patients planned with the same beam angles and monitor units. Dose-volume histograms of the target and selected critical structures are evaluated.

Results

The average target coverage of prescribed dose with MC algorithms was 94.80%, 88.47%, 92.52%, and 93.41%, respectively, in cervical, thoracic, lumbar, and sacral spine. For the thoracic spine, the RT algorithm significantly overestimates the percentage volume of the target covered by the prescribed dose, as well as overestimates doses to organs at risk in most cases, including lung, spinal cord, and esophagus. For cervical, lumbar, and sacral spine, the differences of the target coverage of prescription dose were generally less than 3% between the RT and MC algorithms. The differences of doses to organs at risk varied with lesion sites and surrounding organs.

Conclusions

In the thoracic spine lesions with beams through air cavities, RT algorithm should be limited and verified with MC algorithm, but the RT algorithm is adequate for treatment of cervical, lumbar, and sacral spine lesions without or with a small amount of beams passing through the lungs.