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Background: The infiltration of CD8 T cells is usually linked to a favorable prognosis and
may predict the therapeutic response of breast cancer patients to immunotherapy. The
purpose of this research is to investigate the competing endogenous RNA (ceRNA)
network correlated with the infiltration of CD8 T cells.

Methods: Based on expression profiles, CD8 T cell abundances for each breast cancer
(BC) patient were inferred using the bioinformatic method by immune markers and
expression profiles. We were able to extract the differentially expressed RNAs
(DEmRNAs, DEmiRNAs, and DElncRNAs) between low and high CD8 T-cell samples.
The ceRNA network was constructed using Cytoscape. Machine learning models were
built by lncRNAs to predict CD8 T-cell abundances. The lncRNAs were used to develop a
prognostic model that could predict the survival rates of BC patients. The expression of
selected lncRNA (XIST) was validated by quantitative real-time PCR (qRT-PCR).

Results: A total of 1,599 DElncRNAs, 89 DEmiRNAs, and 1,794 DEmRNAs between high
and low CD8 T-cell groups were obtained. Two ceRNA networks that have positive or
negative correlations with CD8 T cells were built. Among the two ceRNA networks, nine
lncRNAs (MIR29B2CHG, NEAT1, MALAT1, LINC00943, LINC01146, AC092718.4,
AC005332.4, NORAD, and XIST) were selected for model construction. Among six
prevalent machine learning models, artificial neural networks performed best, with an
area under the curve (AUC) of 0.855. Patients from the high-risk category with BC had a
lower survival rate compared to those from the low-risk group. The qRT-PCR results
revealed significantly reduced XIST expression in normal breast samples, which was
consistent with our integrated analysis.

Conclusion: These results potentially provide insights into the ceRNA networks linked
with T-cell infiltration and provide accurate models for T-cell prediction.
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INTRODUCTION

Breast cancer (BC) is by far the most frequently diagnosed kind
of cancer and the fifth greatest cause of cancer-related deaths
globally (1). About 2.3 million BC patients and 0.68 million
deaths were reported in 2020 (1). BC is a very heterogeneous
illness, consisting of several biological subgroups with distinct
genetic features and therapeutic implications. In 2000, BC was
first separated into the luminal, basal-like, HER2+, and normal
breast-like subtypes (2). Each subtype has its own set of
molecular markers, outcomes, clinical characteristics, and
therapy responses. For example, the prognosis of patients with
the luminal subtype is relatively good (3), and the primary
treatments are mainly based on endocrine therapy (4).
However, the prognosis of BC samples in the basal-like
subtype is very poor (5), and there is a dearth of effective
therapies available (6). Despite advancements in BC treatment,
advanced or metastatic BC continues to have a dismal survival
rate of 25% (7). Thus, novel therapeutic agents are needed.

Immunotherapy has been utilized to treat advanced breast
cancer with metastases in the past few years. Immune-
checkpoint inhibitors aim to block suppressive immune
receptors and activate dysfunctional T cells, including CD8+ T
cells. In a randomized, double-blind, and placebo-controlled
clinical trial that contained 1,174 TNBC patients, the complete
response rate was 63% (95% CI, 59.5%–66.4%) for patients in the
group of pembrolizumab/chemotherapy compared with 56%
(95% CI: 50.6%–60.6%) for the group of chemotherapy alone
(8). The Food and Drug Administration authorized the use of
pembrolizumab with chemotherapy for TNBC patients on July
26, 2021, based on these clinical study findings. This approval,
however, brought up a new issue: how to distinguish between
cancer patients who are immunotherapy sensitive and those who
are immunotherapy insensitive. CD8 T cells are the most potent
effectors in the anticancer immune response, and they are the
foundation of cancer immunotherapy (9). Several indicators,
especially CD8 T lymphocytes (TILs), have been identified to
predict immunotherapy response (10). Thus, the prediction of
CD8 T cells will contribute to the screening of immunotherapy-
responsive BC patients.

