
Frontiers in Oncology | www.frontiersin.org

Edited by:
Chunhao Wang,

Duke University Medical Center,
United States

Reviewed by:
William Hrinivich,

Johns Hopkins University,
United States
Hao Zhang,

Memorial Sloan Kettering Cancer
Center, United States

*Correspondence:
Jing Cai

jing.cai@polyu.edu.hk
Tao Peng

sdpengtao401@gmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Radiation Oncology,
a section of the journal
Frontiers in Oncology

Received: 17 February 2022
Accepted: 03 May 2022
Published: 07 June 2022

Citation:
Peng T, Tang C,Wu Y and Cai J (2022)

Semi-Automatic Prostate
Segmentation From Ultrasound

Images Using Machine Learning and
Principal Curve Based on Interpretable

Mathematical Model Expression.
Front. Oncol. 12:878104.

doi: 10.3389/fonc.2022.878104

ORIGINAL RESEARCH
published: 07 June 2022

doi: 10.3389/fonc.2022.878104
Semi-Automatic Prostate
Segmentation From Ultrasound
Images Using Machine Learning
and Principal Curve Based on
Interpretable Mathematical
Model Expression
Tao Peng1,2*†, Caiyin Tang3†, Yiyun Wu4 and Jing Cai1*

1 Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR,
China, 2 Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States, 3 Department of
Medical Imaging, Taizhou People’s Hospital, Taizhou, China, 4 Department of Medical Technology, Jiangsu Province Hospital,
Nanjing, China

Accurate prostate segmentation in transrectal ultrasound (TRUS) is a challenging problem
due to the low contrast of TRUS images and the presence of imaging artifacts such as
speckle and shadow regions. To address this issue, we propose a semi-automatic model
termed Hybrid Segmentation Model (H-SegMod) for prostate Region of Interest (ROI)
segmentation in TRUS images. H-SegMod contains two cascaded stages. The first stage
is to obtain the vertices sequences based on an improved principal curve-based model,
where a few radiologist-selected seed points are used as prior. The second stage is to find
a map function for describing the smooth prostate contour based on an improved
machine learning model. Experimental results show that our proposed model achieved
superior segmentation results compared with several other state-of-the-art models,
achieving an average Dice Similarity Coefficient (DSC), Jaccard Similarity Coefficient (W),
and Accuracy (ACC) of 96.5%, 95.2%, and 96.3%, respectively.

Keywords: accurate prostate segmentation, transrectal ultrasound, principal curve, constraint closed polygonal
segment model, improved differential evolution-based method, machine learning, interpretable mathematical
model expression
1 INTRODUCTION

Prostate cancer is one of the leading causes of cancer-related deaths among men worldwide (1).
Because of the real-time nature and cost-effectiveness, transrectal ultrasound images (TRUS) have
become one of the important imaging modalities for physicians to determine the boundaries and
volumes of prostates in many treatment procedures, such as prostate brachytherapy (2). However,
manual delineation of the prostate boundary is tedious, time-consuming, and often dependent on
the training and experiences of radiologists (3). Hence, automatic or semi-automatic prostate
segmentation in ultrasound is highly desired to obtain consistent prostate boundaries efficiently for
a number of image-guided diagnostic and treatment procedures (4, 5).
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Accurate prostate segmentation in ultrasound remains very
challenging due to the low contrast of TRUS images, too high
image gain, and the presence of imaging artifacts such as speckle,
micro-calcifications, and shadow artifacts. Heterogeneous intensity
distribution inside the prostate and neighboring tissues further
make the prostate segmentation challenging. Figure 1 illustrates
several challenging cases in TRUS prostate automatic segmentation.

In recent years, many different segmentation models have
been investigated for medical image segmentation, including: (1)
feature classification models (6), (2) region segmentation models
(7), and (3) contour detection models (8, 9). Shahedi et al. (10)
have proposed a semi-automatic prostate segmentation model in
computed tomography (CT) images using local texture
classification and statistical shape modeling. The segmentation
accuracy of the model is as high as 92%, but the results of the
texture extraction part strongly depend on the image resampling
accuracy. Ghavami et al. (11) have compared six different
convolutional neural networks in segmenting the prostate and
discussed the impact of network architecture on the accuracy of
volume measurement and MRI-ultrasound registration. On the
basis of the deep weakly supervised convolutional neural
network (CNN) segmentation proposed in Ref. (12), Kervadec
et al. (13) have presented a penalty-based CNN for weakly
supervised prostate segmentation and reached a level of
segmentation performance that is comparable to full
supervision. However, the highest Dice Similarity Coefficient
(DSC) value between the full supervision segmentation result
and the manually delineated contour is only 0.89. Compared
with these data-driven and learning-based models, the shape of
the anatomical structure can be obtained by the contour
detection model with reduced time and complexity to facilitate
prostate segmentation in TRUS.

The key purpose of contour extraction models is to use a shape
representation (14) or curve approximation model (15) to denote
the organ contour. Balsiger et al. (16) proposed to improve
traditional CNN-based volumetric image segmentation through
the point-wise classification of point clouds, where the threshold
to balance false positives and false negatives is manually selected. Li
et al. (17) proposed an active contour model based on adaptive
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energy weight functions for medical image segmentation with high
accuracy. However, the results of the proposedmodel are affected by
the noise and boundary leakage.

Among recent contour extraction models, the principal curve
model has gained great interest for detecting abnormal organs from
other surrounding normal tissues, due to its ability to effectively deal
with noisy input and achieve accurate results (18). In Ref. (19),
Alickovic et al. proposed a medical decision support system using
principal curvemodel and random forests classifier for the diagnosis
of heart arrhythmia with high accuracy. Meanwhile, Bisele et al. (20)
have combined the machine learning model with the principal
curve model for assessing human locomotion.

In this work, we propose a novel semi-automatic segmentation
framework termed H-SegMod for prostate segmentation on TRUS
images. The proposed framework consists of two cascaded stages. In
the first stage, using a few radiologist-selected seed points as prior,
an improved principal curve model is used to obtain the vertices
sequences, which consists of the coordinates of vertices and
sequence number of vertices. In the second stage, a smooth
prostate contour is obtained by using an Improved Differential
Evolution Machine Learning model (IDEML), which combines an
improved Differential Evolution model (DE) and a machine
learning model.

The key contributions of the proposed method are
summarized as follows:

1) We combine the ability of the principal curve method to
automatically approach the center of the dataset (21) and use a
principal curve-based method to obtain the vertices sequence
consisting of vertices ordinates and sequence number of vertices.
Compared with other state-of-the-art principal curve models, the
Constraint Closed Polygonal Segment model (CCPS) is proposed
in our model by adding different normalization strategies and
constraint conditions.

