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Lysosomal storage disorders (LSDs) are a heterogenous group of disorders due to
genetically determined deficits of lysosomal enzymes. The specific molecular mechanism
and disease phenotype depends on the type of storage material. Several disorders affect
the brain resulting in severe clinical manifestations that substantially impact the
expectancy and quality of life. Current treatment modalities for LSDs include enzyme
replacement therapy (ERT) and hematopoietic cell transplantation (HCT) from allogeneic
healthy donors, but are available for a limited number of disorders and lack efficacy on
several clinical manifestations. Hematopoietic stem cell gene therapy (HSC GT) based on
integrating lentiviral vectors resulted in robust clinical benefit when administered to
patients affected by Metachromatic Leukodystrophy, for whom it is now available as a
registered medicinal product. More recently, HSC GT has also shown promising results in
Hurler syndrome patients. Here, we discuss possible novel HSC GT indications that are
currently under development. If these novel drugs will prove effective, they might represent
a new standard of care for these disorders, but several challenges will need to be
addresses, including defining and possibly expanding the patient population for whom
HSC GT could be efficacious.

Keywords: lysosomal storage disorders (LSD), mucopolisacaridosis, Hunter disease, neuronal ceroid lipofucinosis,
Batten disease, gene therapy (GT), hematopoietic stem cell (HSC)
INTRODUCTION

Lysosomal storage disorders (LSD) are genetically determined inborn errors of metabolism (IEM)
that occur when pathogenic variants affect genes codifying for proteins involved in lysosomal
function. Depending on the involved metabolic pathway, affected lysosomes become unable to
digest proteins, nucleic acids, carbohydrates or lipids, and this results in the accumulation of
undegraded metabolites, leading to cytotoxicity (1). These disorders are generally classified based on
the specific enzymatic deficiency and accumulated metabolite, and include Mucopolysaccharidoses
(MPSs), Oligosaccharidoses, Sphingolipidoses and Neuronal Ceroid Lipofuscinoses (NCLs).
Clinical manifestations depend on the specific molecule(s) that cannot be degraded and are very
diverse among different LSDs, affecting several different organs and tissues. In a large subset of
disorders, based on the tissue distribution of the storage material, the central nervous system (CNS)
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is particularly exposed to severe damage, with a wide range of
neurological manifestations but generally with a progressively
degenerative evolution. Severe neuroinflammation, linked to
metabolite accumulation in glia and neural cells and their
reactive activation, is a consistent finding in animal models
and may be a factor implicated in the progression of
neurodegeneration (2). Treatment options for LSDs are very
limited and available for few disorders. Enzyme replacement
therapy (ERT), namely the administration of a recombinant
form of the lacking enzyme, is only available for few disorders
and has no efficacy on the neurological manifestations of those
LSDs, since the intrinsic properties of these drugs impede the
crossing of the Blood Brain Barrier (BBB) (3, 4).
HEMATOPOIETIC CELL
TRANSPLANTATION FOR LSDS

Hematopoietic Cell Transplantation (HCT) from compatible,
allogeneic, healthy donors was originally proposed to treat
patients with LSDs due to the ability of the transplanted
hematopoietic cells and of their mature myeloid progeny to
become a stable source of the defective enzyme for the affected
tissues, including the CNS. The enzyme provided by healthy cells
can be excreted in the intracellular matrix and taken up by non-
hematopoietic cells, resulting in cross correction of the metabolic
defect in other cellular populations (5). Despite this sound
rational, however, the efficacy of HCT was proven only in few
selected LSDs, and clinical situations, and is limited by several
factors. Firstly, to benefit from HCT, patients are required to
have pre-symptomatic or very early symptomatic disease. This is
due to the delay of CNS engraftment, since therapeutically
sufficient donor cell contribution to CNS myeloid population
might require 12 to 18 months post-transplant to occur (6).
Thus, most of the patients diagnosed based on clinical
manifestations, possibly after a long diagnostic odyssey due to
the rarity of the disease, might have irreversible neurological
damage, too severe to benefit from HCT. For example, patients
with Early Infantile Globoid Cell Leukodystrophy (GLD, Krabbe
disease) benefit from transplant only if it is performed well before
the onset of symptoms, ideally in the first 3 months of life, or
even within the first 30 days of life for most severe cases (6).
Similarly, in patients with Hurler syndrome, variable but
substantial residual disease burden is seen in the long term,
with improved cognitive development in patients of younger age
at time of transplantation (7). Secondly, the efficacy of HCT
might be limited to specific organs and clinical manifestation.
For instance, skeletal deformities in patients with MPS I are
generally mitigated but not completely abrogated by HCT (8).
This is probably due to the inability of the corrected cells to reach
sufficient engraftment in the already constituted bone niche.
Thus, patients often require life-long treatments and surgical
interventions to correct these deformities despite a successful
HCT. Thirdly, HCT has an established indication only for
patients affected by Hurler syndrome (severe MPS I) if
younger than 2.5 years old (7), Krabbe Disease, Metachromatic
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Leukodystrophy (MLD) in very selected cases (9), and selected
patients with MPS II (10). Data regarding other disorders are
largely anecdotal and the risk/benefit ratio is not clearly defined.
For instance, most patients with MLD ultimately experience
neurologic decline following HCT, and only patients
transplanted in pre-symptomatic stage have shown some
benefit from the procedure (9). Lastly, the use of HCT is
limited by the availability of compatible donors, as potentially
HLA-matched siblings or family members are often carriers of
the disease and not suitable as donors. Other risks specifically
associated with HCT include transplant associated toxicity,
short-term and long-term adverse effects of chemotherapy
given as conditioning, graft failure, infections, and Graft versus
Host Disease (GvHD). Moreover, the conditioning regimen and
the requirement for long hospitalization and isolation might
negatively impact the neurological function of patients (6).
CURRENT HEMATOPOIETIC
STEM CELL GENE THERAPY
APPROACHES FOR LSDS