On the other hand, lncRNAs are a novel class of ncRNAs that
have more than 200 nucleotides in length. Dysregulation of
lncRNAs has been implicated in the development of BC,
involving cell growth, apoptosis, migration, and therapy
resistance regulation (11). Salmena et al. proposed the
competitive endogenous RNAs (ceRNAs) hypothesis (12)
whereby RNA transcripts can communicate with each other
via miRNA response elements (MREs). By competitively
interacting with miRNAs, the lncRNAs can act as ceRNAs and
positively regulate mRNAs. These ncRNAs act as ceRNAs to
modulate mRNA expression and regulate protein levels, which
contributes to the occurrence and development of tumors (13).
Studies have shown that each miRNA can control the
transcriptional expression levels of hundreds of proteins. Each
mRNA contains different MREs, and so it may be targeted by
multiple miRNAs (14). Numerous investigations have shown
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that ceRNAs could play critical roles in the genesis, progression,
and outcome of BC (15). However, the ceRNA network that
could influence the CD8 T cells has not been extensively studied
so far.

Using bioinformatic analysis, our team discovered numerous
lncRNA, miRNA, and mRNA, and constructed ceRNA networks
associated with T cells. Machine learning models were
constructed to predict the T cells by hub lncRNAs from the
ceRNA networks. A risk score model with good prognostic
predictive accuracy was constructed by hub lncRNAs from the
ceRNA networks. These models may hold considerable promise
for personalized therapy and prognosis prediction in
BC patients.
MATERIALS AND METHODS

Breast Cancer Dataset
The level 3 mRNA expression profiles of BC were obtained from
The Cancer Genome Atlas (TCGA) by the “TCGAbiolinks” R
package (16). A total of 1,072 BC samples were found with
available lncRNA and mRNA expression profiles, and 1,066 BC
samples were found with available miRNA expression profiles.
The lncRNA and mRNA expression data were converted from
“fragments per kilobase million” into “transcripts per kilobase
million”. We gathered clinical data on 1,087 BC patients,
including their overall survival and progression-free
survival data.

Estimation of Immune Cell Types
The single-sample Gene Set Enrichment Analysis (ssGSEA)
model was used to calculate the amounts of immune cells and
to convert the genomic data into the values of 28 different
categories of human immune cells (17), which included the
cells that were thought to be anti-tumor such as “activated
CD4 T cell” and “activated CD8 T cell”. Several pro-tumor
immunity cells, including “regulatory T cell” and “type-2 T-
helper cell”, were also obtained. Two groups of BC patients were
established according to the median value of “activated CD8 T
cell”. The microenvironment cell populations counter (MCP-
counter) method (18), which allows the accurate quantification
of immune and stromal cells by genomic data, was used in this
study. The ESTIMATE, a tool for predicting tumor purity and
the presence of infiltrating stromal/immune cells in tumor
tissues using gene expression data, was used (19).

Screening of DElncRNAs, DEmiRNAs, and
DEmRNAs Between Low and High CD8 T
Cell Groups
The expression profiles of 8,633 lncRNAs were obtained using
the annotation profile from the GENCODE program. After
excluding 25% of lncRNAs having the lowest mean expression
value, 6,475 lncRNAs were retained for further study. The
expression profiles of 2,236 miRNAs were obtained by the
miRNA annotation from the miRBaseVersions.db R package.
After removing 25% of lncRNAs with the lowest mean
June 2022 | Volume 12 | Article 883197
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expression value, 1,677 miRNAs were retained for further
investigation. The expression profiles of 19,618 mRNAs were
obtained by the mRNA annotation of the GRCh38 project. After
excluding 25% of mRNAs with the lowest mean expression value,
14,714 mRNAs were retained for further study.

