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Purpose: Current deep learning methods for dose prediction require manual delineations
of planning target volume (PTV) and organs at risk (OARs) besides the original CT images.
Perceiving the time cost of manual contour delineation, we expect to explore the feasibility
of accelerating the radiotherapy planning by leveraging only the CT images to produce
high-quality dose distribution maps while generating the contour information
automatically.

Materials and Methods: We developed a generative adversarial network (GAN) with
multi-task learning (MTL) strategy to produce accurate dose distribution maps without
manually delineated contours. To balance the relative importance of each task (i.e., the
primary dose prediction task and the auxiliary tumor segmentation task), a multi-task loss
function was employed. Our model was trained, validated and evaluated on a cohort of
130 rectal cancer patients.

Results: Experimental results manifest the feasibility and improvements of our contour-
free method. Compared to other mainstream methods (i.e., U-net, DeepLabV3+,
DoseNet, and GAN), the proposed method produces the leading performance with
statistically significant improvements by achieving the highest HI of 1.023 (3.27E-5) and
the lowest prediction error with DD95 of 0.125 (0.035) and DDmean of 0.023 (4.19E-4),
respectively. The DVH differences between the predicted dose and the ideal dose are
subtle and the errors in the difference maps are minimal. In addition, we conducted the
ablation study to validate the effectiveness of each module. Furthermore, the results of
attention maps also prove that our CT-only prediction model is capable of paying attention
to both the target tumor (i.e., high dose distribution area) and the surrounding healthy
tissues (i.e., low dose distribution areas).
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Conclusion: The proposed CT-only dose prediction framework is capable of producing
acceptable dose maps and reducing the time and labor for manual delineation, thus
having great clinical potential in providing accurate and accelerated radiotherapy. Code is
available at https://github.com/joegit-code/DoseWithCT
Keywords: dose prediction, deep learning, radiotherapy planning CT-scan, rectal cancer, GAN structure
INTRODUCTION

Rectal cancer is the third most deadly and fourth most commonly
diagnosed cancer in the world with its incidence rising constantly
(1). As a mainstay treatment, radiation therapy benefits
approximately 50% of cancer patients and contributes to around
40% of curative cases (2). Recently, volumetric modulated arc
therapy (VMAT) has been widely applied to clinical radiotherapy
for its significant advantages in dose modulation.

In a typical VMAT planning, the treatment planner is
required to deliver lethal and homogeneous doses to the
planning target volume (PTV), while minimizing the
therapeutic toxicity to the organs-at-risk (OARs) (3, 4). To
satisfy this complex rule, the planner is required to perform
multiple rounds of parameter adjustment and optimization in a
trial-and-error manner. Ultimately, the integral dose distribution
map, which visually represents the dose prescribed to each organ
as well as the beam angles and numbers, is obtained. However,
even with the availability of the treatment planning system
(TPS), this process still costs considerable manpower and an
average of up to 11 hours (5). If the planner is able to obtain the
high-quality dose map prior to the planning process, and takes it
as an initial point for the treatment planning, the repetitions of
the trial-and-error process as well as the total planning time can
be significantly reduced. Therefore, researches on obtaining
high-quality dose distribution maps rapidly are of great clinical
significance in providing accurate and accelerated radiotherapy.

Before our work, a range of deep-learning (6–10) has been
developed to predict the dose. For example, given the limited
available data in clinic, Zeng et al. (10) proposed a two-phase
deep transfer learning framework to predict the dose distribution
for cervical cancer patients. Nguyen et al. (6) designed a
hierarchically densely connected U-net to estimate the dose
distribution from the CT images, the anatomic delineations,
and the prescription dose for patients with head and neck
(H&N) cancer. Besides, Song et al. (7) reported DeeplabV3+
which utilized CT images and anatomic contours to predict the
dose for rectal cancer patients. To take full advantage of the
historical patient data, Mardani et al. (8) proposed a learning
empowered approach which employed a multi-task linear
regression model to predict 3D dose volume for a new patient
by extracting the shared features of historical patients and their
tumor shapes. Based on the clinical post-optimization strategies,
Zhong et al. (9) designed a new automatic radiotherapy planning
strategy that was able to produce clinically acceptable
dose distributions.

