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by PET-based intratumor
heterogeneity in children with
high-risk neuroblastoma
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1Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University
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Shanghai Jiao Tong University School of Medicine, Shanghai, China
Purpose: The substratification of high-risk neuroblastoma is challenging, and

new predictive imaging biomarkers are warranted for better patient selection.

The aim of the study was to evaluate the prognostic role of PET-based

intratumor heterogeneity and its potential ability to improve risk stratification

in neuroblastoma.

Methods: Pretreatment 18F-FDG PET/CT scans from 112 consecutive children

with newly diagnosed neuroblastoma were retrospectively analyzed. The

primary tumor was segmented in the PET images. SUVs, volumetric

parameters including metabolic tumor volume (MTV) and total lesion

glycolysis (TLG), and texture features were extracted. After the exclusion of

imaging features with poor and moderate reproducibility, the relationships

between the imaging indices and clinicopathological factors, as well as event-

free survival (EFS), were assessed.

Results: The median follow-up duration was 33 months. Multivariate analysis

showed that PET-based intratumor heterogeneity outperformed

clinicopathological features, including age, stage, and MYCN, and remained

the most robust independent predictor for EFS [training set, hazard ratio (HR):

6.4, 95% CI: 3.1–13.2, p < 0.001; test set, HR: 5.0, 95% CI: 1.8–13.6, p = 0.002].

Within the clinical high-risk group, patients with a high metabolic

heterogeneity showed significantly poorer outcomes (HR: 3.3, 95% CI: 1.6–

6.8, p = 0.002 in the training set; HR: 4.4, 95% CI: 1.5–12.9, p = 0.008 in the test

set) compared to those with relatively homogeneous tumors. Furthermore,

intratumor heterogeneity outran the volumetric indices (MTVs and TLGs) and

yielded the best performance of distinguishing high-risk patients with different

outcomes with a 3-year EFS of 6% vs. 47% (p = 0.001) in the training set and 9%

vs. 51% (p = 0.004) in the test set.

Conclusion: PET-based intratumor heterogeneity was a strong independent

prognostic factor in neuroblastoma. In the clinical high-risk group, intratumor

heterogeneity further stratified patients with distinct outcomes.
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Introduction

Neuroblastoma is the most common extracranial solid tumor

in children and is remarkable for its heterogeneity (1). Risk

stratification using a combination of clinical and biological

factors, such as age at diagnosis, stage, histology, and MYCN

status, is of paramount importance to effectively inform

therapeutic approaches. At the time of presentation, about 60%

of children are classified as high risk (2). The incorporation of

intensive multimodality therapy has increased the 5-year survival

for high-risk neuroblastoma from less than 20% to ~50% (3).

However, a notable subset of patients do not respond to induction

therapy and have a dismal outcome, with a long-term survival of

less than 15% (4). The improved outcome for the survivors has

come at a cost of significant early or long-term toxicity. The early

identification of these different subsets of patients may facilitate a

more precisely tailored treatment, which remains an important

unmet need.

Intratumor heterogeneity, resulting from subclonal genetic

diversity within a tumor, manifests in spatial variation in stromal

architecture and consumption of oxygen and glucose (5). It has

been associated with poor prognosis and predisposes patients to

inferior response to anticancer therapies (6). Medical images can

depict the spatial heterogeneity in individual tumors

andquantify the overall functional characteristics. Various

approaches for the assessment of intratumor heterogeneity in

PET images have been investigated, including simple visual

analysis, histogram quantifying voxel distributions, and texture

features quantifying spatial complexity (7, 8). A growing body of

evidence suggests that PET-based intratumor heterogeneity

might have predictive or prognostic value in various

malignancies (9, 10).
123I-meta-iodobenzylguanidine (mIBG) scan has been the

main imaging modality for neuroblastoma. For high-risk

diseases, however, the limited prognostic value of pretreatment

mIBG score was reported (11, 12). On the other hand, 18F-FDG

PET/CT is increasingly used in neuroblastoma, particularly in

tumors not taking up mIBG. SUVmax has been reported to

correlate with MYCN amplification (13) and may serve as a

prognostic biomarker in neuroblastoma (14, 15). Volumetric

parameters derived from 18F-FDG PET, including metabolic

tumor volume (MTV) and total lesion glycolysis (TLG), were

previously reported as significant prognostic factors in
02
neuroblastoma (16). To date, there is limited evidence

regarding the role of intratumor metabolic heterogeneity

in neuroblastoma.