The differentially expressed RNAs (DElncRNAs, DEmiRNAs,
and DEmRNAs) between two T-cell groups were calculated by
the R package edgeR (20). DElncRNAs and DEmiRNAs were
filtered using p-value of 0.05 and |log2fold change| > 0.3 as
criteria. DEmRNAs were filtered using p-value of 0.05 and |
log2fold change| > 0.5 as cutoffs. Upregulation mRNAs
(UmRNAs) , down-regu la t ion mRNAs (DmRNAs) ,
upregulation miRNAs (UmiRNAs), downregulation miRNAs
(DmiRNAs), upregulation lncRNAs (UlncRNAs), and
downregulation lncRNAs (DlncRNAs) were defined by their
expression values in the high CD8 T-cell group.
Constructing lncRNA–miRNA–mRNA
ceRNA Networks and Enrichment Analysis
Based on ceRNA theory, we constructed lncRNA–miRNA–mRNA
ceRNA networks by lncRNA–miRNA and miRNA–mRNA
correlations. First, we downloaded all the lncRNA–miRNA and
miRNA–mRNA interactions that were downloaded from StarBase
(http://starbase.sysu.edu.cn/) (21). The first ceRNA network that
has a positive correlation value with CD8 T cells was constructed by
selecting ncRNA–miRNA and miRNA–mRNA interactions that
contained UmRNAs, DmiRNAs, and UlncRNAs. The second
ceRNA network that has a negative correlation value with CD8 T
cells was constructed by selecting ncRNA–miRNA and miRNA–
mRNA interactions that contained DmRNAs, UmiRNAs, and
DlncRNAs. In this study, Cytoscape software was utilized to
visualize the network.

Since functional enrichment analysis is crucial for
interpreting high-throughput omics data in life science, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were performed in R
using the function of clusterProfiler (p-value <0.05) (22). The
lncRNAs were ranked by the number of ncRNA–miRNA
interactions. The top 4 lncRNAs were selected from the first
ceRNA network, and the top 5 lncRNAs were selected from the
second ceRNA network. These nine lncRNAs were defined as the
hub lncRNAs.
Machine Learning Models for Prediction of
CD8 T Cells
Using the expression profiles of nine hub lncRNAs, machine
learning models were built for the prediction of CD8 T cells. BC
patients were equally and randomly divided into training and
testing samples. Different machine learning models, including
decision tree (DT), gradient boosting machines (GBM),
generalized linear models (GLM), artificial neural networks
(ANN), random forest (RF), and support vector machine (SVM),
were chosen to build models to predict the CD8 T-cell group by the
R “Caret” package (23). The parameters for each machine learning
model were determined by the fivefold cross-validation. In order to
Frontiers in Oncology | www.frontiersin.org 3
evaluate the robustness and prediction accuracy of constructed
models in BC, the “ROCR” package was used to calculate the value
of the area under the ROC curve (AUC).

Cox Regression Model for Prediction
of Prognosis
These nine hub lncRNAs were used to construct the Cox model.
The coefficients for nine lncRNAs were obtained. The risk score
of the samples was calculated by the coefficients and lncRNA
expression profiles. Based on the median value, BC individuals
were categorized into high- and low-risk classes. The correlation
analysis of clinical information includes overall survival, age,
gender, stage, and T, N, and M classifications in the TNM
system. The log-rank test was used for the Kaplan–Meier
curves of patient survival analyses.

Real-Time Quantitative PCR
Total RNA was extracted from patients’ breast cancer at the First
Affiliated Hospital of Nanjing Medical University using TRIzol
reagent (Invitrogen, CA, USA). Isolated RNA was reverse
transcribed into cDNA using HiScript II Q RT SuperMix for
qPCR (Vazyme Biotech Co.,Ltd. Nanjing, China) following
standard protocols. Real-time quantitative PCR (qPCR) was
performed with synthetic primers and ChamQ SYBR qPCR
Master Mix (Vazyme Biotech Co., Ltd. Nanjing, China) with a
Quant Studio 5 Real-Time PCR Detection System (Thermo
Fisher Scientific, MA, USA). The relative expression levels of
XIST were calculated and quantified with the 2−DDCt method
after normalization with the reference b-actin expression. All
primers used are listed in Table 1.
RESULTS