In this perspective, ex vivo autologous hematopoietic stem cell
(HSC) based gene therapy (GT) has the potential to provide an
effective and safe strategy to correct the genetic defect in patients
affected by LSDs. HSCs collected from the patients can be
efficiently transduced and corrected in their metabolic defect
by integrating viral vectors, such as lentiviral vectors (LVs), ex
vivo to constitutively express the functional enzyme, hence
possibly generating a sustained and potentially lifelong source
of therapeutic enzyme upon transplantation (11). The
mechanism of action is similar to allogenic HSCT, but
genetically modified autologous HSCs are employed instead of
allogenic HSCs to engraft and differentiate into myeloid and
lymphoid cells that would repopulate hematopoietic and not-
hematopoietic organs of recipients upon transplantation (12).
The GT approach has several advantages over allogeneic HCT
for LSDs. First, cells are collected from the patient and thus the
risk of GvHD is absent, allowing to avoid the use of
immunosuppressive drugs post-transplant and favoring early
immune reconstitution, lowering the risk of opportunistic
infections. Secondly, the use of LVs for gene addition allows
enhancing the level of enzyme production by the transplanted
cells and their progeny up to supraphysiological levels that may
allow a more efficient cross-correction and possibly a greater
clinical outcome as compared to allogenic HCT (13).

This approach for LSDswas first successfully applied to patients
affected by MLD, a prototypical LSD due to arylsulfatase A
deficiency and characterized by unrelenting severe demyelination
and secondary neurodegeneration. Treatment of pre-symptomatic
late infantile and pre-symptomatic or very early symptomatic early
juvenile patients resulted in prevention of disease onset or halted
disease progression, as compared with historical untreated control
patients (14–16). Based on the results from treatment of a large
patients’ cohort, this approach is currently available in Europe as an
approved drug with the trade name Libmedly®. In patients with
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Hurler syndrome,HSCGThas beenrecently investigated inaPhase
I/II clinical trial for patients lacking a suitable donor. Results from
the eight patients enrolled in the study demonstrated stable
cognitive performance, continued motor development, improved
or stable findings at magnetic resonance imaging of the brain and
spine, reduced joint stiffness, and normal statural growth (17). For
both these indications, patients were given a fully myeloablative
conditioning regimenbasedon the alkylatingagentBusulfan,which
is also part of the standard regimen for HCT in LSDs. Despite
resulting in some toxicity, the use of this protocol is required to
allow sufficient engraftment of the transplanted cells in the
hematopoietic system and also in the CNS, as demonstrated by
animal models (18).

The most relevant potential risk of GT over HCT is related to
vector-mediated insertional oncogenesis. This is due to the
possibility that the insertion site of viral genome would lie
close to an oncogene, resulting in an alteration of the
expression patterns, a survival advantage of the affected cells
and the development of myelodysplasia or leukemia (19). These
events are strictly dependent on the vector employed for gene
transfer and to the disease context, but have never been reported
in patients treated with 3rd generation LVs with eukaryotic
internal promoters over a broad range of clinical applications.