2) A mathematical map model (realized by the IDEML) is
found to describe the smooth prostate contour represented by
the output of the neural network (i.e., optimized vertices) that
can match the ground truth contour. By using IDEML for
training, the model error can be minimized to obtain an
accurate segmentation result.
FIGURE 1 | The left image is an example of a TRUS image with a clear prostate boundary. The other two TRUS images show examples with weak or incomplete
edge information. All TRUS images are from TaiZhou People’s hospital (see Section 3.1).
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3) The IDEML consists of an Improved Adaptive Mutation and
Crossover-based Differential Evolution model (IAMCDE) with an
Adaptive Learning-Rate Back Propagation Neural Network
(ABPNN), where the IAMCDE is proposed using different
mutation steps and loop constraint conditions as compared with
other state-of-the-art differential evolution models.

The remainder of this paper is organized as follows. Section 2
presents the proposed model, Section 3 describes the dataset and
performance metrics, and Section 4 presents the results. Section 5
draws a discussion and conclusion
2 MODEL

2.1 Overview of the Proposed Model
The proposed H-SegMod consists of two main components: 1)
improved principal curve model and 2) improved enhanced
neural network. The flowchart of our H-SegMod is shown in
Figure 2. The goal of this proposed model is to reduce the
workload of expert radiologists and obtain smooth and accurate
Frontiers in Oncology | www.frontiersin.org 3
prostate contours. We first use a few radiologist-selected seed
points as prior. Then CCPS is used for obtaining the vertices
sequences, which consists of the sequence number of vertices,
and their corresponding coordinates. Next, we used the IDEML
for training, where the sequence number of vertices is used as the
input of IDEML, and vertices’ coordinates are used to minimize
the mean square error. Finally, after training, the parameters of
the IDEML are used to denote the map function for expressing
the smooth mathematical model of prostate contour.
Furthermore, we add the input/output of each step of the
proposed method in Table 1.

2.2 Constraint Closed Closed Polygonal
Segment Model (CCPS)
Principal curve was first proposed by Hastie & Stuetzle (21) as a
smooth one-dimensional curve that passes through the middle of
an n-dimensional data set, providing a nonlinear summary of the
data. To improve the efficiency and robustness of our previous
work named Closed Polygonal Segment model (CPS), we
proposed the CCPS.
FIGURE 2 | The flowchart of the proposed model, including the CCPS and IDEML, where the IDEML consists of the IAMCDE and the ABPNN.
June 2022 | Volume 12 | Article 878104
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2.2.1 CPS
According to the concept of principal curve (21), Kegl et al.
designed the K-segments Principal Curve method (KPC) (22) to
find the k-segment principal curve. Considering that the
traditional KPC cannot handle the issue of the unfitted closed
dataset, we have previously proposed the CPS (23–25). To make
the improvement of CPS intuitive, compared with KPC, we list
the added constraints and stop conditions.

2.2.1.1 Constraints
Our improvements are from curve shape-based, segments-based,
and vertices-based parts.

During the procedure offinding the principal curve, the curve
of the prostate contour keeps closed. In addition, we will retain
the longest segment so that it can include the greatest number of
projection points.

To find an optimal vertex, the main steps of selection of the
optimal vertex are shown as follows: firstly, inserting a new
vertex, the data point set is projected in the segments or the
determined vertices. Secondly, the Euclidean distance from
points to the curve of the contour is obtained. Finally, the
position of each vertex is updated only if the value of the
distance function is smaller.

2.2.1.2 Stop Conditions
Our previously proposed stop conditions contain the whole
loop-based, outer loop-based, and inner loop-based parts.

If the number of segment is satisfies the condition, the whole
loop will stop, where the whole loop condition is shown in Eq. (1).

is > bn1=3Dn(f k,n)
−1=2r (1)

The parameter b equals 0.3, which is determined by several trial
runs (22), n shows the number of data points, f denotes the
principal curve, and r is the radius of data points.

Both the inner and outer loops should meet the condition that
the difference in value between the current distance and the last
loop distance is smaller than the maximum distance
deviation Ds=0.002.

2.2.2 CCPS
To deal with the issue that the practical usefulness of both KPC
and CPS is severely affected by issues of sparse, uneven
distributions, and abnormal data. Furthermore, the
performance of the KPC suffers from the dependencies of
predetermined parameters for the underlying optimization. In
this work, we propose CCPS to deal with these issues, which
combines several modified constraints of the Constraint K-
segment Principal Curve model (CKPC) that were originally
proposed in Ref (26). The refinements of CCPS mainly include
Frontiers in Oncology | www.frontiersin.org 4
two parts: 1) different initialization or normalization strategies
and 2) vertices filtering.

2.2.2.1 Improved Initialization
In Ref. (26), Zhang et al. introduced two points p1 and p2 from
the neighborhood of the “true” curve to construct a first principal
component line, where p1 and p2 are the start point and endpoint
of the first principal component line, respectively. In this work,
considering that the KPC (22) and CKPC (26) cannot deal with
the closed dataset well, we use a different initialization strategy. A
closed square containing all the projection points is used as the
first principal component line, where the coordinates of the
vertices of the closed square are (0.1, 0.1), (-0.1, 0.1), (-0.1, -0.1),
(0.1, -0.1), and (0.1, 0.1), respectively.

2.2.2.2 Improved Normalization
As our previous works use the Min-Max normalization method
(27) with the weak anti-interference ability, we adopt an
improved normalization strategy by using the Z-score
standardization method (28). The mean m and variance s are
defined in Eq. (2) and Eq. (3), respectively.

mx =
1
no

n

i=1
xi and my =

1
no

n

i=1
yi (2)

sx =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
xi − mxð Þ2� �s

 and sy =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
yi − my

� �2h is
(3)

where xi and yi are the x-axis coordinate and y-axis coordinate of
point pi, respectively.

The new x-axis coordinate xi
' and y-axis coordinate yi

' are
calculated in Eq. (4).

x0i =
xi �mx

sx
 and y0i =

yi �my

sx
(4)

2.2.2.3 Vertices Filtering
In the vertex optimization step, the position of each vertex is based
on the principle that the distance from the sample point to the
principal curve is the smallest (29). If the optimization fails, the
locations of some vertices may produce a distorted principal curve.
To deal with this issue, we introduced a constraint term to verify
and remove any abnormal vertices after the vertex optimization
step. The flag of removing vertices is defined in Eq. (5).