Our key objectives were to investigate the prognostic role of

PET-based intratumor heterogeneity and whether it could be

used to further risk-stratify neuroblastoma.
Materials and methods

Patients

This study included 129 consecutive pediatric patients with

histologically proven neuroblastoma between October 2011 and

September 2020. The inclusion criteria were as follows: 1) newly

diagnosed neuroblastoma with no previous anticancer

treatment, 2) underwent baseline 18F-FDG PET/CT scan, 3)

not accompanied by other malignancies, and 4) at least

6 months of follow-up. Patients were excluded if they had

primary intracranial neuroblastoma, ganglioneuroma, no

predominant primary tumor site, refused treatment, or had

received chemotherapy before the PET scan (Figure 1).

Clinicopathological prognostic indices, such as age, stage, risk

stratification, MYCN, lactate dehydrogenase (LDH), and

ferritin, were collected. This retrospective study was approved

by the institutional review board, and the requirement for

informed consent was waived.
PET/CT imaging

18F-FDG was administered at a dose of 5.18 MBq/kg after at

least 4–6 h of fasting. PET/CT scans from the skull to the

proximal thigh were acquired about 60 min after injection

using a Biograph mCT-64 scanner (Siemens). When

metastasis was suspected to involve the extremities, imaging

from the vertex to the toes including the arms was performed.

Chloral hydrate sedation (50 mg/kg) was used 30 min before

scanning for children unable to follow instructions. PET images

were reconstructed using 3D ordered subset expectation

maximization (3 iterations, 24 subsets). CT scans were

acquired with 100-kV tube voltage, automated tube current

modulation, 3-mm slice thickness, and a pitch of 1.5.
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Imaging segmentation
and feature extraction

Segmentation and feature extraction were performed using the

LIFEx software (Version 6.31, http://www.lifexsoft.org). To

investigate the voxel relationships inside the entire tumor,

volumes of interest (VOIs) covering the whole primary tumor

were delineated manually in PET images by a nuclear medicine

physician with more than 11 years of PET/CT experience without

knowledge of clinical information. In some cases, the primary

tumor fused with the metastatic lesions and was delineated with

reference to recent contrast-enhanced CT or MRI images. As PET

has relatively large voxels compared with CT and MRI, each VOI

must contain at least 64 contiguous voxels according to the LIFEx

user guide. Two patients were excluded due to small voxels. Imaging

indices were computed after a resampling step using 64 bins (size

bin of 0.3) without spatial resampling. MTV and TLG with a

threshold of 41% of SUVmax (MTV41%, TLG41%), which has

been reported to correspond best with the actual dimensions of the

tumor for tumor boundary delineation (17), were extracted from

the same VOIs.
Clinical endpoints and risk stratification

Event-free survival (EFS) was calculated as the time from the

start date of cancer treatment to the date of relapse, progression,

or death from any cause. All the patients received risk-adapted
Frontiers in Oncology 03
treatment according to the Chinese Children Cancer Group-NB-

2009/2014. The risk categorization schema was consistent with

the Children’s Oncology Group protocol (2). Briefly, patients

were classified into low-, intermediate-, and high-risk categories

based on age, stage, and other histopathological factors. High-

risk disease was defined as ≥18 months of age and either

disseminated disease or localized disease with unfavorable

markers, such as MYCN amplification.
Statistical analysis

To determine robust features, half of the patients were

selected randomly and segmented independently by another

nuclear medicine physician with 6 years of PET/CT

experience. We evaluated the reproducibility of features using

a two-way random, absolute agreement intraclass correlation

coefficient (ICC). Using the lower bounds of the 95% confidence

interval (CI) of the ICC value (ICClb95%) (18), the reproducibility

of each feature was categorized as follows: poor, ICClb95% <0.50;

moderate, ICClb95% of 0.50–0.75; good, ICClb95% of 0.75–0.90;

and excellent, ICClb95% ≥0.90. Robust features with good or

excellent reproducibility were qualified for further analysis.