Adeno associated vectors (AAV) have also been tested in the
setting of in vivo GT applications in preclinical models of several
neurometabolic diseases with some success (20, 21). In most of
the cases, the in vivo administration of the recombinant AAVs
was performed systemically or directly in the CNS (either in the
cerebrospinal fluid (CSF) or through intraparenchymal
injections) (22–30). The clinical translation of promising
preclinical results however, failed to demonstrate a similar
extent of benefit, likely because of limited biodistribution and/
or lack of adequate therapeutic gene expression in key target
cells. Moreover, the invasiveness of the intra-CNS delivery
approach and the risk of immune responses that may be
triggered by the AAVs could limit their application (31).

In the near future, several other challenges will need to be
addressed to allow a widespread use of HSC GT. Firstly, the need
for proper identification of candidate patients, ideally by newborn
screening programs and up-to-date phenotype prediction based on
genotype. Moreover, centralized production and high costs of the
medicinal product as currently manufactured may limit the
availability of HSC GT to resource-poor settings. Thus, novel
technologies might be needed to allow the widespread use of HSC
GToverawide rangeof indications, reduce the costsof the drugand
the burden of drug development.
NOVEL INDICATIONS FOR
HEMATOPOIETIC STEM
CELL GENE THERAPY

Mucopolysaccharidosis Type II
Mucopolysaccharidosis type II (MPS II, Hunter syndrome), is a
LSD that affects 0.30-0.71 every 100,000 live births worldwide
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(32). It is caused by the genetic deficiency of the enzyme
iduronate-2-sulfatase (IDS), due to a deleterious variant in the
IDS gene. IDS deficiency causes the pathological accumulation of
dermatan and heparan sulphate (DS and HS) within lysosomes
of virtually all type of cells in the body (33), resulting in
progressive cellular and multi-organ dysfunction. The
spectrum of clinical manifestation is wide and clinically
patients with MPS II are classified into two phenotypic
variants, neuronopathic (severe) or non-neuronopathic
(attenuated), based on the presence or absence of early onset,
progressive cognitive deterioration (34, 35) (Table 1). Disease
progression is faster in patients with the severe phenotype, with
early death usually in the mid-teenage years, whereas patients
with the attenuated phenotype may live until adulthood (36).

Elaprase® is a recombinant human IDS enzyme that can be
administered intravenously as ERT in MPS II children. It is the
only medicinal product approved in various EU countries for the
treatment of MPS II. Elaprase® weekly use results in a positive
treatment effect with reduction of GAG levels in urine and of
liver and spleen volume. However, no univocal evidence exists of
efficacy of Elaprase® in impacting the progression of pulmonary
and cardiological disease manifestations, nor of neurologic/
cognitive abnormalities (37–39), limiting its use in patients
with severe cognitive symptoms (34). Efforts have been made
to favor ERT delivery across the BBB and improve the
neurological outcome. Among others, an open label phase 2/3
clinical trial of Pabinafusp Alfa (IDS fused with anti-human
transferrin receptor antibody, exploiting transferrin receptor-
mediated transcytosis through the BBB) showed decrease in HS
CSF levels, associated to lack of progression or positive changes
in the neurodevelopmental evaluations of the treated patients
(40). Wider and more durable studies are needed to confirm
these data.

Additionally, ERT requires lifelong weekly infusions, which can
takehours, creating amajor burden forpatients and their caregivers,
and induce the formation of neutralizing antibodies (32). As an
alternative to Elaprase®, HCT using umbilical cord blood,
peripheral blood HSCs or bone marrow has been tested in limited
subsets of patients with variable outcomes (10, 41). In particular, a
recent review of 119 retrospective, published cases plus 27 newly
described patients reported some improvement/no progression of
abnormal MRI findings as well as some clinical benefit, in terms of
amelioration of somatic features, joint movements and activities
of daily living, following HCT. Despite the work concludes in favor
of HCT as compared to ERT in the treatment of MPS II, no
controlled clinical studies have been conducted to date evaluating
the effects ofHCT inpatientswithMPS II and for this reasonHCTis
not considered as the standard of care for MPS II and its use is
limited to selected patients with early-symptomatic disease that do
not tolerate ERT.

