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Brain tumours are the most common solid tumour in children and the leading

cause of cancer related death in children. Current treatments include surgery,

chemotherapy and radiotherapy. The need for aggressive treatment means many

survivors are left with permanent severe disability, physical, intellectual and social.

Recent progress in immunotherapy, including genetically engineered T cells with

chimeric antigen receptors (CARs) for treating cancer, may provide new avenues

to improved outcomes for patients with paediatric brain cancer. In this review we

discuss advances in CAR T cell immunotherapy, the major CAR T cell targets that

are in clinical and pre-clinical development with a focus on paediatric brain

tumours, the paediatric brain tumour microenvironment and strategies used to

improve CAR T cell therapy for paediatric tumours.

KEYWORDS

CAR T cell, immunotherapy, paediatric brain tumour, tumour microenvironment,
blood brain barrier
Introduction

Tumours of the Central Nervous System (CNS) account for more than 25% of

childhood cancers (1). The mainstays of paediatric brain cancer treatment are surgery,

chemotherapy, and radiation therarpy. However, there is emerging interest in the

potential for various immunotherapeutic modalities to improve the often dismal
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treatment outcomes for patients with CNS cancers, and to

minimise the toxic and debilitating effects of standard

treatments (2–4). The successes of adoptive cell therapy

(ACT), particularly in B-cell malignancies, is driving the

search for similar therapeutic approaches in other solid

cancer types, including malignancies of the CNS (5).

Autologous T cells, engineered to express a receptor

recognising a tumour-specific or tumour-enriched antigen

(Chimeric Antigen Receptor or CAR) are a promising type of

ACT (6). The components that are assembled to make the CAR

include a single-chain variable fragment (scFv) that binds the

target antigen, linked via a transmembrane domain to one or

more intracellular T cell signalling domains (6). The binding of

the CAR to the target antigen is MHC-independent, which

distinguishes CAR T activation from normal T-cell activation.

CAR T cells are directly cytotoxic to their targets (7). The co-

stimulatory domains are also critical to CAR T activity and

persistance, and modifications of even a single amino acid

residue in these domains can have profound effects on CAR T

function (8).

The application of CAR T cell therapy to treat CNS tumours

is an emerging field. The challenges are many, including

identifying suitable antigens expressed at sufficient levels and

which are tumour specific or enriched, generating effective

CARs, and determining the most effective methods of delivery

across the blood-brain barrier. However, early reports of

favourable individual responses have forged the way for

significant developments in CAR T technology and suggest

that many, if not all, of these challenges can be met (6, 9, 10).

The ultimate test of utility is, appropriately, the efficacy

demonstrated in clinical trials. Several early phase trials are in

progress and in this review, we explore the status of CAR T cell

trials for paediatric brain tumours, the efforts to improve CAR T

efficacy and focus on the ways in which the tumour

microenvironment can influence CAR T activity.
CAR T cells in clinical trials for
paediatric brain tumours

The predominant clinical experience using CAR T cell

therapy for central nervous system cancer, has focused on

glioblastoma (GBM), which is rare in children but the

commonest primary brain cancer in adults, and one that is

invariably lethal (11). Therefore, the CAR T are directed against

antigens enriched in this disease, including IL13Ra2, HER2 and

EGFR variants. However, large scale genomic sequencing of

paediatric cancers, including CNS cancers, have emphasised the

distinct molecular nature of paediatric brain cancers (12–14).

The clinical benefits that can flow from the appreciation of the

specific driver events in individual tumours applies as much to

immunotherapy as it does to targeted therapy using small

molecule inhibitors (15). Thus, as one considers the important
Frontiers in Oncology 02
early clinical trials with CAR T directed against antigens such as

IL13Ra2, HER2, and EGFR (Table 1), the lessons learned from

these trials may be applied in the development of CAR-T

specific, for the most challenging brain cancers which occur in

children, including Histone 3.3 mutant paediatric glioma

(16, 17).
Interleukin-13 receptor alpha 2

The rationale for CAR T targeting of IL13Ra2 has been

reviewed elsewhere (18, 19), but fundamentally stems from the

specific over-expression of this antigen in GBM but not in

healthy brain tissue. Preclinical mouse models showed that

IL13Ra2 CAR T could cause regression of adult glioma

patient-derived xenografts (PDX), including tumours derived

from intracranial injection of a stem-cell enriched population

(20). A current Phase I clinical trial (NCT04510051) is

investigating the side effects of chemotherapy and cellular

immunotherapy for the treatment of IL13R a2-positive
recurrent or refractory brain cancer in children. An early