More recently, generative adversarial networks (GANs) have
attracted much attention from researchers due to their
2

impressive performance in synthesis. To reduce the radiation
of positron emission tomography (PET), Wang et al. (11)
developed a 3D auto-context-based locality adaptive multi-
modality generative adversarial networks model (LA-GANs) to
synthesize the high-quality PET image from the low-dose one.
Taking the advantage of U-net, Wang et al. (12) also proposed a
3D U-net-like deep architecture, combing hierarchical features
by skip connections to generate full-dose PET images. Moreover,
Luo et al. (13) presented AR-GAN, utilizing an adaptive
rectification based generative adversarial network with
spectrum constraint for standard-dose PET estimation. GAN
has also made a quantum leap in the medical segmentation task.
To be specific, Shi et al. (14) innovatively proposed an adaptive-
similarity-based multi-modality feature selection method for
Alzheimer's disease classification. Perceiving the difficulty in
medical data acquisition, Wang et al. (15) proposed a triple-
uncertainty guided semi-supervised model for medical image
segmentation. Inspired by them, several GAN-based methods
(16–18) were also proposed for dose prediction. Based on the
generative adversarial network, Zhan et al. (19) developed a
multi-constraint dose prediction model, capturing both global
and local contextual information to predict the dose distribution
for cervical and rectal cancer patients. To further reduce the time
for contour delineation in radiotherapy planning, Li et al. (20)
presented a multi-task attention adversarial network, including a
main dose prediction task to generate the dose maps and an
auxiliary segmentation task to automatically provide additional
tumor delineation. Never, the developed deep-learning-based
radiotherapy dose prediction models generally demand extra
inputs (e.g., delineations of PTV and OARs) to supplement
essential anatomical information for satisfactory predictions.
Perceiving the time-consuming fact of manual contour
delineation, we suggest accelerating the planning by taking the
original CT images as unique input to produce high-quality
dose predictions.

In order to investigate the feasibility of this CT-only dose
prediction idea, we present a GAN-based framework for
automatic dose prediction, which is free of manual delineation.
To compensate for the missing anatomic information, we
incorporate multi-task learning (MTL) into the framework by
employing an auxiliary tumor segmentation task to provide
essential guidance (i.e., anatomic structure of the tumor) to
the primary dose prediction task. This model was trained,
validated and evaluated on a cohort of 130 rectal patients. To
the best of our knowledge, this is the first work that explores to
predict the dose distribution maps via only the original CT
images while mining the anatomic information automatically
and concurrently.
July 2022 | Volume 12 | Article 875661
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MATERIALS AND METHODS

Patient Cohort and CT Images
A total number of 130 postoperative patients with rectal cancer were
included in this study. Ethical approval was granted by the local
ethics committee. The collection of CT images followed the
standard medical procedures. To be specific, each patient was
immobilized with an individualized thermoplastic mask in the
supine position with arms raised above the head. The intravenous
contrast-enhanced CT covering the total pelvis volume for each
patient was obtained. All patients were asked to drink 0.5 liter of
water 1.5 h prior to scanning and refraining from voiding (21). In
addition, each patient was accompanied by a PTV and four OARs
including bladder, left femoral head (FHL), right femoral head
(FHR), and small intestine (SI). The PTV and OARs on CT slices
were delineated by the physicians based on the guideline (22) and
reviewed by the senior radiation oncologists. The prescription dose
of the PTV was 50.40Gy/28 fractions. The intensity-modulated
radiation therapy (IMRT) treatment plans were required to cover
≥98% of the PTV with ≥93% of the prescribed dose, ≤10% of the
PTV with ≥105% of the prescribed dose, and ≤5% of the PTV with
≥115% of the prescribed dose. Small intestine dose was limited to
V35 <180 cc, V40 <100 cc, and V45 <65 cc. Femoral head dose was
limited to V40 <40%, V45 <25%, and a maximum dose of 50 Gy.
Bladder dose was limited to V40 <40%, V45 <15%, and a maximum
dose 50 Gy (23). All the OARs and other normal tissues should be
given as low a dose as possible. All the manual VMAT plans were
conducted on the Raystation v4.7 TPS with the model for the Elekta
Versa HD linear accelerators. Two 360 coplanar arc beams
consisting of 91 control points respectively sharing the same
isocenter were employed with 6-MV photon energy. The
collimator angle was fixed at 0 and the maximum field size was
40×40 cm2 with a dynamic multi-leaf collimator and automatically
tracking collimator jaws for each control point. Dose engine
algorithm was collapsed cone convolution with the grid resolution
0.3×0.3×0.3 cm3. The optimization engine was the direct machine
parameter optimizer with a maximum of 80 iterations and 20
iterations before conversion. The VMAT plans were completed by
the senior radiation dosimetrists. All the plans were tweaked
repeatedly in a trial-and-error manner until no significant
improvement was found in the subsequent adjustments
and optimization.