DElncRNAs, DEmiRNAs, and DEmRNA in
Low and High CD8 T Cell Groups
The flowchart of this study is presented in Figure 1. By the
ssGSEA and MCP-counter methods, values of CD8 T cells were
calculated. High values of CD8 T cells were correlated with better
BC prognosis (Supplementary Figure 1). Then, the BC samples
were divided into two groups (low and high) by the median value
of CD8 T cells from the ssGSEA algorithm. Based on the criteria
of p-value <0.05 and |log2FC| > 0.3, 1,599 DElncRNAs (811
downregulation and 788 upregulation, Figure 2A) and 89
DEmiRNAs (11 downregulation and 78 upregulation,
Figure 2B) between low and high CD8 T-cell groups were
obtained. Based on the criteria of p-value <0.05 and |log2FC| >
TABLE 1 | Sequences of primers for real-time quantitative polymerase chain reaction.

Gene Sequence (5′ -> 3′)

Xist
Forward TGGATAGAGGACCCAAGCGA
Reverse CAAGACTGGCCCAGGCATAA

b-actin
Forward AGGATTCCTATGTGGGCGAC
Reverse ATAGCACAGCCTGGATAGCAA
June 202
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0.5, 1,794 DEmRNAs (659 downregulation and 1,135
upregulation, Figure 2C). Heatmaps of the top DElncRNAs,
DEmiRNAs, and DEmRNAs are presented in Figures 2D–F.
Upregula t ion mRNAs (UmRNAs) , downregula t ion
Frontiers in Oncology | www.frontiersin.org 4
mRNAs (DmRNAs), upregulation miRNAs (UmiRNAs),
downregulation miRNAs (DmiRNAs), upregulation lncRNAs
(UlncRNAs), and downregulation lncRNAs (DlncRNAs) were
defined by their expression values in the high CD8 T-cell group.
A B

D E F

C

FIGURE 2 | Differentially expressed lncRNA, miRNA, and mRNA between low and high T-cell groups from the TCGA-BRCA database. Volcano plots of differentially
expressed lncRNAs (A), miRNAs (B), and mRNAs (C). The red spots on the graphs reflect significantly elevated RNAs, whereas the green ones show significantly
downregulated RNAs in the high T-cell group. Heatmaps of differentially expressed lncRNAs (D), miRNAs (E), and mRNAs (F). The red signifies increased
expression, whereas the blue signifies decreased expression.
FIGURE 1 | The flowchart of this study.
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Construction of the ceRNA Network
We downloaded the lncRNAs–miRNAs and miRNAs–mRNAs
interactions from the StarBase database. Due to the ceRNA theory,
lncRNAs and mRNAs have a positive regulatory interaction, while
miRNAs and mRNAs have a negative regulatory interaction.
Then, lncRNA–miRNA and miRNA–mRNA interactions that
contain UmRNAs, DmiRNAs, and UlncRNAs were used to
construct a CD8 T-cell positive ceRNA network (Figure 3A).
The lncRNA–miRNA and miRNA–mRNA interactions that
contain DmRNAs, UmiRNAs, and DlncRNAs were used to
construct a CD8 T-cell negative ceRNA network (Figure 3B).

Gene Set Enrichment Analysis
To outline the potential function of the genes in the ceRNA
networks, the pathways from the CD8 T-cell positive ceRNA
network and the CD8 T-cell negative ceRNA network were
obtained. Top GO terms and KEGG pathways in the CD8 T-
cell positive ceRNA network included many immune pathways
such as “antigen processing and presentation” (Supplementary
Table 1). Top GO terms and KEGG pathways in the CD8 T-cell
negative ceRNA network contained many cancer pathways such
as “proteoglycans in cancer” (Supplementary Table 2).