Flag við Þ =
1,

0,

if 1si-1or 1s
� �

> r
� �

otherwise

(
(5)
TABLE 1 | Input/output of each step of the proposed method.

Method Input Output

CCPS Seed points vertices sequences (sequence number of vertices and their corresponding coordinates)
IAMCDE Initial parameters (shown in Section 2.3.1) Optimal initial weight and threshold of ABPNN
ABPNN Vertices sequences Prostate contour
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where 1si is the length of the i-th line segment and satisfies 1si=∥
vi+1−vi ∥1≤i≤n, r is the radius of data and satisfies r = maxx ∈
V ∥ x − 1

noy ∈ Vy ∥, n is the total number of vertices in dataset
V, x and y are the x-axis and y-axis coordinate of the vertex
vi, respectively.

If Flag(vi)=1, we keep the vertex, and if Flag(vi)=0, we delete
the vertex. There are two situations in which the vertex vi must be
removed:1) The vertex goes outside the radius of the data, and 2)
the number of data points projected onto the vertices and
neighboring segments is less than five in this work.

2.3 Improved Differential Evolution
Machine Learning Model (IDEML)
When a Neural Network (NN) randomly initializes the network
connection weights and thresholds, the training results can be
potentially trapped into the local minimum instead of the global
optimum. As such, the final training results of the learning
algorithm strongly depend on the initial weights and
thresholds (30). Due to the good ability of the Differential
Evolution model (DE) for global search, many studies use DE
or an improved version of DE for preliminarily searching for the
initial optimal connection weights and thresholds of NN (31, 32).
In this work, we propose a new IDEML that combines the
IAMCDE with ABPNN. The vertices sequences obtained by
the CCPS are used by the IDEML. Before the ABPNN is ready
to train, we use the IAMCDE to search the initial optimal
connection weights and thresholds of ABPNN. After the
ABPNN has completed training, we can obtain the ABPNN’s
optimal parameters, such as weights and thresholds. The
parameters of the ABPNN are used to express the
mathematical expression of prostate contour, which is shown
in Section 2.4.

2.3.1 Improved Adaptive Mutation and Crossover-
Based Differential Evolution Model (IAMCDE)
The traditional Differential Evolution model (DE) proposed by
Storn et al. (33) has been used as a global search technique.
However, both mutation Factor (F) and Crossover Rate (CR)
with a fixed value will affect the convergence speed and the
quality of the solution. Zeng et al. (30) have proposed an
Adaptive Mutation and Crossover-based Differential Evolution
model (AMCDE) and validated it on the energy consumption
prediction. Considering that the AMCDE can be trapped into the
local optimum, our work proposes an improved AMCDE
(IAMCDE). The refinements of IAMCDE mainly include two
parts: 1) two mutation operators and 2) a new global optimum
search approach based on a population randomization strategy.

2.3.1.1 Traditional DE
The details of the key steps are briefly described as follows:

(1) Initialization: The main parameters, such as population
size S, mutation factor F, crossover rate CR, the range of search
space [Umin, Umax], and length of chromosome CS, are
initialized. The initial population popij is randomly created in
Eq. (6).

popsj = Umin + rand ½0, 1� �  Umax − Uminð Þ (6)
Frontiers in Oncology | www.frontiersin.org 5
where s=1,2,.,S and rand (0, 1) is to generate a random number
between 0 and 1.

(2) Mutation: For each candidate popGs , s  ¼  1, 2, …  S, the
DE generates a new corresponding mutated individual, which is
denoted in Eq. (7).

npopG+1s = popGpm1
+ F� popGpm2

− popGpm3

� �
(7)

where the population members pm1, pm2, and pm3 are randomly
selected, with each of them being different. F is used to control
the mutation process, which is distributed in the range of [0, 2],
as discussed in Ref (33, 34).

(3) Crossover: The crossover step mixes the mutated vectors
and the target vectors to increase the variety of the parameter
vector. The rule is shown in Eq. (8).

uG+1sj =
npopG+1sj ,

popGsj ,
 

if pmðjÞ ≤ CR

otherwise

(
(8)

(4) Selection: The trial individual (offspring) produced by the
crossover operator is compared with the target individual
(parent). Whether the individual will be a part of the next
generation is determined by the following selection method
[Eq. (9)].

popG+1s =
uG+1s , if f uG+1s

� �
< f popGs

� �
popGs , otherwise

 

(
(9)

2.3.1.2 Previously Proposed AMCDE
To improve the convergence speed and the quality of the
solution, the main improvements of Ref (30). are shown in Eq.
(10) and Eq. (11).

F =
a + 1 − að Þ � sin G

GMax p − 1
2 p

� �
, if G ≤ GMax

2

a − 1 − að Þ � cos 1
2 p − G

GMax p
� �

, otherwise

(
(10)

CR =
b + 1 − bð Þ � sin G

GMax p − 1
2 p

� �
, if G ≤ GMax

2

b − 1 − bð Þ � cos 1
2 p − G

GMax p
� �

, otherwise

(
(11)

where a and b are constants within the range [0.5, 1], GMax is the
maximum iteration number, and G is the present iteration number.

At the beginning and end stages, both F and CR change slower,
where sine function and cosine function are in a 1/4 cycle with a
value within [1, 0], respectively. In the middle stage, they change
relatively faster. The improvements of AMCDE have shown good
performance in finding the optimal global solution (30).

2.3.1.3 Our Newly Proposed IAMCDE
In this work, we propose a new IAMCDE by adding two new
improvements based on the AMCDE (30).

First, we use two mutation operators to generate mutant vectors
according to Eq. (12).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Peng et al. Interpretable Ultrasound Prostate Segmentation
npopGi =

popGi1 + rand1 � popGi2 − popGi3
� �

, if and  0, 1½ � >
< PG

popGi1 + rand2 � popGi2 − popGi3
� �

+ rand3

� popGi4 − popGi5
� �

,
otherwise

8>>>>>><
>>>>>>:

(12)

where ik (k=1,2,3,4,5) represent five random integer numbers in the
range of [1, Np] and Np is the number of solutions; rand1, rand2,
rand3, and rand[0,1] are the four random numbers in the range of
[0, 1]. Random numbers are used to produce mutation factors in
each generation. During the evolution process, a mutation factor
can be selected in the range of [0, 1], which is useful for both global
and local search. pG shows the probability of using the mutation
operator and is updated in Eq. (13).

proG = promin +
G� promax − prominð Þ

GMax
(13)

where promax and promin are the maximal and minimal probability
of using the mutation operator.