The Mann–Whitney U test and chi-squared test were used for

comparing variables between groups. The Benjamini–Hochberg

stepwise method was performed to control the false discovery rate

and adjusted p-values were calculated. Correlations among the

parameters were determined by the Pearson and Spearman rank
FIGURE 1

Flowchart shows study population selection, with exclusion criteria.
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correlation. To avoid redundancy, factors with poorer predictive

validity in the pairs of indices that showed correlation coefficient

(r) ≥0.8 were omitted (19, 20). Logistic regression analyses with

forward selection were performed to evaluate the relationship

between imaging indices and MYCN amplification. Then, the

entire cohort was randomly split into a training set (n = 77) and

a test set (n = 35). Prognostic factors were identified by univariate

and multivariable Cox regression analyses in the training set and

then validated in the test set. Receiver-operating characteristic

curve (ROC) analyses and the Youden index were used to

determine the optimal cutoff values. Survival estimates were

evaluated by the Kaplan–Meier analysis and log-rank test. All

statistical analyses were performed using SPSS 25.0 (IBM, Chicago,

IL, USA), except that the adjusted p-values were obtained on R

software (Version 4.0.3, http://www.r-project.org/). A two-sided p-

value <0.05 was considered statistically significant.
Frontiers in Oncology 04
Results

Patient characteristics

As a result, a total of 112 children were identified. The

patient characteristics are summarized in Table 1. There were 39

girls (median age 34 months, range 1–153 months) and 73 boys

(median age 36 months, range 2–150 months). Ninety patients

had neuroblastoma and 22 had ganglioneuroblastoma (GNB).

Most of them presented disseminated disease (2 with stage 4S, 79

with stage 4). With a median follow-up of 33 months, 51 disease

relapse/progression and 34 deaths occurred. The 3-year EFS rate

was 47%.

All the patients had an FDG-avid primary tumor with amedian

SUVmax of 5.8 (range 1.6–26.5). Seven tumors had SUVmax lower

than 2.5 (1.6–2.4), all of which were higher than the liver
TABLE 1 Patient characteristics.

Characteristics Total (n = 112) Training set (n = 77) Test set (n = 35) p-value
No. (%) No. (%) No. (%)

Median age (months) 37 ± 26 37 ± 28 37 ± 22 0.615

≥18 months 84 (75%) 58 (75%) 26 (74%) 0.906

Sex 0.438

Female 39 (35%) 25 (32%) 14 (40%)

Male 73 (65%) 52 (68%) 21 (60%)

Pathology 0.081

GNB intermixed/well-differentiated 16 (14%) 8 (10%) 8 (23%)

GNB nodular, neuroblastoma 96 (86%) 69 (90%) 27 (77%)

MYCN (n = 90) 0.320

Non-amplified 70 (78%) 48/64 (75%) 22/26 (85%)

Amplified 20 (22%) 16/64 (25%) 4/26 (15%)

Location 0.352

Abdominal and pelvic 92 (82%) 65 (84%) 27 (77%)

Others 20 (18%) 12 (16%) 8 (23%)

Stage 0.889

1, 2, 3, 4S 33 (29%) 23 (30%) 10 (29%)

4 79 (71%) 54 (70%) 25 (71%)

Risk stratification 0.910

Low 7 (6%) 5 (6%) 2 (6%)

Intermediate 26 (23%) 17 (22%) 9 (26%)

High 79 (71%) 55 (71%) 24 (69%)

Laboratory tests

Ferritin ≥92 ng/mla 63/96 (66%) 45/64 (70%) 18/32 (56%) 0.171

LDH ≥587 U/La 51/100 (51%) 36/66 (55%) 15/34 (44%) 0.323

Metabolic parameters

SUVmax 6.3 ± 3.5 6.1 ± 3.2 6.7 ± 4.3 0.488

SUVpeak 4.6 ± 2.4 4.5 ± 2.1 4.8 ± 3.1 0.713

Endpoints

Progression 51 (46%) 33 (43%) 18 (51%) 0.399

Death 34 (30%) 21 (27%) 13 (37%) 0.292
fronti
LDH, lactate dehydrogenase; GNB, ganglioneuroblastoma.
aCutoff values for ferritin and LDH were set according to INRG (2).
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background. High-risk neuroblastoma showed significantly higher

FDG uptake (SUVmax and SUVpeak, p < 0.001) and volumetric

values (MTV, TLG, and TLG41%, all p < 0.001; MTV41%,

p = 0.040) than those with non-high-risk disease (Figure S1).
Imaging feature selection

Sixty-nine imaging features were obtained per VOI. The steps

used to reduce feature dimension are summarized in Table S1.