Herein, we randomly selected 98 patients for training, 10 for
validation, and the remaining 22 patients for testing. Each 3D CT
image was sliced into multiple 2D images with a resolution of
512×512 and a thickness of 3mm beforehand. In this manner, the
training, validation, and testing samples were increased from 98,
10, and 22 to 14817, 1529, and 3491, respectively. The
characteristics of these patients regarding sex and age are
summarized in Table 1.

Network Architecture
Generative adversarial networks (GANs) (24) have been
extensively studied in computer vision over the past few years
(25). As the name implies, GAN consists of a generator network
and a discriminator network which are typically implemented by
two independent neural networks (26). The success of GAN lies
Frontiers in Oncology | www.frontiersin.org 3
in the use of adversarial training. Specifically, in our task, the
generator takes CT images as the unique input and outputs the
dose distribution maps as well as anatomical structures of PTV,
while the discriminator inputs the predicted dose maps and the
ideal dose maps, i.e., the dose maps that were manually produced
by the senior radiation dosimetrists. The goal of the generator is
to produce dose maps that are too realistic to be differentiated by
the discriminator, while the discriminator is trained to
distinguish the generated dose maps from the real ones (also
regarded as ground truth (GT)). After repeated iterations, both
networks will reach Nash equilibrium, and the generator will
eventually be capable of generating realistic dose maps.

Generator Network
The generator is based on a U-net-like encoder-decoder architecture
to integrate the shallow and deep features (27). As shown in
Figure 1, it comprises of two tasks, i.e., the primary dose
prediction task and the auxiliary tumor segmentation task, which
forms themulti-task learning (MTL) architecture. To be specific, the
two tasks share the same encoder and have independent decoders.
The shared encoder is harnessed for semantic feature extraction
from the input CT images. The dose prediction decoder aims at
generating high-quality dose maps. The tumor segmentation
decoder is to provide the essential anatomic structure for the dose
prediction task. It is linked to the encoder and is trained
synchronously with the dose prediction decoder. Particularly, we
employ the self-attention (SA) module (see Supplementary Figure
A1) in the tumor segmentation decoder, which is conducive to
obtaining more precise tumor segmentation results. Each SA
module outputs an attention map indicating the anatomic
information (i.e., the location and shape structure) of the tumor.
We transfer these attention maps to the dose prediction decoder to
provide vital anatomic information of the target tumor for the
primary dose prediction task. Moreover, given that an ideal dose
distribution map ought to prescribe a high dose coverage in the
tumor area while minimizing the dose prescription to other healthy
tissues, we further design a feature decoupling (FD) module (see
Supplementary Figure A2) in the dose prediction decoder to
decouple the high- and low-dose features for the target tumor
and OARs, respectively, making the model focus on the tumor and
OARs separately, so that more semantically explicit dose predictions
can be generated.

Discriminator Network
The discriminator takes the predicted and the real dose
distribution maps as input and tries to discriminate them
July 2022 | Volume 12 | Article 875661
)

TABLE 1 | Patient characteristics.

Characteristic Entire Cohort (n = 130

Sex Male 87
Female 43

Age Median (IQR) 57
Range 29-79
≤40y 6
40-60y 64
≥60y 60
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correctly, which further promotes the authenticity of the
predicted dose distribution map. Herein, the discriminator is
implemented with a typical ResNet18 (28) architecture, which
consists of seventeen convolutional layers and a fully connected
layer . Each convolutional layer is fol lowed by the
BatchNormalization and ReLU activation.

Loss Function and Network Training
The whole network is trained and optimized by a comprehensive
loss function which mainly comprises two parts: a generator loss
LG and a standard discriminator loss LD. The generator loss is
further decomposed into two task-specific losses, i.e., a binary
cross entropy loss for the tumor segmentation task, and a mean
square error loss for the primary prediction task. More detailed
descr ip t ion o f the lo s s func t ion i s g iven in the
Supplementary Material.