Multiple HSC GT approaches have been proposed for the
treatment of MPS II. HSC GT with a second- generation LV
carrying a codon optimized human IDS gene has shown
improvement in lysosomal storage and autophagic dysfunction
in the brain in a mouse model of MPS II but required a strong
preconditioning to provide a substantial cognitive function
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TABLE 1 | Clinical manifestation and available treatments for selected LSDs.
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improvement (42, 43). In another study, the IDS transgene with
the myeloid-specific CD11b promoter was fused to the receptor-
binding domain of human apolipoprotein E (LV.IDS.ApoEII) to
deliver the therapeutic enzyme more efficiently through the BBB.
This approach showed better correction of memory deficits,
inflammation, and HS storage in the brain as compared to a
LV encoding only IDS (44). Recently, another LV encoding the
human IDS under control of the human phosphoglycerate-
kinase (PGK) promoter has been developed and the clinical
development of this drug product is planned in the next few
years, with a fully myeloablative busulfan conditioning prior to
the administration of the genetically modified cells (45).

The first human study on safety and efficacy of the intra-CNS
administration of increasing doses of recombinant AAV
expressing human IDS (Regenxbio, RGX-121) in patients with
MPS II is currently ongoing (NCT03566043). Enrolled patients
receive a single intracisternal injection of RGX-121 and
immunosuppression therapy for 48 weeks. Interim results
published in January 2021 show a good tolerability profile,
with biomarker levels and neurodevelopmental function
suggesting some potential disease modifying effects (46, 47).
The study is still recruiting and is estimated to be completed
in 2024.

Several challenges will need to be addressed during the clinical
development of a drug based on any of this evidence. Most
importantly, the assessments will need to take into consideration
the wide spectrum of clinical severity of patients with MPS-II, with
some patients developing a neuronopathic form. As is the case of
other metabolic disorders such as X-linked Adrenoleukodystrophy,
the severity of the CNS manifestations is extremely difficult to
predict in MPS II based on genetic and functional data alone (6, 41,
48, 49). Other measures of disease severity, such as clinical severity
score (50), neuroimaging findings (e.g., atrophy, enlarged
perivascular space, white matter lesions, hydrocephalus) or the
presence of MPS II-related CNS symptoms (e.g. behavior
problems, hyperactivity) (35) may be indicative of a severe form,
but these signs appear only when the CNS damage is already
established. Thus, validation of early predictors of severity and of
CNS involvement would be of great relevance for this new
indication. Importantly, however, as the multisystemic nature of
the disease in both neuronopathic and non-neuronopathic forms
leads to manifestations that are life-threatening, greatly impact on
the quality of life of patients and are only partially controlled by
ERT (41, 51, 52), it cannot be excluded that gene therapy in MPS II
may be offered to patients in whom CNS involvement could not be
predicted with certainty, particularly if they develop neutralizing
antibodies to ERT.

Mucopolysaccharidosis Type IIIA and B
Mucopolysaccharidosis type III (MPS III, Sanfilippo disease), is a
group of 4 autosomal recessive LSDs caused by pathogenic
variants in SGSH, NAGLU, HGSNAT and GNS, respectively.
Overall MPS III has a prevalence of 1:50 000 to 1:250 000, with
MPS IIIA and IIIB being the most common forms. Clinical
characteristics are similar to MPS II, with MPS IIIB patients
showing predominantly CNS manifestations and less severe
systemic symptoms (Table 1). The first manifestations are
Frontiers in Oncology | www.frontiersin.org 5
usually evident in the first years of life, and the impairment is
progressive with death occurring in the 2nd or 3rd decade of life in
most of the patients (53, 54). Currently, no specific treatment is
available for MPS III patients and only supportive treatment is
available (54). HCT is not currently considered as a treatment
option for MPS III due to the lack of neurologic benefit, even
when performed early in the course of the disease (55). Due to
the limited ability of intravenous ERT to pass the BBB and
modify the neurological outcome, intravenous ERT has not been
pursued in MPS III as intensively as in other LSDs and there is
currently no approved product available. Alternative routes of
administration such as the intrathecal (IT) one, have been tested,
but study endpoints aimed at evaluating efficacy on neurological
function were not met (56). Multiple in vivo AAV GT
approaches have been proposed and designed for MPS IIIA or
MPS IIIB, but a cognitive benefit was not shown, at least in
patients with MPS IIIB (57). An ex-vivo HSC GT approach has
also been tested in mouse models of MPS-IIIA and MPS-IIIB,
using a lentiviral vector and the CD11b promoter, driving the
expression of the therapeutic enzyme (SGSH and NAGLU,
respectively). In both disorders, a complete correction of the
metabolic defect in the brain and satisfactory cognitive outcomes
were demonstrated in mice (58, 59). Interestingly, targeting brain
inflammation with different strategies, including steroid
adminis t ra t ion and modula t ion of the TLR4 and
inflammasome pathway, was also effective in these models in
preventing brain damage (58, 60). Currently, a trial using
autologous CD34+ cells transduced with a lentiviral vector
containing the human SGSH enrolling pre- and early
symptomatic MPS-IIIA patients is open in Manchester
(NCT04201405) and the first treated patient has been reported,
in whom a very high enzymatic activity was shown at 6 months
after treatment (61).