The ICC revealed that most of the imaging features could be

reproduced well (Table S2). Fifty-one out of the 59 feature pairs

had ICClb95% ≥0.75 (excellent reproducibility in 39 and good

reproducibility in 12) and were qualified for subsequent analyses.
Imaging model for predicting
MYCN amplification

MYCNstatuswasavailable in90patients andwasamplified in20

patients. The majority of imaging features (44/51) were significantly

different between the MYCN-amplified and the non-amplified

groups (Table S3). After false discovery correction, 34 remained

statistically significant. For example, FDG uptake was significantly
Frontiers in Oncology 05
higher in the MYCN-amplified tumor (SUVmax: 7.9, 95% CI: 6.7–

9.9 vs. 5.1, 95% CI: 4.9–6.6, p < 0.001, adjusted p = 0.005).

The ROC analysis showed that all of the above 34 features

had AUCs higher than 0.7 to predict MYCN amplification.

Histogram_Kurtosis, which reflects the shape of the histogram

distribution relative to a normal distribution, yielded the highest

AUC of 0.853 (p < 0.001). After multicollinearity reduction, nine

features were entered into multivariate logistic regression

analysis. A radiomic model composed of two features

[Histogram_Kurtosis and gray-level non-uniformity from

gray-level zone length matrix (GLZLM_GLNU), which reflects

the non-uniformity of the gray levels of the homogeneous zones

in 3D] was built subsequently, resulting in an AUC of 0.871

(Figure 2, p < 0.001) with the following equation:

Predicted probability = EXP (−0.287 − 0.228 ×

Histogram_Kurtosis + 0.021 × GLZLM_GLNU)/(1 + EXP

(−0.287 − 0.228 × Histogram_Kurtosis + 0.021 × GLZLM_GLNU).
Development of rad-risk to predict EFS

The distribution of key variables including age, stage,

MYCN, and conventional metabolic parameters was similar

between the training and test sets (Table 1). In the training set,
FIGURE 2

Receiver-operating characteristic curve analysis for the prediction of MYCN amplification according to a model composed of two texture features.
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univariate Cox regression analysis revealed that 14 first-order

and 8 second-order indices correlated with EFS (p < 0.05). After

feature dimension reduction, two first-order indices, namely,

SUVmax and Histogram_Entropy reflecting the randomness of

the voxel distribution, were retained (Table 2). Three second-

order indices retained were as follows: one from the gray-level

co-occurrence matrix (GLCM): GLCM_energy, which reflects

the uniformity of gray-level voxel pairs; two from the gray-level

run-length matrix (GLRLM), namely, the gray-level non-

uniformity (GLRLM_GLNU), which measures the non-

uniformity of the gray levels, and run-length non-uniformity

(GLRLM_RLNU), which quantifies the non-uniformity of the

length of the homogeneous runs. The AUCs for SUVmax,

Histogram_Entropy, GLCM_energy, GLRLM_GLNU, and

GLRLM_RLNU to predict progression were 0.611, 0.666,

0.645, 0.689, and 0.733, respectively. Multivariate Cox

regression analyses revealed that GLRLM_RLNU with a cutoff

value of 1,828 and Histogram_Entropy with a cutoff value of 3.3

outperformed other imaging indices and were significant to

predict events. In addition, imaging features extraction was

performed in the high-risk group separately, and the results

are presented in the Supplementary Materials (Supplementary

Data and Figure S2).

Then, patients in the training set and the test set were

d iv ided in to three groups accord ing to whether

GLRLM_RLNU ≥1,828 and Histogram_Entropy ≥3.3: patients

with neither of these two risk factors, those with either one of the

factors, and those with both. Patients with neither or either one

of these factors demonstrated similar survival curves both in the
Frontiers in Oncology 06
training set and test set (Figure 3A, p = 0.697; Figure 3B,