Second, we propose a new global optimum search approach
based on a population randomization strategy to help IAMCDE to
avoid the local optimum. The IAMCDE may get trapped in the
optimum local search, which causes the search space to be limited.
Here, the execution step of the new global optimum search
approach is shown as follows: we set the current number of
consecutive failures Nfail=0 and the max number of consecutive
failures Nfailmax. If the current population is improved in the Gth
generation, we set Nfail=0. Otherwise, Nfail=Nfail+1. When
Nfail=Nfailmax, we will set Nfail=0 and carry out the population
randomization strategy as follows: First, we sort all solutions of
the population by decreasing order according to their function
values. Second, the first NP/2 solutions are reserved for the next
generation, and the remaining NP/2 solutions are removed from the
population. Finally, NP/2 new solutions are added to the population,
which are generated according to Eq. (6).

2.3.2 Adaptive Learning-Rate Back Propagation
Neural Network (ABPNN)
Using NN for training using vertices sequence obtained by the
CCPS, the model error can be minimized to refine the segmentation
results. However, there are many drawbacks in the training step, i.e.,
slow convergence, easy to get trapped to local minima. In this work,
we propose the ABPNN. The main improvement of ABPNN is
using the adaptive learning rate. In traditional BPNN, the learning
rate is constant. However, the learning rate directly affects
the convergence efficiency of the machine learning model. When
the learning rate is lower, it needs more training time, and the
convergence of the model becomes slower. When the learning rate
is too high, the model will become unstable due to oscillation and
divergence. Therefore, the trend of the model error E is updated in
Eq. (14), which is according to the following strategy: 1) If themodel
error E decreases from the previous iteration, the learning rate
increases; and 2) If the model error E increases from the previous
Frontiers in Oncology | www.frontiersin.org 6
iteration, the learning rate decreases.

hk =

a� hk−1 Ek < Ek−1

b� hk−1 Ek > Ek−1

hk−1 others

8>><
>>: (14)

where k is the epochs at the training step, E is the error function and
E =oi = 1n(yic − yid)

2. yic shows the actual result, and yid is the
desired result. a is the constant within the range (1, 2) and b is the
constant within the range [0, 1], where we set a and b at 1.5 and 0.5
in this work, respectively

2.4 Interpretable Mathematical Expression
of Prostate Contour
Due to the feed-forward neural network with one hidden layer used
to approximate any continuous function, we choose the ABPNN
with only one hidden layer. Meanwhile, we use the three-layer
ABPNN with two output neurons in the output layer, where the
parameters of the ABPNN are used to express the values of two
output neurons. Then, the values of two output neurons are used to
denote the x-axis coordinate and y-axis coordinate of the contour
points, respectively. Finally, the prostate contour can be obtained by
the contour points.

In this work, we use the parameters of the ABPNN to express the
values of two output neurons, shown in Eq. (15).

gx t), gy(t)
� �

= (
e
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1+eoq
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aj,1-bj,1

e
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1+eoq
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0
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(15)

The corresponding parameters are denoted as follows:
g(•) denotes the value of the output unit; t denotes the vertices

sequence; q is the number of hidden neurons; wi(i=1,2,…,q) is
June 2022 | Volume 12 | Article 878104
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the weight from the input layer to the i-th hidden neuron; Ti

(i=1,2,…,q) is the output threshold of the i-th hidden neuron; ai,k
(i=1,2,…,q; k=1,2) is weight from the i-th hidden neuron to the
k-th output neuron; bk(k=1,2) is the output threshold of the k-th
neuron at the output layer;

The proposed mathematical expression of prostate contour
can be obtained in Eq. (16).

f (t) = x(tÞ, y(t)ð Þ

=
gxðtÞ + 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − (gxðt)2

p
2 ∗ gxðtÞ

,
gyðtÞ + 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − (gyðt))2

q
2 ∗ gyðtÞ

0
@

1
A
(16)

where x(t) denotes the x-axis coordinate of the contour points,
and y(t) denotes the y-axis coordinate of the contour points.
3 EXPERIMENTAL SETUP

3.1 Dataset
A dataset consisting of 100 brachytherapy patients is used to
evaluate the proposed model. All images were obtained at the
Taizhou People’s Hospital, Jiangsu, China. The study protocol
was reviewed and approved by the Ethics Committee of our
institutional review board, and informed consent was obtained
from all patients.

All TRUS data were obtained using the General Electric
LOGIQ E9 (LE9) system and an integrated TRUS probe with a
frequency in the range of 5-8 MHz. The age of the patients
ranged from 18 to 56. All images are in DICOM file format,
which has a matrix size of 700×615 pixels.

The ground truths prostate contours are marked and verified
by five expert radiologists. All the expert radiologists have over
15 years experience in dealing with prostate anatomy, prostate
segmentation, and ultrasound-guided biopsies. Each expert
radiologist independently checks their own marks along with
the anonymous marks of the other radiologists, and the
consensus ground truths are obtained by the majority voting of
five experts’ annotations.
3.2 Performance Metrics
To demonstrate the performance of the proposed model, we use
Dice Similarity Coefficient (DSC) (2), Jaccard Similarity Coefficient
(W) (3), and Accuracy (ACC) (6) as the evaluation metrics. The
metrics are shown in Eq. (17), Eq. (18), and Eq. (19), respectively.

W =
TP

FP+TP+FN
(17)

DSC ¼ 2TP
2TP+FP+FN

(18)
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ACC ¼ TP+TN
TP+FN+FP+TN

(19)

where TP, FP, FN, and TN represent True Positive, False Positive,
False Negative, and True Negative, respectively.
4 RESULTS

In this section, we describe the series of experiments used to evaluate
the proposed model. The dataset (100 patients, 605 images) was
randomly divided into three groups, where one group with 50
patients (350 images) was used for training, one group with 25
patients (100 images) was used for validation, and the other group
with 25 patients (155 images) was used for testing. First, the training
and validation sets were used to select the optimal parameters of the
proposed model (Section 4.1). Second, the accuracy and stability of
the proposed model were further evaluated using different
evaluation metrics on the testing set. Considering that different
patients may have different numbers of slices, the average values
over all slices from the same patient are calculated for each patient
(Section 4.2). Third, we compared the proposed model with several
hybrid models quantitatively and qualitatively (Section 4.3). Then,
the curve fitting model was selected to compare with our proposed
model (Section 4.4). Finally, we compared our proposed model with
several other state-of-the-art models (Section 4.5). All experiments
have been performed on a computer with Intel Core i7-8750H CPU
and Geforce GTX 1070 GPU with 8G memory.