Machine Learning Models for the
Prediction of CD8 T Cell Groups
To predict the CD8 T-cell group of BC samples, we constructed a
model based on the hub lncRNAs from the CD8 T-cell-positive/
negative ceRNA networks. The top 4 lncRNAs from the CD8 T-
cell-positive ceRNA network, and the top 5 lncRNAs from the CD8
T-cell-negative ceRNA network were selected. These nine lncRNAs
(NEAT1, XIST, NORAD, MALAT1, MIR29B2CHG, LINC00943,
AC005332.4, AC092718.4, and LINC01146) were defined as the
hub lncRNAs, and the expression profiles of these hub lncRNAs
were kept for further analysis. The expression profiles were evenly
and randomly split into a training (50%) and a testing set (50%).
Fivefold cross-validation was conducted on the training set to select
the best parameters for DT, GBM, GLM, ANN, RF, and SVM. The
models were trained on the training set with the selected best
parameters. The log2CP value from DT was selected as “−9.65”,
Frontiers in Oncology | www.frontiersin.org 5
since it achieved the highest AUC value of 0.794 in the fivefold
cross-validation (Figure 4A). The interaction depth value from
GBM was selected as “7”, since it achieved the highest AUC value
of 0.857 in the fivefold cross-validation (Figure 4B). The alpha
value from GLM was selected as “0.7”, since it achieved the highest
AUC value of 0.838 in the fivefold cross-validation (Figure 4C).
The size value from ANNwas selected as “11”, since it achieved the
highest AUC value of 0.837 in the fivefold cross-validation
(Figure 4D). The mtry value from RF was selected as “3”, since
it achieved the highest AUC value of 0.842 in the fivefold cross-
validation (Figure 4E). The log2C value from SVMwas selected as
“−1”, since it achieved the highest AUC value of 0.843 in the
fivefold cross-validation (Figure 4F). Prediction accuracy was then
measured by the AUC value calculated on the test set. On the
testing set, the AUC values for DT, GBM, GLM, ANN, RF, and
SVMwere 0.742, 0.854, 0.848, 0.855, 0.852, and 0.843 (Figures 5A–
F). The calculation process of the final model for DT is presented in
Supplementary Figure 2.

Establishment of the lncRNA Prognostic
Model
Thereafter, we developed a nine-lncRNA prognostic model for
overall survival prediction of BC patients. The risk score = (0.61 *
MIR29B2CHG) + (0.027 * NEAT1) + (0.006 * MALAT1) +
(−1.21 * LINC00943) + (0.24 * LINC01146) + (2.1 *
AC092718.4) + (−1.02 * AC005332.4) + (0.99 * NORAD) +
(0.193 * XIST). The distribution of prognosis, including survival
time and status in risk score groups, is presented (Figure 6A).
Additionally, the increased expression of AC005332.4 and
LINC00943 was observed in the low-risk BC samples. On the
other hand, MIR29B2CHG, MALAT1, XIST, NORAD, and
AC092718.4 expression levels were greater in the high-risk BC
samples (Figure 6B). Low-risk individuals in the BC cohort
survived longer than high-risk ones when it came to OS (p-
value = 0.001, Figure 6C). MIR29B2CHG, NEAT1, MALAT1,
AC005332.4, NORAD, and XIST were elevated in normal breast
samples than in breast cancer samples (Figure 6D). LINC01146
and AC092718.4 were more elevated in breast cancer samples
than in normal breast samples (Figure 6D).
A B