p = 0.383) and, thus, were combined and categorized as low

rad-risk. Patients with both factors had a significantly worse

prognosis (training set, HR: 6.4, 95% CI: 3.1–13.2, p < 0.001; test

set, HR: 5.0, 95% CI: 1.8–13.6, p = 0.002) and were categorized as

high rad-risk. The 3-year EFS of low vs. high rad-risk was 71%

vs. 6% in the training set and 69% vs. 17% in the test set,

respectively (both p < 0.001).
Multivariate analysis

Clinicopathological factors including age, stage, MYCN,

LDH, and ferritin significantly correlated with EFS in the

training set (Table 2). As MYCN status, LDH, and ferritin

were unavailable in several patients, we firstly integrated rad-

risk with age and stage into the multivariate analysis. After

adjustment for clinical covariates (Table 3), rad-risk obtained

independent significance with HR of 4.3 (95% CI: 2.0–9.1,

p < 0.001), while age showed marginal significance (HR: 6.8,

95% CI: 0.9–52.5, p = 0.066). After incorporating MYCN into the

model, only rad-risk remained significant (HR: 8.8, 95% CI: 3.7–

21.0, p < 0.001). Furthermore, we integrated LDH and ferritin

into the multivariate analyses separately or together, and rad-

risk was the only factor that retained significance.

Similarly, after adjusting for clinicopathological variables

separately or together in the multivariate analysis, high rad-

risk was confirmed to be the most significant factor to predict

EFS in the test set (Table 3).
TABLE 2 Univariate Cox regression analyses for event-free survival.

Variables Training set (n = 77) Test set (n = 35)

HR 95% CI p-value HR 95% CI p-value

Clinicopathological factors

Age ≥18 months 13.2 1.8–96.8 0.011 2.1 0.6–7.3 0.246

Stage 4 vs. 1, 2, 3, 4S 4.5 1.6–12.9 0.005 2.5 0.6–10.9 0.224

MYCN amplificationa 2.8 1.2–6.4 0.014 0.5 0.1–4.1 0.527

LDH ≥587b 3.0 1.3–6.9 0.008 3.3 1.3–8.6 0.015

Ferritin ≥92c 3.0 1.1–7.8 0.026 1.9 0.7–5.3 0.246

First-order imaging indices

SUVmax ≥5.5 3.2 1.5–6.7 0.003 2.9 1.0–8.1 0.049

Histogram_Entropy ≥3.3 3.8 1.8–7.9 <0.001 3.5 1.1–10.6 0.029

Second-order imaging indices

GLCM_Energy ≤0.02 3.5 1.7–7.1 0.001 2.1 0.8–5.6 0.146

GLRLM_RLNU ≥1,828 5.1 2.3–11.3 <0.001 5.7 2.0–16.4 0.001

GLRLM_GLNU ≥575 2.9 1.5–5.8 0.002 2.1 0.6–6.6 0.224
fronti
CI, confidence interval; HR, hazard ratio; GLCM, gray level co-occurrence matrix; GLNU, gray-level non-uniformity; GLRLM, gray-level run-length matrix; rad-risk, radiomic risk; RLNU,
run-length non-uniformity.
aMYCN amplification status was available in 64 patients in the training set and 26 in the test set.
bLDH was available in 66 patients in the training set and 34 in the test set.
cFerritin was available in 64 patients in the training set and 32 in the test set.
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Refinement of risk stratification
in neuroblastoma

None of the seven patients with clinical low-risk diseases had

a high rad-risk, and only 2 of the 26 patients with clinical

intermediate-risk diseases had a high rad-risk, indicating that

the majority of patients with clinical non-high-risk had a

relatively homogeneous tumor. Due to limited cases with a

high rad-risk in the clinical non-high-risk group, the
Frontiers in Oncology 07
significance of rad-risk in the risk substratification in this

group could not be statistically analyzed.

Seventy-nine patients had high-risk neuroblastoma: 55 patients

in the training set and24 in the test set.We further evaluatedwhether

adding rad-risk could refine risk stratification and compared it with

volumetric indices, including MTV, MTV41%, TLG, and TLG41%.

In the training set, ROC analyses were performed (Figure S3) and

optimal cutoff values were determined to be 120 ml for MTV, 65 ml

for MTV41%, 426 g for TLG, and 141 g for TLG41%, respectively.
TABLE 3 Multivariate Cox regression analyses for event-free survival.