The proposed network was implemented using Pytorch and
trained on a NVIDIA GeForce RTX 3090 GPU with 24GB
memory. The batch size was set to 20. The learning rate was
initialized to 5E-4 and decayed to 5E-5 linearly. The generator
and the discriminator were trained alternatively using SGD
optimizer for 150 epochs. To provide rich anatomic
information for dose prediction task, we optimized the
segmentation performance at the initial training stage by
adjusting the hyper-parameters.

Evaluation
The model with the best performance in the validation was
selected for the final test. According to clinical requirements and
suggestions of oncologists and dosimetrists, we adopted metrics
for both PTV and OARs dose coverage, including D95 (8),
average dose (Dmean), maximum dose (Dmax), conformity
index (CI) (29), and homogeneity index (HI) (3). The dose-
volume-histogram (DVH) curves were plotted to display the
disparity between the real dose maps and the predicted dose
maps intuitively. To prove the necessity and effectiveness of the
key components of our method (i.e., SA module and FD
Frontiers in Oncology | www.frontiersin.org 4
module), we conducted experiments to visualize attention
features of SA and FD modules. In addition, we calculated the

average prediction error D (D = 1
non

i=1
jPredictioni − GTij

Dpi
,

where Dpi, Predictioni and GTi denote the prescribed dose, the
predicted dose, and the clinically approved dose of i-th patient,
respectively) of D95 and Dmean, denoted as DD95 and DDmean,
to quantify the disparities between the predicted dose maps and
the ground truths. Moreover, to verify the superiority of our
prediction, we compared our proposed method with four
mainstream methods, including 3D DoseNet (3), DeepLabV3+
(7), U-net (29), and GAN (16). For fair comparison, the inputs of
all methods were set to be consistent, i.e., only the CT images. To
further verify the clinical potential of our proposed method, we
compared our predicted dose maps to DoseUnet (30), the inputs
of which include both the CT images and contours. Finally, we
evaluated the performance on the entire testing cohort and gave a
visual summary with respect to Dmax and Dmin of ROIs in two
box plots.
RESULTS

Comparison With the
State-of-the-Art Methods
To justify the feasibility and superiority of our method, two
qualitative examples predicted by our proposed method are
presented and compared with the four state-of-the-art dose
prediction methods in Figure 2. Although all of these models
produce visually sound predictions, our method yields the best
effect with an obvious scattering shape and a minimum error near
the PTV. To provide more intuitive illustrations, we also calculate
and display the difference maps. As shown in the second and fourth
rows in Figure 2, the difference between the predicted dose of our
method and the ground truth one in the clinic is the smallest with
the lightest color for both PTV andOARs, indicating that ourmodel
FIGURE 1 | Architecture of the proposed CT-only automatic dose prediction model.
July 2022 | Volume 12 | Article 875661
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could deliver the appropriate dose not only to the target tumor but
also to the OARs.

To further demonstrate the effectiveness of our method, we
present a set of qualitative examples produced by our model in
Figure 3 and compare them with their corresponding ground
truth. According to the dose difference map displayed in the
third column, it is evident that our CT-only method could
produce dose distribution close to the ground truth in all cases,
Frontiers in Oncology | www.frontiersin.org 5
especially in the target tumor area. Besides, three typical DVH
examples are displayed in Figure 4. The differences between the
predicted dose curves and the ground truth ones are subtle,
especially for the PTV whose disparities are minimal.

In Addition, a visual summary of our predicted dose and the
clinically acceptable dose with respect to Dmax and Dmean of
ROIs are illustrated in Figure 5. By comparing the respective
median and data dispersion of each box plot, one can see that our
FIGURE 2 | Qualitative comparison between the predicted dose distributions for the proposed and four mainstream methods. The left four columns are the dose
prediction results of the comparison methods, and the right two columns are the predicted dose distributions by our method and the ground truth, respectively. The
second and fourth rows of the left five columns are the difference maps calculated by subtracting the ground truth distribution map from the predicted one.
FIGURE 3 | Dose distribution of our proposed method, the ground truth and the corresponding difference. From left to right shows the slices predicted by our
method, the corresponding slices of the ground truth, and the dose difference, respectively.
July 2022 | Volume 12 | Article 875661
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predicted dose maps share the same dose distribution with the
clinically approved ones in terms of Dmax and Dmean.
Specifically, our predicted results had the same skewness with
the approved dose in Dmax with respect to FHL and FHR.