Neuronal Ceroid Lipofuscinosis Type 1
Neuronal ceroid lipofuscinoses (NCLs, Batten disease), are a group
of inherited progressive neurodegenerative diseases clinically
characterized by a decline of mental and other capacities,
epilepsy, and vision loss through retinal degeneration, without
any non-neurological manifestation. Histopathological
examination shows intracellular accumulation of an
autofluorescent material, ceroid lipofuscin, in the neuronal cells
in the brain and in the retina of NCL patients (62). Recent advances
in molecular genetic studies have resulted in identifying the
primary genetic defects responsible for most forms of NCL. First
by gene (or protein), and secondarily by the age of onset and
clinical features (63, 64), to date at least 14 genetic NCL disorders
have been reported and are designated as CLN 1 to CLN 14.
Biallelic mutations in the CLN1 gene result in CLN1-disease, which
is one of the few NCLs due to defects in a lysosomal enzyme, the
Palmitoyl-protein thioesterase 1 (PPT1) enzyme, being thus of
potential interest for HSC GT approaches. CLN 1 disease presents
in four main phenotypes with varying ages of onset: the infantile
CLN1-disease or Santavouri-Haltia disease (which is the most
frequent form), Late infantile CLN1-disease, Juvenile CLN1-
disease, and Adult CNL1-disease (65, 66). In almost all CLN1-
disease forms, patients are initially healthy with a normal
May 2022 | Volume 12 | Article 885639
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developmental profile and develop a degenerative disease after the
onset of symptoms resulting in premature death (66–69). The
treatment of patients with CNL1-disease is only symptomatic (66).
Allogeneic HCT has been employed to treat NCLs, but normal
enzyme levels could be reached only in peripheral blood and not in
the CNS, resulting in the absence of clinical benefit both in the
animal models and in humans (70, 71). Overall, HCT is currently
not recommended as a treatment modality for patients with any
form of CLN, not even those associated to lysosomal enzyme
deficiencies as CLN 1 (72, 73).

The potential of gene therapy to provide benefit to CNL1-
disease has been explored both in the preclinical and clinical
settings (74). Several preclinical studies have focused on the use
of AAV directly administered to the CNS of CNL1-disease
animal models. However, a major limitation of AVV-based
therapy is the insufficiently widespread delivery of the
functional enzyme to the CNS, including brain and spinal
cord, ultimately hindering the clinical success of such approach
(24). HSC GT based on a lentiviral vector encoding for a codon
optimized version of the human PPT1 cDNA has also been tested
in mice (75). The gene corrected HSCs were administered via
intravenous infusion, which is the standard delivery route
applied to similar GT products (14, 15), and by an additional
route, consisting of direct administration of the cells into the
cerebroventricular space (ICV), which was shown to provide
rapid and effective myeloid engraftment the CNS (76). This
approach was shown to prevent and correct CLN 1 disease
manifestations in the mouse model, with the combined
intravenous and ICV delivery resulting in the greatest extent of
benefit also on symptomatic animals (75). Based on these
preclinical data, it may be hypothesized that patients with
classic infantile and late infantile forms of CLN1, who are
known to experience an aggressive form of disease and show
rapid deterioration of cognitive faculties (64), could benefit from
this approach that allows for rapid enzyme reconstitution in the
CNS. This is especially important in patients diagnosed due to
the onset of symptoms which is common considering that
Frontiers in Oncology | www.frontiersin.org 6
newborn screening is not currently available for CLN 1
disease (77).
CONCLUSIONS

Recent advances in HSC GT for patients with LSDs has shown
that this approach provides a cure for previously untreatable
conditions such as MLD and might be efficacious also in other
indications such as MPS I. Based on these findings, HSC GT is
currently evaluated for other LSDs, and several disease-specific
challenges are being addressed. The combination of different
delivery modalities, including ICV infusion of genetically
modified HSCs, might result in an amelioration of the CNS
engraftment and a faster clinical benefit, allowing the treatment
of patients with more advanced forms of disease.
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