Models Training set Test set

HR 95% CI p-value HR 95% CI p-value

Multivariate model 1a n = 77 n = 35

Age ≥18 months 6.8 0.9–52.5 0.066 / / /

High rad-risk 4.3 2.0–9.1 <0.001 5.0 1.8–13.6 0.002

Multivariate model 2b n = 64 n = 26

High rad-risk 8.8 3.7–21.0 <0.001 6.7 1.7–26.0 0.007

Multivariate model 3c n = 66 n = 34

Age ≥18 months 6.5 0.8–49.9 0.074 / / /

LDH ≥587 U/L / / / 3.2 1.1–8.7 0.026

High rad-risk 4.4 2.0–9.6 <0.001 4.8 1.7–13.6 0.003

Multivariate model 4d n = 64 n = 32

Age ≥18 months 7.0 0.9–54.1 0.062 / / /

High rad-risk 3.9 1.8–8.5 <0.001 4.4 1.6–12.2 0.004

Multivariate model 5e n = 51 n = 25

High rad-risk 8.3 3.2–21.4 <0.001 12.9 2.6–63.6 0.002
fronti
aMultivariate model 1 includes age, stage, and rad-risk (n = 112).
bMultivariate model 2 includes age, stage, MYCN, and rad-risk (n = 90).
cMultivariate model 3 includes age, stage, LDH, and rad-risk (n = 100).
dMultivariate model 4 includes age, stage, ferritin, and rad-risk (n = 96).
eMultivariate model 5 includes age, stage, MYCH, LDH, ferritin, and rad-risk (n = 76).
BA

FIGURE 3

Kaplan–Meier event-free survival (EFS) curves in children with neuroblastoma having neither, one, or both imaging risk factors—GLRLM_RLNU
≥1,828 and Histogram_Entropy ≥3.3—in the training set (A) and the test set (B).
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As shown in Figure 4, all of the five imaging indices

significantly correlated with EFS in the training set. The 3-year

EFS for patients with high vs. low MTV, MTV41%, TLG, and

TLG41% were 17% vs. 61% (p = 0.013), 14% vs. 53% (p = 0.015),

18% vs. 40% (p = 0.014), and 16% vs. 61% (p = 0.025),

respectively. However, the volumetric features failed to retain

significance in the test set, except TLG (Figure 5). Rad-risk

yielded the best performance to distinguish high-risk patients

with different outcomes, with a 3-year EFS of 6% vs. 47%

(p = 0.001, Figure 4E) in the training set and 9% vs. 51%

(p = 0.004, Figure 5E) in the test set. High rad-risk was

associated with a 2.3–3.4 times higher risk of progression (HR:

3.3, 95% CI: 1.6–6.8, p = 0.002 in the training set; HR: 4.4, 95%

CI: 1.5–12.9, p = 0.008 in the test set). Two patients with high-

risk neuroblastoma and a high or low rad-risk are presented

in Figure 6.
Discussion

The substratification of high-risk neuroblastoma is challenging,

and new predictive biomarkers are warranted for better patient

selection. In this study, we confirmed that PET-based intratumor

heterogeneity independently correlated with EFS in neuroblastoma

both in the training set and the test set. It further improved the risk

stratification in high-risk neuroblastoma, with a 3-year EFS of 6%–

9% for the highly heterogeneous tumors compared to 47%–51% for

the relatively homogeneous ones.

Radiomics, extracting quantitative features from medical

images, has rapidly evolved throughout these years. Compared

to histological biopsy only capturing a small proportion of tumor

tissue that could underestimate the mutational burden (21), a

great advantage of radiomics is its ability to visualize the

characteristics of the whole tumor non-invasively. It fully

depicts spatial intratumor heterogeneity, which has been

associated with poor prognosis. Studies showed that radiomic

features in PET images correlated with heterogeneity at the

cellular and genomic levels and had significant prognostic value

in various malignancies (22–24). On the other hand, tumor

necrosis results from increased tumor size, intratumor hypoxia,

and nutrient deprivation. Both the presence and the extent of

necrosis correlated with poor prognosis (25, 26). A necrotic core

appears as non-FDG-avid area within the tumor. To investigate

the spatial voxel relationships inside the entire tumor, the current

study examined the VOI covering the whole mass (including the

necrotic region) instead of putting a threshold of SUVmax on VOI

segmentation. Our results partly confirmed previous studies that

texture features significantly correlated with tumor size or volume

(27, 28). We found four second-order indices reflecting tumor

heterogeneity, including GLRLM_RLNU, highly correlated with

volumetric indices. The latter is usually considered a reflection of

tumor burden, while texture features correlate with tumor

heterogeneity. A larger tumor results in a higher level of
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intratumor hypoxia and necrosis and leads to higher spatial

complexity and heterogeneity (27). Hatt et al. found that

radiomic heterogeneity quantification provided valuable

complementary information for large tumors (>10 cm3) (27). In

our study, only one patient had a tumor volume less than 10 ml.