The results of quantitative comparison are given in Table 2.
Our method outperforms other mainstream dose prediction
methods by achieving the best results in three out of four
metrics with the highest HI of 1.023 (3.27E-5) and the lowest
prediction error, i.e., DD95 of 0.125 (0.035) and DDmean of
0.023 (4.19E-4), respectively. Particularly, with the best HI index,
our method is capable of producing homogeneous dose
distribution in PTV, and the lower errors in D95 and Dmean
Frontiers in Oncology | www.frontiersin.org 6
also meet the clinical expectation. In addition, the paired t-test
was conducted, and the p-values are less than 0.05 in most of the
evaluation metrics, demonstrating the significant improvements
of our method. Moreover, we also compared our proposed
method with DoseUnet which is aided by the additional tumor
and OARs contours. The results are shown in the fifth row of
Table 2. In terms of HI and DDmean, our method achieves
comparable performance with DoseUnet.

Ablation Study
The key components of our method include 1) the auxiliary tumor
segmentation task (Aux), 2) SA module, 3) discriminator (Disc),
FIGURE 5 | Dmax (left) and Dmean (right) of the proposed prediction and the ground truth with respect to ROIs. Horizontal lines in boxes are medians and
rhombuses are outliers.
FIGURE 4 | The DVH curves of three typical predictions. The dotted lines represent the prediction results and the solid lines represent the approved values.
July 2022 | Volume 12 | Article 875661
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and 4) FD module. To investigate the contributions of these
components, we further conducted a series of ablation
experiments with following variants: (1) U-net with residual
blocks embedded alone (i.e., Baseline), (2) Residual blocks
embedded U-net with the auxiliary segmentation module (i.e.,
Baseline+Aux), (3) The network in (2) with SA module
embedded (i.e., Baseline+Aux+SA), (4) The network in (3)
with the discriminator (i.e., Baseline+Aux+SA+Disc), (5)
The network in (4) with FD module injected (Baseline+Aux+SA
+Disc+FD, proposed). The quantitative results are given in Table 3.
We can clearly see that the performance of the network
improves progressively as each component is added to the
Baseline framework.

To further investigate the effectiveness of our SA and FD
modules, we visualize the attention-weighted feature maps for
these two modules in both the segmentation decoder and the
dose prediction decoder. The results are shown in Figure 6. After
the SA module, most attention is delivered to the tumor region,
thus demonstrating the positive effect of this module on tumor
segmentation. In addition, the third and the fourth columns, i.e.,
FD (high) and FD (low), focus on the tumor area and the
opposite healthy tissues, respectively, proving the capability of
our network in decoupling high- and low-dose features.
DISCUSSION

In this paper, we undertook an exploratory study to investigate
the feasibility of producing high-quality radiotherapy dose
predictions via only the original CT images, i.e., being free of
manual delineation of PTV and OARs.
Frontiers in Oncology | www.frontiersin.org 7
Two main steps in radiotherapy planning that require
considerable manpower and resources are manual contour
delineation and repeated parameter tweaking (7). A large
number of deep-learning-based dose prediction models have
achieved promising results with the assistance of manual
delineations of PTV and OARs. The predicted high-quality
dose distribution maps can be introduced as a guidance tool
and an initial point to improve the efficiency of the inverse
parameter adjustment. However, researches indicated that the
average time for manual contouring can be up to 3 hours, which
may lead to a delay in the treatment and induce errors in tumor
localization (16). Current deep-learning-based methods pay little
attention on reducing the time spent for manual delineation. In
view of this, we boldly suggested predicting the dose maps based
solely on the original CT images to further reduce the total
planning time by incorporating automate delineation.
Concretely, we proposed a GAN-based model and adopted the
MTL strategy to learn the missing anatomic contours of the
tumor, thereby guiding the primary dose map prediction task.