4.1 Selecting the Best Performance of the
Proposed Model
4.1.1 Comparison on Different Neurons
Figure 3 shows the training and validation results obtained by the
proposed model on different hidden neurons. The number of
epochs is set to 1000. Overall, the influence of the number of
neurons on training results is similar to that of the validation results.
The performancemeasured by three metrics, i.e., DSC,W, and ACC,
shows the same trend as the number of neurons increases. When
the neuron number is 1, all the training results are as low as 70%,
and the validation results are slightly higher than the training
results. The possible reason is that the complex problem fails to
be handled with the ABPNN, when the neurons are not enough at
the hidden layer. When the neuron number is 10, the model
achieves the best performance, where the DSC, W, and ACC of
validation results are 96.2%, 94.8%, and 96.1%, respectively. As the
number of neurons further increases, the model performance starts
to degrade. These results suggest that too many hidden neurons
may cause overfitting with increased training time.

4.1.2 Comparison of Different Epochs
Based on the results obtained in the previous session, we used 10
neurons in the remaining experiments. Figure 4 shows the
training and validation results in different epochs, where the
trend between the training and validation results is similar. With
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the increasing epochs, all the metrics, i.e., DSC, W, and ACC, are
increasing. When the epoch is 1000, the model achieves the best
performance. After 1000 epochs, the model performance
becomes stable. Therefore, we set it at 1000 epochs.

4.2 Comparison With Different Metrics on
Different Patients
Based on the selected optimal model in the previous section, we
evaluated the model performance on the testing set. The metrics
of each patient of the testing set are shown in Figure 5. Due to
different patients having a different number of slices, we show the
average value of the metrics on each patient. Overall, the
proposed model achieves good segmentation performance
evaluated by three different metrics. The average DSC, W, and
ACC are 96.5%, 96.3%, and 95.2%, respectively.

4.3 Comparison With Hybrid Models
In this section, the proposed H-SegMod segmentation model is
compared with three other hybrid models qualitatively and
quantitatively. Three different metrics, i.e., DSC, W, and ACC,
are used for evaluation, and the description of the three
compared models is summarized below:

Hybrid model 1 is the Closed Polygonal Segment model with
-Differential Evolution-Back Propagation Neural Network (CPS-
DE-BPNN). Hybrid model 1 combines the strategies presented
in Ref. (25) and Ref. (33) to complete the prostate segmentation.

Hybrid model 2 is the CPS-Adaptive Mutation and
Crossover-based Differential Evolution model coupled with
-BPNN (CPS-AMCDE-BPNN). On the basis of Hybrid model
1, Hybrid model 2 was improved by combining with the strategy
proposed in Ref (30).

Hybrid model 3 is the Constraint Closed Polygonal Segment
model with -AMCDE and -Back Propagation Neural Network
(CCPS-AMCDE-BPNN). Compared with the Hybrid model 2,
Hybrid model 3 uses the improved CCPS.

All the models are semi-automatic and use the same training,
validation, and testing sets. We set 1000 epochs and 10 neurons
for all the models. Based on our previous studies (25), we set the
Frontiers in Oncology | www.frontiersin.org 8
learning rate of the three compared models with a constant at
0.4. Due to the self-adaptive learning rate of our proposed model,
our proposed model only needs to set the initial learning rate
at 0.5.

To compare the performance of all the hybrid models, we test
all the hybrid models on the whole testing set quantitatively. The
results of these Hybrid models are shown in Table 2, whereas the
results of our proposed H-SegMod are shown in the previous
section. Meanwhile, we randomly selected four TRUS results
(Image 1-Image 4) for visual comparison, as shown in Figure 6.
The first row in Figure 6 denotes raw prostate TRUS images. As
the prostate TRUS images often contain the missing/ambiguous
boundaries (shown in orange arrows), the expert radiologists
first mark the approximate range of the prostate with yellow and
green labels (shown in raw images). The second row denotes
Ground Truth (GT) delineated by expert radiologists. The last
four rows show the experimental results of the four models,
where red lines show the GT and blue lines show the
segmentation result.

Overall, the proposed model has the best performance.

4.4 Comparison With Curve Fitting Model
In this section, we compare our proposed H-SegMod with the
cubic spline interpolation model (CSIM) quantitatively and
qualitatively, where the CSIM is a curve fitting model. The
CSIM is firstly proposed by Mckinley et al. (35) and extended
to the medical field (36, 37). We test both models on the whole
testing set, and the results are summarized in Table 3. Both
models only use a few radiologists-defined seed points as initial
points. Meanwhile, six images are randomly selected from the
testing set, which is different from the four images qualitatively
evaluated in the previous section. The visual comparison results
between CSIM and our proposed model are shown in Figure 7.

In Figure 7, the contours obtained by the proposed model are
closer to the GT contours than CISM in most of the cases. We
further quantify the performance difference by the Euclidean
square distance function denoted by Df. With a smaller Df, the
principal curve f(t) is closer to the initial dataset. Compared with
A B

FIGURE 3 | Corresponding training and validation results at different hidden neurons. Green, blue, and black curves show the changes of the DSC, W, and ACC,
with the number of neurons, respectively. Considering that all the metrics have nearly the same trend and obtain the max value at the same neurons, we use the red
dotted line to represent the position of obtaining the max values of all the metrics. In this figure, (A, B) show the training and validation results under different
neurons, respectively.
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CSIM, the Df of the proposed model is smaller, which means the
proposed model achieves higher accuracy of contoured prostate.

4.5 Comparison With Other State-of-the-
Art Models
We further evaluated the proposed H-SegMod on the whole
testing set against two widely used hybrid approaches, including
CPL-BNNM (25) and Hull-CPLM (24), and two deep learning-
based approaches, including Unet (38) and Mask-RCNN (39).
Two deep learning networks are the automatic segmentation
models, and the three hybrid models, including our proposed
model, are the semi-automatic models. The results of these
experiments are presented in Table 4.
Frontiers in Oncology | www.frontiersin.org 9
Due to the accuracy of deep learning-based models being
affected by the number of limited training data (40), we
augmented raw training data (350 slices), where each slice was
rotated at the angle range of [-15°, 15°] until they met the
expected number of training data (1500 slices). However, three
hybrid models only used the raw training data (350 slices).