FIGURE 3 | The ceRNA networks. (A) CD8 T-cell-positive ceRNA network constructed by UmRNAs, DmiRNAs, and UlncRNAs. (B) CD8 T-cell-negative ceRNA
network constructed by DmRNAs, UmiRNAs, and DlncRNAs. The upregulation mRNAs (UmRNAs), downregulation mRNAs (DmRNAs), upregulation miRNAs
(UmiRNAs), downregulation miRNAs (DmiRNAs), upregulation lncRNAs (UlncRNAs), and downregulation lncRNAs (DlncRNAs) were defined by their expression
values in the high CD8 T-cell group.
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Relationship Between Hub lncRNAs and
Tumor Immune Infiltration
We analyzed the associations among nine lncRNAs (NEAT1,
XIST, NORAD, MALAT1, MIR29B2CHG, LINC00943,
AC005332.4, AC092718.4, and LINC01146), risk score, tumor
purity, and immune cell infiltration (Figure 7A). NEAT1, XIST,
Frontiers in Oncology | www.frontiersin.org 6
NORAD, MALAT1, and MIR29B2CHG were significantly
negatively related to CD8 T cells, cytotoxic lymphocytes, and T
cells. These five lncRNAs were significantly positively associated
with fibroblasts, endothelial cells, and neutrophils. On the other
hand, LINC00943, AC005332.4, AC092718.4, and LINC01146
were significantly positively associated with most types of
A B

D E F

C

FIGURE 5 | Performance analysis of the models in the test dataset. ROC curve analysis of the performance of DT (A), GBM (B), GLM (C), ANN (D), RF (E), and
SVM (F).
A B

D E F

C

FIGURE 4 | Optimal parameter selection for machine learning models. (A) The “log2CP” and corresponding AUC values of the DT algorithm. (B) The “interaction
depth value” and corresponding AUC values of the GBM algorithm. (C) The “alpha value” and corresponding AUC values of the GLM algorithm. (D) The “Size” and
corresponding AUC values of the ANN algorithm. (E) The mtry’ and corresponding AUC values of the RF algorithm. (F) The “log2C” value and corresponding AUC
values of the SVM algorithm.
June 2022 | Volume 12 | Article 883197
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immune cells, including T and B cells. Risk score value was found
to be negatively related to immune cells but positively associated
with tumor purity. NEAT1, XIST, NORAD, MALAT1,
MIR29B2CHG, and risk value were significantly negatively
related to immune checkpoint genes including LAG3, TIGIT,
CTLA4, and PDCD1 (Figure 7B). LINC00943, AC005332.4,
AC092718.4, and LINC01146 were significantly positively
associated with LAG3, TIGIT, CTLA4, and PDCD1.

Expression Patterns of Nine lncRNAs
Among nine lncRNAs, MIR29B2CHG, NEAT1, MALAT1,
NORAD, and XIST were elevated in the low CD8 T-cell group
than in the high CD8 T-cell group (Supplementary Figure 3).
LINC00943, LINC01146, AC005332.4, and AC092718.4 were
elevated in high CD8 T cells group than in low CD8 T cells group
(Supplementary Figure 3). The associations between the risk
model and clinical features were explored. Clinical
Frontiers in Oncology | www.frontiersin.org 7
characteristics, such as age, stage, T stage, N stage, and M
stage, had no effect on the risk score (Supplementary Figures
4A–E). We found that a higher risk score was correlated with a
negative prognosis on progression-free survival (Supplementary
Figure 4F). Based on the best cutoff values of these nine
lncRNAs, the samples were divided into high and low groups.
The survival results showed that AC005332.4, AC092718.4,
NORAD, and LINC00943 have significant correlations with
prognosis (Supplementary Figure 5).