The median volume for our whole cohort was 160 ml.

MYCN amplification is the most common genomic alteration

in neuroblastoma, occurring in approximately 20% of the patients

(29). It is highly associated with advanced stage and poor

prognosis; thus, it has been incorporated into the mostly used

neuroblastoma protocol. Radiomic models derived from contrast-

enhanced CT have been shown to accurately predict MYCN

amplification (30–32). Wu et al. (31) suggested that three-phase

CT had a higher value than non-contrast CT scan, which could be

explained by tumor angiogenesis promoted by MYCN

amplification. Different from the density heterogeneous and

vascular structure complexity depicted by CT scans, PET

imaging semi-quantifies the glucose consumption of tumor

parenchyma and reflects the uneven spatial distribution of

cellular metabolism, hypoxia, necrosis, and proliferation. In our

study, MYCN amplification occurred in 22% of the patients. Two

patients had divergent MYCN results, potentially resulting from

the heterogeneity of the tumor or underestimation of the

mutational burden by biopsy bias. In line with a prior study by

Sung et al. (33), we found that SUVmax and TLG had the

potential to predict MYCN with AUCs of 0.771 and 0.776,

respectively. However, histogram metrics and several second-

order indices showed superior performance. Consequently, a

radiomic model containing two PET features, namely,

Histogram_Kurtosis and GLZLM_GLNU, was built and showed

the strongest predictive power with an AUC of 0.871.

Histogram_Kurtosis reflects the shape of the histogram

distribution relative to a normal distribution. GLZLM_GLNU

reflects the non-uniformity of the gray levels of the homogeneous

zones in 3D. These two features have been proven to be promising

parameters as biomarkers of tumor heterogeneity in various

malignancies (34–36). A higher GLZLM_GLNU and a lower

Histogram_Kurtosis, which indicate higher spatial heterogeneity,

correlated with a higher possibility of MYCN amplification.

Recently, Qian et al. reported that the radiomic signature

containing both PET and CT features had a good ability to

predict MYCN amplification (37). However, the majority of the

features were obtained from wavelet transformed images, which

decompose an image by using spatially oriented frequency filters

but require intensive computation and may suffer from low

reproducibility (38). Despite the methodology differences, we

both showed that a high intratumor heterogeneity was

associated with MYCN amplification. Since neuroblastoma is

remarkably heterogeneous, which might require at least two

solid tumor areas to provide a more accurate genomic diagnosis

(39), texture features fully portraying the entire tumor might

provide important complementary information about

molecular profiling.
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Our second step was to evaluate whether intratumor

heterogeneity could provide prognostic information in

pretreatment neuroblastoma. A recent study reported that high

intratumor metabolic heterogeneity on 18F-FDG PET/CT was a

strong prognostic factor in 38 children with newly diagnosed
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neuroblastoma (40), and it was the first report identifying

metabolic heterogeneity as a prognostic biomarker of

neuroblastoma. The authors used the area under the curve of the

cumulative SUV-volume histograms (AUC-CSHs), which is a

histogram-based first-order feature that describes the percentage
B
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E

A

FIGURE 4

Kaplan–Meier curves for EFS in children with high-risk neuroblastoma in the training set according to (A) metabolic tumor volume (MTV) with a
cutoff value of 120 ml; (B) MTV41% with a cutoff value of 65 ml; (C) total lesion glycolysis (TLG) with a cutoff value of 426 g; (D) TLG41% with a
cutoff value of 141 g; (E) rad-risk.
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of total tumor volume above the percent threshold of SUVmax, as

an intratumor heterogeneity index. Lower AUC-CSH indicated

higher heterogeneity of the tumor and poorer outcomes. Although

the histogram analysis appears promising and simple, the major

pitfalls of the histogram analysis are the lack of information on the
Frontiers in Oncology 10
spatial organization of tumors and that it is not straightforward

which might lead to errors (34, 41). In another recently published

study of 18 children with high-risk neuroblastoma, Fiz et al.