Overall, the hybrid models obtain comparable or better
segmentation results than deep learning models. Among all the
models, our proposed model has the best performance. All the
hybrid models are based on the principal curve and have
obtained good segmentation results. These results prove that
combining the principal curve model with the machine learning
model has the ability to fit the dataset and alleviate the
requirement of the large dataset in deep learning-based models
5 DISCUSSION AND CONCLUSION

In this paper, we have presented a new hybrid model for accurate
and robust prostate segmentation from TRUS images. The
innovations of our proposed model include: (1) an improved
principal curve model; (2) an improved differential evolution
machine learning model; (3) a map mathematical function to
generate the smooth prostate contour. To demonstrate the
applicability of our proposed segmentation method to
prostates of various shapes, TRUS images of 100 patients were
used for validating the performance of the proposed method.
Both qualitative and quantitative experimental results show that:
(1) the H-SegMod can obtain accurate results whether it is
validated on different patients (all 25 testing patients) or based
on different evaluation metrics (DSC, W, and ACC); (2) the
performance of the proposed segmentation model outperforms
many other state-of-the-art methods. In this section, we discuss
the entire study from different aspects.

The H-SegMod: This part will be discussed from three aspects:
(1) the impact of the selection of optimal parameters of the
proposed H-SegMod, (2) discussion of proposed H-SegMod
using a different number of seed points, and (3) the worst
result of the proposed method.
FIGURE 5 | Performance measures of the proposed model at different
evaluation metrics (i.e., DSC, W, and ACC), on the testing set consisting of 25
patients. The solid line shows the value of each patient, and the dotted line
shows the average value of whole patients.
A B

FIGURE 4 | Corresponding training and validation results at different epochs. In this figure, (A, B) show the training and validation results under different epochs,
respectively.
June 2022 | Volume 12 | Article 878104

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Peng et al. Interpretable Ultrasound Prostate Segmentation
The impact of the selection of optimal parameters of the
proposed H-SegMod: In Section 4.1, we present the process of
selecting the optimal parameters of the proposed model. From
Figures 3, 4, we can find that after the hidden neuron is more
than 10 and the epoch is larger than 1000, the performance of
ABPNN starts to degrade based on different metrics (i.e., DSC,
W, and ACC). These could be caused by overfitting, where the
excessively increased number of neurons or epochs outweighs
the complexity of the ABPNN. Some common strategies, such as
Frontiers in Oncology | www.frontiersin.org 10
standard regularization methods, early stopping, dropout, or
data augmentation, may be employed to avoid overfitting (41).

Discussion of proposed H-SegMod using different number of
seed points: To discuss the impact of number and placement of
seed points, we designed two experiments, including seed points
closer to the shadowed regions and prostate contour. We used
less than 10% of points of manually delineated contour by
radiologists as seed points in this work. Table 5 shows the
quantitative comparison of point-guided methods using DSC
FIGURE 6 | Visual comparison of prostate segmentation results.
TABLE 2 | Quantitative comparison with hybrid models.

Model Method Model DSC (%) W (%) ACC (%)

Hybrid model 1 CPS-DE-BPNN Hybrid 91.6 90.6 91.8
Hybrid model 2 CPS-AMCDE-BPNN Hybrid 92.1 90.3 92.1
Hybrid model 3 CCPS-AMCDE-BPNN Hybrid 93.8 92.6 93.7
Proposed model H-SegMod Hybrid 96.5 95.2 96.3
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as a metric, after selecting less than 1%, 4%, 7%, 10%, 15%, 30%,
or 50% of points of contours manually delineated by radiologists
as the prior points. From Table 5, we can find that the DSCs of
both methods increase using the increasing number of seed
points. Compared with the method using the seed points closer
to the shadowed regions, the performance of the method using
the seed points closer to the prostate contour increases slightly.

The worst result of the proposed method: We selected the worst
result of the proposed method, shown in Figure 8, where the
DSC of the proposed method using this case is only 0.79. The
prostate is severely affected by intraprostatic calcifications and
openings of the prostatic urethra.

The H-SegMod and curve fitting method: In Section 4.4,
although the curve obtained by CSIM can be close to the
approximate trend of the initial data points, the sequence of
the initial points needs to be set manually, as shown in Table 3
and Figure 7. In the proposed H-SegMod, the sequence number
of the vertices is achieved automatically. Considering that the
principal curve f(t) has the ability to pass the center of the data
points, the principal curve model can automatically approach the
center of the dataset and obtain more accurate results.

The H-SegMod and state-of-the-art method: In this section, we
discuss four aspects: (1) overall comparison, (2) comparison of
the extreme case, (3) computational efficiency, and (4) the degree
of difficulty with ultrasound prostate tasks.
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Overall comparison: Comparison methods described in both
the Ref. (38) and Ref. (39) are deep learning models, which
obtained reasonable segmentation results. Compared to the
proposed hybrid model, the accuracy of segmentation is worse
in these two deep learning-based models. One reason is the
number of training images is limited in this work. Another
reason is that the shapes of the prostate in different patients have
high variations, which makes the training of deep learning
models difficult.

Comparison on extremely case: We also added the comparison
between Unet and our proposed method on extremely case,
shown in Figure 9, where this case is mentioned in Figure 1
(right). This case with the gain being too high causes the weak
boundaries between the prostate and neighboring tissues (i.e.,
bladder and seminal vesicles). From Figure 9, our method can
obtain a more accurate prostate contour.

Computational efficiency: As we know, the performance of
deep learning-based methods depends on the amount of training
data (42), where we used rotation as the data augmentation stage
of the deep learning method. However, this data augmentation
strategy is known to cause significant variance in end
performance and can be challenging to select (43). The testing
times of all the methods in Table 5 were approximately 6-7s,
while there is a big difference in the execution time of all the
methods. It spent around 1.5 days for Mask-RCNN’s training,
whereas the U-Net method had approximately 3.5 hours for
training. The other hybrid methods (CPL-BNNM, Hull-CPLM,
and H-ProSeg) spent around 2 hours on training.

Degree of difficulty with ultrasound prostate tasks: In Table 4,
comparison methods described in both Ref. (24) and Ref. (25)
are hybrid models. These models were tested on Chest X-rays
FIGURE 7 | Comparison between CSIM and proposed model.
TABLE 3 | Quantitative comparison with CSIM.