Our CT-only method was trained on a cohort of 130 rectal
cancer patients and evaluated on metrics of D95, Dmean, Dmax,
CI, and HI to study the dosimetric congruence between the
predicted dose distributions and the approved ones. DVH curves
were also plotted for comparison between the approved dose
maps and our predicted dose maps. We have compared our
method with four mainstream dose prediction methods with
contours input removed in Table 2. As observed, compared to
the widely used U-net model, our method considerably improves
the prediction with HI and CI rising from 1.013 (4.41E-6) to
1.023 (3.27E-5), and from 0.598 (0.006) to 0.624 (0.009)
respectively. Meanwhile, one can see that the prediction errors
TABLE 2 | Quantitative comparisons with four mainstream dose prediction methods in terms of HI, CI, D95, and Dmean.

Method HI CI Average prediction error ↓

DD95 DDmean

U-net (26) 1.013 (4.41E-6)* 0.598 (0.006)* 0.301 (0.074)* 0.044 (1.12E-3)*
DeepLabV3+ (7) 1.022 (7.53E-6) 0.593 (0.005)* 0.269 (0.048)* 0.038 (1.16E-3)*
DoseNet (3D) (3) 1.019 (9.68E-6)* 0.592 (0.009)* 0.211 (0.055)* 0.035 (1.11E-3)
GAN (16) 1.016 (2.86E-5)* 0.626 (0.007) 0.204 (0.061)* 0.038 (8.35E-4)*
DoseUnet (30) 1.013 (3.82E-5) 0.736 (0.006) ¶ 0.071 (0.047) ¶ 0.027 (6.00E-3)
Proposed 1.023 (3.27E-5)¶ 0.624 (0.009) 0.125 (0.035) 0.023 (4.19E-4)¶
July 2022 | Volume 12 | Article 875
The HI, CI, DD95, and DDmean are displayed in the form of mean (variance). The ground truth of HI and CI are 1.030 and 0.773, respectively. Please refer to Evaluation section for more
details of the definition.
*Our method is significantly better than the compared ones, i.e., p < 0.05 via paired t-test.
¶The best results of each index.
↓The lower the average prediction error is, the better the dose prediction result is.
TABLE 3 | Ablation studies of our propose method with its variants.

Method DSC↑ HI CI Average prediction error ↓
DD95 DDmean

(1) Baseline – 1.013 (1.60E-5)* 0.615 (0.008) 0.238 (0.052)* 0.040 (1.12E-3)*
(2) Baseline+Aux 0.802 (0.002)* 1.019 (1.18E-5)* 0.584 (0.008)* 0.208 (0.051)* 0.038 (8.35E-4)*
(3) Baseline+Aux+SA 0.809 (0.003)* 1.017 (2.75E-5)* 0.625 (0.010) 0.161 (0.032) 0.033 (5.74E-4)*
(4) Baseline+Aux+SA+Disc 0.815 (0.003) 1.020 (9.65E-6)* 0.629 (0.008)¶ 0.162 (0.038) 0.031 (5.36E-4)*
(5) Baseline+Aux+SA+Disc+FD
(Proposed)

0.816 (0.003)¶ 1.023 (3.27E-5)¶ 0.624 (0.009) 0.125 (0.035) ¶ 0.023 (4.19E-4)¶
↑The higher the DSC is, the better the dose prediction result is.
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DD95 and DDmean drop from 0.301 (0.074) to 0.125 (0.035), and
from 0.044 (1.12E-3) to 0.023 (4.19E-4), respectively.
Additionally, compared to DeepLabV3+, our method also
improves CI, DD95, and DDmean by 0.031, 0.144, and 0.015
respectively. Furthermore, the proposed method still surpasses
GAN by 0.007 HI, 0.079 DD95, and 0.015 DDmean, respectively.
Although not achieving the best value, the CI acquired by our
method (i.e., 0.624) approximates the optimal one (i.e., 0.626)
with a minor and tolerable difference of 0.002. Besides, our
proposed model could achieve a general minimal difference
between the whole testing cohort and the ground truth with
respect to Dmax and Dmean of ROIs, as shown in Figure 5,
manifesting its potential clinical application. To further validate
the practicability of our proposed method, we compared our
predicted dose maps with those of a contour-aided method, i.e.,
DoseUnet. As illustrated in Table 2, we noticed that the
proposed CT-only dose prediction method could achieve
comparable results to DoseUnet on both HI and DDmean
metrics. As for the other metrics, for example, DD95 and CI,
we must admit that blocking the prior accurate anatomical
information in the input will inevitably bring performance
degradation. However, this does not mean that our method
loses its clinical significances and values. Actually, studies show
that the time of contouring is usually longer than that of dose
calculation in clinical practice (5), so the saving time in manual
delineation brought by our work would be longer than the added
tuning time in case of little performance decrease. We will make
quantitative comparison when conditions permit.