demonstrated that intratumor heterogeneity on 18fluorine-

dihydroxyphenylalanine (18F-DOPA) PET/CT was closely
B

C D

E

A

FIGURE 5

Kaplan–Meier curves for EFS in children with high-risk neuroblastoma in the test set according to (A) MTV with a cutoff value of 120 ml;
(B) MTV41% with a cutoff value of 65 ml; (C) TLG with a cutoff value of 426 g; (D) TLG41% with a cutoff value of 141 g; (E) rad-risk.
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associated with metastatic burden and had certain prognostic value

(42). In the current study, we further expanded that intratumor

heterogeneity was a prognostic biomarker in neuroblastoma, with a

much larger cohort and a higher order of texture analysis, which

further improves quantitative histogram approaches by introducing

the spatial dimension. Multivariate analysis identified

GLRLM_RLNU and Histogram_Entropy as the independently

significant predictors for EFS. GLRLM_RLNU gives the size of

homogeneous runs for each gray level. A similar run length results

in low values of GLRLM_RLNU. On the contrary, a high value is

indicative of heterogeneity. Studies have reported that

GLRLM_RLNU extracted from PET had the potential for

predicting treatment response and prognosis (43, 44). On the

other hand, Histogram_Entropy measures the randomness of

voxel distribution and has been established as an important

biomarker reflecting heterogeneity in various MRI and PET

studies (43, 45). In accordance with previous studies (40, 42), we

found that high rad-risk, defined as patients with both a high

GLRLM_RLNU and a high Histogram_Entropy, indicating a high

intratumor heterogeneity, was the most significant independent

factor for EFS after adjusting for clinicopathological factors.

To further evaluate the ability of rad-risk in the refinement of

risk stratification, we incorporated rad-risk into the existing risk

stratification schema and compared it to volumetric indices. The

results showed that the majority of patients with clinical non-high

risk had a low rad-risk, indicating a relatively homogeneous tumor.

Among high-risk neuroblastoma, rad-risk effectively distinguished
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patients with distinct outcomes both in the training and test sets. In

addition, despite that intratumor heterogeneity highly correlated

with MTV and TLG, rad-risk outperformed the volumetric indices

and showed the highest ability to predict the outcome. These

findings indicate that PET-based intratumor heterogeneity might

have independent prognostic information, which may help

substratify neuroblastoma patients for more refined risk-adapted

treatment approaches in the future.

The limitations of this study are as follows: first, this is a

retrospective study with a relatively small sample size in a single

center. Second, 123I-mIBG scans were not performed in our

cohort, since 123I-MIBG is not yet available in our country. The

disadvantages of the 123I-mIBG scan, including limited spatial

resolution and lower sensitivity in soft tissue lesions or small

lesions, limit its value in radiomic analysis in neuroblastoma.

Future efforts in PET-based texture features using novel

radiopharmaceuticals such as 18F-fluorometaguanidine and
124I-mIBG might yield important predictive or prognostic

information. Third, this study evaluated the features of

primary tumor and captured less information outside the

primary site, such as metastatic lesions or metastatic burden,

which could be of important prognostic value. An additional

limitation is that no separate cohort was used for validation

regarding the prediction of MYCN amplification due to the

limited number of patients with amplified MYCN. A large

cohort with external validation should be warranted in

the future.
FIGURE 6

Two patients with a high-risk neuroblastoma and high or low intratumor heterogeneity. Both patients had amplified MYCN and stage 4 diseases.
(A–D) A 20-month-old girl with a highly heterogeneous FDG uptake in the primary tumor (high rad-risk). She progressed 21 months after
diagnosis. (E–H) A 5-year-old boy with a relatively homogeneous FDG uptake (low rad-risk). The patient remained recurrence free within
5 years of follow-up.
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Conclusions

In summary, PET-based intratumor heterogeneity could serve as a

powerful and non-invasive approach to predict MYCN amplification

and survival outcome in newly diagnosed neuroblastoma, providing a

potential approach to refine the risk stratification in childrenwith high-

risk diseases. Further validation with a larger cohort is required.
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