Method Model DSC (%) W (%) ACC (%)

CSIM Curve fitting 94.3 93.1 94.2
H-SegMod Hybrid 96.5 95.2 96.3
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(CXR) and chest Computed Tomography (CT) for lung
segmentation, respectively, and obtained a good performance.
However, compared with CXR and CT lung images, TRUS
prostate image is more complex and easily affected by other
organs such as the urethra, bladder, and rectum. Although lung
CXR and CT lung segmentation will be affected by the heart,
clavicle, etc., the lung contrast in CXR and CT is higher, which
are relatively easier to be identified. In rectal ultrasound prostate
segmentation, the boundary of the prostate can be vague.
Therefore, the results of hybrid models obtained in this work
for prostate TRUS segmentation measured by DSC and ACC
slightly degraded as compared to results for lung segmentation
on CXR or CT.

While our proposed semi-automatic model has obtained
promising results, several aspects can be considered to further
improve its performance and develop it into a fully-automatic
model. The proposed network architecture consists of two cascaded
stages, which increases the memory burden for segmentation.
Therefore, model compression needs to be considered for its real-
time clinical applications. Furthermore, to develop a fully automatic
segmentation method, we may use deep learning models to obtain a
coarse segmentation and use the proposed method to refine the
coarse segmentation from deep learning.

6 APPENDIX

6.1 Notation
Table 6 shows the description of the used notation.

6.2 Derivation Procedure of Mathematical
Equations
1. Derivation Procedure of Eq. (15)

During ABPNN’s training, the output of the output layer is
achieved at the forward propagation stage, and the purpose of the
backpropagation stage is to update the parameters (i.e., weight
and threshold). Sigmoid activation function h1 = 1/(1+e-x) and
Tanh activation function h2=(e

x-e-x)/(ex+e-x) are used at the
forward propagation stage from the input to hidden layer and
hidden to output layer, respectively. The details of BPNN are
shown in Ref (44). We list the main derivation step of Eq. (15) for
making the ABPNN’s procedure intuitive. Furthermore, all the
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mentioned notations have been summarized in previous
Section 6.1.

The input of the hidden layer HI is obtained in Eq. (20).

HI =oZ
i=1twi-T;  i ¼ 1,2,::,Z (20)

Sigmoid activation function h1 is used to calculate the output of
the hidden layer HO (Eq. (21)).

HO =
1

1+e-HI
=

1

1+eoZ
i¼1-ðtwi-TiÞ

;  i ¼ 1,2,::,Z (21)

The input of the output layer gI is shown in Eq. (22), where we set
k=2.

gI =ok
j¼1Hoaj-bj

=ok
j¼1

1

1+eoq
i¼1-ðtwi-TiÞ

aj-bj;  i ¼ 1,2,:::,q;  j ¼ 1,::,k  k ¼ 2ð Þ

(22)

Furthermore, we used Tanh activation function h2 to calculate
the output of the output layer gO, which is shown in Eq. (23).

gO =
egI -e-gI

egI+e-gI

=
e
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j¼1

1

1+eoq
i¼1-ðtwi-TiÞ

aj-bj

-e
�ok

j¼1
1

1+eoq
i¼1-ðtwi-TiÞ

aj-bj

e
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j¼1
1

1+eoq
i¼1-ðtwi-TiÞ

aj-bj

+e
�ok

j¼1
1

1+eoq
i¼1-ðtwi-TiÞ

aj-bj
;  i ¼ 1,2,

… ,q;  j ¼ 1,::,k  k ¼ 2ð Þ
(23)

where we use the go to denote the set of two outputs of output
layer of ABPNN, and go=[gx(t), gy(t)]. Furthermore, due to the
prostate contour consisting of contour points v(x, y), we use gx(t)
and gy(t)} to denote contour points’ x-axis coordinates x(t) and
y-axis coordinates y(t), respectively.

Therefore, two output neurons g(•) are denoted in Eq. (24),
To make the reader more intuitive, we show Eq. (24), where Eq.
TABLE 4 | Quantitative comparison with other state-of-the-art models.

Paper Method Model DSC (%) W (%) ACC (%)

(38)-2015 Unet Deep learning 91.3 89.6 90.7
(39)-2017 Mask-RCNN Deep learning 93.1 92.4 92.9
(25)-2018 CPL-BNNM Hybrid 91.8 90.5 91.4
(24)-2019 Hull-CPLM Hybrid 94.9 94.3 94.6
Proposed model H-SegMod Hybrid 96.5 95.2 96.3
June
 2022 | Volume 12 | Artic
TABLE 5 | DSC values of seed point-guided methods using different percentage points as a prior.

Placement of seed points <1% of points <4% of points <7% of points <10% of points <15% of points <30% of points <50% of points

Closer to the shadowed regions 91 93.1 94.7 95.7 96.1 96.6 97.3
Closer to the prostate contour 91.8 93.5 95.8 96.5 96.8 97.2 98.5
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(15) and Eq. (24) are the same.
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2. Derivation Procedure of Eq. (16)
In the data mining field, Wang et al. (45) proposed a

mathematical function to represent the principal curve of the
data set, where activation functions from both the input to the
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hidden layer and hidden to the output layer are Sigmoid function
that is denoted in Eq. (25).

x(t), y(t)ð Þ = (
1

1 + eg
0
x(t)

,
1

1 + eg
0
y(t)

) (25)

Due to our method using the Sigmoid function from input to
hidden layer as well, g’x(t) and g’y(t) are used as the input of gx(t)
and gy(t), respectively.

Because of its higher training efficiency (46), Tanh activation
function from hidden to output layer is used in this study. Based
on Tanh activation function, gx(t) and gy(t) are denoted in Eq.
(26) and Eq. (27), respectively.

gxðtÞ ¼
eg

0
xðtÞ-e-g

0
xðtÞ

eg
0
xðtÞ+e-g

0
xðtÞ

¼ 1-
2

e2g
0
xðtÞ+1

⇒ eg
0
xðtÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1-gxðtÞ
1+gxðtÞ

s
(26)
FIGURE 9 | Visual comparison with Unet using extremely case, where the image is mentioned in Figure 1 (right). The first row shows the compared results, and the
second row shows the partial magnification display.
FIGURE 8 | Here is the worst result of the proposed method. Red and orange arrows point to the intraprostatic calcifications and openings of the prostatic urethra,
respectively.
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gyðtÞ ¼
eg

0
yðtÞ-e-g

0
yðtÞ

eg
0
yðtÞ+e-g

0
yðtÞ

¼ 1-
2

e2g
0
yðtÞ+1

⇒ eg
0
yðtÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1-gyðtÞ
1+gyðtÞ

s
(27)

After the aforementioned equations [i.e., Eq. (26)~(27)], we use
newly obtained eg

0
xðtÞ and eg

0
yðtÞ to update the x(t) and y(t) [Eq.