To investigate the contribution of each module in the
proposed network, we conducted a series of ablation study in
Table 3. Firstly, by comparing (1) and (2), we demonstrated the
ability of the tumor segmentation task in providing essential
anatomical information for the dose prediction task. As can be
seen, with the assistance of the auxiliary task, the HI, DD95, and
DDmean are improved by 0.006, 0.03, and 0.002, respectively.
Notably, given the similarities between the SA and FD (high), we
can see that the anatomic information obtained in the tumor
segmentation task has been successfully transferred to the dose
Frontiers in Oncology | www.frontiersin.org 8
prediction task as guidance. Secondly, we validated the potency
of the embedded SA module by comparing (2) and (3). It’s clear
that the proposed SA module improves the dose prediction
performance by 0.041 CI, 0.047 DD95 and 0.005 DDmean,
respectively. Thirdly, in order to verify the contribution of the
discriminator in the dose prediction task, we compared (3) and
(4). After adding the discriminator, there are also more or less
improvements in DSC, HI, CI and DDmean. Finally, we
compared (4) and the complete model (5) to verify the
usefulness of the proposed FD module.

Furthermore, we visualized the attention maps of FD (high) and
FD (low) in Figure 6. Accordingly, the opposite attention of FD
(high) and FD (low) demonstrated the success of our method in
decoupling high- and low-dose features. Meanwhile, the increasing
tendency of attention in both high- and low-dose areas, as shown in
the output of FD, i.e., FD (output), further manifested the capability
of our method in paying attention to the high dose distribution in
the tumor region while not neglecting the low dose distribution in
the surrounding healthy tissues. This simultaneous attention on
both the tumor and the surrounding tissues contributed to a more
accurate radiotherapy planning.

Despite the superior performance of our method, there are still
some limitations. Firstly, our current method employs 2D images
due to limited computational resource, which may ignore the
geometry information of the organs. In the future, we will extend
our dose prediction method to a 3Dmodel to improve the exactness
of the anatomic information. Secondly, the auxiliary segmentation
task only considers tumor segmentation. However, the anatomic
information of the surrounding organs, i.e., OARs, is also of great
clinical significance and is critical for the dose prediction. On this
basis, we will extend our single-target segmentation model to a
multi-target one (i.e., implementing the segmentation on every
organ in the CT image), thus providing organ-specific radiation
dose prediction. Thirdly, the sub-optimal quality of the generated
contours may impede the generation of realistic dose distributions.
Given the possible inaccuracy that lies in the essential guiding
contours, we will search for a more accurate contour segmentation
method in the future.
FIGURE 6 | The attention-weighted feature maps for SA and FD. The first column from top to bottom shows the input CT image, tumor segmentation and dose
distribution map separately. The second column visualizes the attention of SA module in tumor segmentation task. The following three columns illustrate the attention
of FD module in dose prediction task. Specifically, FD (high) and FD (low) denote high- and low-dose features, respectively, and the refined output of FD is marked
as FD (output). The redder the area is, the more attention the network pays. The top row refers to the results of the shallowest layer while the bottom row stands for
the results of the deepest layer.
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It is worth mentioning that the generated dose map is regarded
as a guidance tool for dosimetrists to reduce the manual
intervention and lead a more accurate and speedy treatment
planning rather than to provide the ultimate solutions, i.e., the
final treatment plan to be performed in the clinic. In other words,
the treatment planners still need to adjust the radiotherapy
parameters manually but with much reduced time and effort. The
goal of our method is to quicken the radiotherapy planning by
providing high-quality dose distributionmap, which not only brings
an initial point close to the optimal plan (instead of presetting the
parameters empirically) but also presents a possible optimal target
for parameter adjustment.
CONCLUSION

This exploratory study proves the feasibility of predicting high-
quality dose distribution with only CT images. Albeit omitting the
manual delineations of critical organs, this model introduces a well-
designed MTL strategy to make up for the missing anatomic
information. Experimental results manifest the capability of the
proposed CT-only dose prediction model in producing more
realistic dose predictions for rectal cancer radiation therapy
compared to the mainstream contour-aided ones.
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