Validation of XIST Expression in Breast
Cancer Tissues by RT-qPCR
To validate XIST expression in BC clinical samples, 10 paired BC
and normal breast tissues were collected and compared using
real-time quantitative PCR (RT-qPCR). As shown in Figure 7C,
expression of XIST is significantly lower in BC samples
compared to the adjacent normal breast tissues (p-value <0.05).
A B C

FIGURE 7 | Correlations of lncRNA expression values and immune biomarkers. (A) Significant correlations between proportions of immune cells with nine lncRNAs
expression profiles. (B) Significant correlations between levels of immune checkpoint genes with nine lncRNAs expression profiles. (C) The XIST relative expression
levels of normal and breast cancer samples were compared.
A B

D

C

FIGURE 6 | Construction of the Cox regression model. (A) The distribution of prognosis including survival status and survival time between two risk score groups.
(B) The heatmap of nine lncRNAs expression profiles. (C) The overall survival analysis of risk score groups. (D) The expression distribution values of nine lncRNAs
between normal and breast cancer samples.
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DISCUSSION

Breast cancer is a major cause of mortality in the current world
population (24). CD8 T cells have been considered to play a
central role in immunotherapy (25). Breast cancer
immunotherapy is gaining traction as a treatment option,
especially for patients with metastatic disease (26). Thus, the
prediction of CD8 T cells in the tumor microenvironment
(TME) has broad significance for patients and clinicians. Apart
from that, the lncRNA-based risk model is gaining popularity as
a consequence of its greater predictive potential than other risk
models. However, a detailed analysis of a predictive model based
on lncRNAs that are associated with T cells has not yet
been completed.

It is important to discriminate between immunotherapy-
sensitive and immunotherapy-insensitive cancer patients.
Several biomarkers for immunotherapy have been identified
(10). For example, programmed death-ligand 1 (PD-L1)/
programmed cell death-1 (PD-1) levels, tumor mutational
burden (TMB), and CD8 T cells can be used to assess the
efficacy of immunotherapy. However, since PD-L1 is a
changing indicator, there is no established technique for its
measurement (27). TMB detection is difficult, costly, and time
consuming (28). The deficiency of T cell in TME was the primary
factor contributing to immunotherapy tolerance (29). Thus, the
prediction or detection of T-cell infiltration within tumors is a
promising method for selecting immunotherapy patients.

We began our study by collecting differentially expressed
lncRNAs, miRNAs, and mRNAs using differential analysis. Next,
we built two ceRNA networks that had positive and negative
correlations with CD8 T cells. Among the lncRNAs from two
networks, nine lncRNAs were screened to construct a random
forest model to predict the CD8 T cells, since these lncRNAs
have more interactions with other miRNAs. The random forest
model demonstrated excel lent prediction abili ty in
discriminating between high and low CD8 T cells, which might
serve as a useful reference for personalized immunotherapy.

COX regression was used to construct the prognostic risk
model. The value of MIR29B2CHG (C1orf132) was significantly
attenuated in BC (30). NEAT1 expression was elevated in BC
samples, and the increased expression of NEAT1 was associated
with a poor overall survival in BC patients (31). MALAT1 levels
were shown to be significantly related to breast cancer
development and invasive capacity, indicating that MALAT1
acts as a metastasis suppressor (32). LINC00944 expression has a
strong relationship with immune signaling pathways (33). There
is not much research describing the roles of LINC00943,
LINC01146, AC092718.4, and AC005332.4 in breast cancer.
NORAD expression was considerably decreased in BC samples,
and its deficiency was linked with poor tumor tissue
development (34). XIST expression is significantly reduced in
BC samples (35).

This study has some limitations. First, the CD8 T-cell values
were predicted by the expression profiles and ssGSEA method.
The CD8 T-cell values detected by experiments will increase the
credibility of our study. Second, the prognostic values of these
lncRNAs should be validated by an independent dataset. Third,
Frontiers in Oncology | www.frontiersin.org 8
the constructed model for immunotherapy response rate
prediction should be tested by an independent dataset that
contains the BC patients treated by immunotherapy.
CONCLUSION

In summary, using miRNA/lncRNA/mRNA expression profiles
in BC, we constructed two ceRNA networks that are correlated
with CD8 T cells. Additionally, we found a combination of nine
lncRNAs that may constitute models for CD8 T cells and
prognosis prediction. This will serve as a foundation for future
research on immunotherapy selection in BC patients.
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