(25)]. Finally, we can get the proposed mathematical function of
the prostate contour, shown in Eq. (28), where Eq. (16) and Eq.
(28) are the same.

f (t) = x(tÞ, y(t)ð Þ

=
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1
A
(28)
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TABLE 6 | A description of the notation used in Appendix A.

Description Symbols

CCPS Principal curve f
Data point set/data point P/p
Number of data points n
Vertex subset/segment subset in principal curve Vi = {v1, v2, …, viv}/Si = {s1, s2, …, sis}
Vertex/segment of principal curve v/s
x-axis/y-axis coordinates of principal curve’s vertex v x/y
Vertices sequence t
Length of segment l
Distance deviation Ds
Data radius r
Flag of vertex cleaning Flag(•)

IAMCDE Number of populations S
Population member pm
Individual/new generated individual Pop/npop
Trial vector u
Present/maximum iteration number G/Gmax
Mutation factor/Crossover rate F/CR
Predefined lower/upper bounds of the search space Umin/Umax

Probability of using the mutation operator pro
ABPNN Number of input neurons inumber

Number of hidden neurons q
Number of output neurons k
Weight from the input layer to the hidden layer w
Weight from the hidden layer to the output layer a
Threshold of the i-th hidden neuron T
Threshold of the u-th output neuron b
Output of output units g(•)
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29. Kégl B, Krzyzak A. Piecewise Linear Skeletonization Using Principal
Curves. IEEE Trans Pattern Anal Mach Intell (2002) 24:59–74. doi:
10.1109/34.982884

30. Zeng Y-R, Zeng Y, Choi B, Wang L. Multi factor-Influenced
Energy Consumption Forecasting Using Enhanced Back-Propagation
Neural Network. Energy (2017) 127:381–96. doi: 10.1016/j.energy.2017.
03.094

31. Leema N, Nehemiah HK, Kannan A. Neural Network Classifier Optimization
Using Differential Evolution With Global Information and Back Propagation
Algorithm for Clinical Datasets. Appl Soft Comput (2016) 49:834–44. doi:
10.1016/j.asoc.2016.08.001

32. Elgin Christo VR, Khanna Nehemiah H, Minu B, Kannan A. Correlation-
Based Ensemble Feature Selection Using Bioinspired Algorithms and
Classification Using Backpropagation Neural Network. Comput Math
Methods Med (2019) 2019:1–17. doi: 10.1155/2019/7398307

33. Storn R, Price K. Differential Evolution – A Simple and Efficient Heuristic for
Global Optimization Over Continuous Spaces. J Global Optimiz (1997)
11:341–59. doi: 10.1023/A:1008202821328

34. Moradi MH, Abedini M, Tousi SMR, Hosseinian SM. Optimal Siting and
Sizing of Renewable Energy Sources and Charging Stations Simultaneously
Based on Differential Evolution Algorithm. Int J Electric Power Energy Syst
(2015) 73:1015–24. doi: 10.1016/j.ijepes.2015.06.029

35. McKinley S, Levine M. Cubic Spline Interpolation, College of the Redwoods.
(1998) 45:1049–60.

36. Hong S-H, Wang L, Truong T-K. (2018). An Improved Approach to the
Cubic-Spline Interpolation, in: 2018 25th IEEE International Conference on
Image Processing (ICIP), Athens. pp. 1468–72. IEEE.

37. Hernandez AM, Boone JM. Tungsten Anode Spectral Model Using
Interpolating Cubic Splines: Unfiltered X-Ray Spectra From 20 kV to 640
Kv, Medical Physics. (2014) 41:042101. doi: 10.1118/1.4866216

38. Ronneberger O, Fischer P, Brox T. (2015). U-Net: Convolutional
Networks for Biomedical Image Segmentation, in: Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015, Cham,
pp. 234–41. Springer, Berlin/Heidelberg, Germany: Springer International
Publishing. doi: 10.1007/978-3-319-24574-4_28

39. He K, Gkioxari G, Dollar P, Girshick R, Mask R-CNN. (2017), in: Proceedings
of the IEEE International Conference on Computer Vision, Venice, Italy. pp.
2961–9.

40. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al.
A Guide to Deep Learning in Healthcare. Nat Med (2019) 25:24–9.
doi: 10.1038/s41591-018-0316-z
June 2022 | Volume 12 | Article 878104

https://doi.org/10.1109/TBME.2019.2891240
https://doi.org/10.1016/j.media.2019.07.005
https://doi.org/10.3390/app10113834
https://doi.org/10.1016/j.media.2018.11.007
https://doi.org/10.1016/j.cmpb.2022.106752
https://doi.org/10.1093/comjnl/bxaa148
https://doi.org/10.1002/mp.12898
https://doi.org/10.1016/j.media.2019.101558
https://doi.org/10.1016/j.media.2019.02.009
https://doi.org/10.1007/s11548-018-1785-8
https://doi.org/10.1016/j.eswa.2022.116873
https://doi.org/10.1007/s11265-017-1257-3
https://doi.org/10.1088/1361-6560/ac5d74
https://doi.org/10.1007/s10916-016-0467-8
https://doi.org/10.1371/journal.pone.0183990
https://doi.org/10.1371/journal.pone.0183990
https://doi.org/10.1080/01621459.1989.10478797
https://doi.org/10.1109/34.841759
https://doi.org/10.1109/ACCESS.2020.2987925
https://doi.org/10.1109/ACCESS.2019.2941511
https://doi.org/10.1007/s10278-018-0058-y
https://doi.org/10.1109/TITS.2008.2006780
https://doi.org/10.1016/j.eswa.2019.06.035
https://doi.org/10.1109/34.982884
https://doi.org/10.1016/j.energy.2017.03.094
https://doi.org/10.1016/j.energy.2017.03.094
https://doi.org/10.1016/j.asoc.2016.08.001
https://doi.org/10.1155/2019/7398307
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/j.ijepes.2015.06.029
https://doi.org/10.1118/1.4866216
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1038/s41591-018-0316-z
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Peng et al. Interpretable Ultrasound Prostate Segmentation
41. LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature (2015) 521:436–44.
doi: 10.1038/nature14539

42. Shorten C, Khoshgoftaar TM. A Survey on Image Data Augmentation
for Deep Learning. J Big Data (2019) 6:1–48. doi: 10.1186/s40537-019-
0197-0

43. Ratner AJ, Ehrenberg HR, Hussain Z, Dunnmon J, Ré C. Learning to
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