study in adult patients with malignant glioma, using donor T-

cells modified to express an IL-13 CAR–zetakine/HyTK CAR,

administered together with interleukin-2, established the safety

of the approach (NCT01082926). Further, encouraging results

were published in an adult patient treated this time with

autologous IL13Ra2 CAR T as part of a clinical trial

investigating the efficacy of IL13Ra2 CAR T cells, open to

patients over the age of 12 with recurrent or refractory glioma

(NCT02208362) (6). These CAR are hinge-optimized,

containing the 41BB-costimulatory domain as well as a

truncated CD19 domain that permits tracking of the CAR T

cells. Enrollment criteria include immunohistochemical

evidence of IL13Ra2 protein expression in at least 20% of cells

in the sample. In contrast to the systemic delivery of CAR T in B-

cell malignancies, the CAR T are delivered directly into the

tumour or into the ventricles of the brain. This highlights one of

the distinct features of CAR T trials in CNS malignacies

discussed later, relating to the potential for the blood brain

barrier to limit CAR T access to tumours, and the potential

efficacy of direct delivery of CAR T cells.
Disialoganglioside

Gangliosides are glycolipids widely expressed, so are unlikley

to be useful antigens for CAR T targeting. However, the

disialoganglioside (GD2) has more restricted neuroectodermal

expression, and is highly expressed in several cancers. From the

paediatric cancer perspective, this was first reported in

neuroblastoma, where a monclonal antibody generated against

the LAN-1 neuroblastoma cell line was shown to recognise GD2

in neuroblastoma patient samples (21). Clinical trials using anti-
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GD2monoclonal antibody therapy in neuroblastoma suggests this

is more effective than standard treatments, at least in some clinical

settings (22, 23). It is now appreciated that GD2 is also expressed

in some paediatric brain tumours, notably diffuse midline gliomas

(DMG) harbouring histone H3 K27M mutations, and in

preclinical models a CAR T targeted against GD2 could

effectively access the CNS and cause tumour regression (24).

Currently, there at least two open trials of anti-GD2 CAR T cell

therapy for paediatric patients with high grade glioma (HGG) and

diffuse midline glioma (DMG), a subtype of DMG located in the

brainstem (NCT 04099797 and NCT04196413). A recent

breakthrough publication reports results from the first four

patients with H3 K27M-DMG receiving a GD2 CAR T cell trial

(25). The toxicity, which in some cases was significant, was mainly

attributed to inflammatoiry effects and the tumour location. Three

out of four patients derived radiographic and clinical benefit, but

all patients ultimately succumed to the disease, despite persistance

of CAR T cell activity. Interestingly, in preclinical models of anti-
Frontiers in Oncology 03
GD2 CAR T in neuroblastoma, persistence of neuroblastoma cells

with low GD2 expression was observed (24), suggesting a possible

escape mechanism.
Human epidermal growth factor
receptor

The Human epidermal growth factor receptor (HER) family

is comprised of four transmembrane growth factor receptors;

EGFR (HER1), ERBB2 (HER2), ERBB3 (HER3) and ERBB4

(HER4). HER2 is an established immunotherapeutic target in

breast and ovarian cancer. In paediatric maligancies, HER2

alterations – principally copy number gains and gene over

expression - was observed in 6% of all tumours in a paediatric

pan-cancer cohort, predominatly in CNS tumours including

Diffuse Hemishperic Gliomas (DHG), medulloblastoma,

ependymoma, and a subset of neuroblastoma (14).
TABLE 1 Clinical trials testing CAR T cell therapy in paediatric brain tumours.

Target NCT
Trial

number

Trial Description Tumour types Age Mode of
delivery

IL13Ra2 04510051 Lymphodepletion followed by IL13Ra2 CAR T Glioma, Ependymoma, Medulloblastoma, Germ Cell Tumour,
ATRT, Primitive Neuroectodermal Tumour, Choroid Plexus
Carcinoma, Pineoblastoma

1 to
26
years

Intraventricular

IL13Ra2 02208362 Genetically modified CAR T cells in recurrent or
refractory malignant glioma.

High grade glioma 12 to
75
years

Tumour or
tumour
resection cavity

GD2 04099797 C7R-GD2 CAR T Cells GD2-expressing HGG,DIPG
or MB (GAIL-B)

Embryonal tumour, HGG or ependymal tumour with confirmed
GD2-expression (or H3K27M+ for HGG)

1 to
18
years

Tumour or
tumour
resection cavity

GD2 04196413 GD2 CAR T for H3.3 mutated DMG or DIPG H3-K27M-mutated DIPG or DMG of the spinal cord 2
years
to 30
years

Systemic

HER2 02442297 HER2-specific CAR for HER2-Positive CNS
Tumours (iCAR)

Primary CNS tumour or HER2 positive tumour metastatic to
the CNS (exclusion of DIPG)

3
years
and
older

Tumour,
tumour
resection cavity
or ventricular
system

HER2 03500991 HER2-specific CAR T Cell Locoregional
Immunotherapy for HER2+ Recurrent/Refractory
Paediatric CNS Tumours

Glioma, Ependymoma, Medulloblastoma, Germ Cell Tumour,
ATRT, Primitive Neuroectodermal Tumour, Choroid Plexus
Carcinoma, Pineoblastoma (exclusion of DIPG)

1 year
to 26
years

tumour
resection cavity
or ventricular
system

HER2 01109095 CMV-specific Cytotoxic T Lymphocytes Expressing
CAR Targeting HER2 in Patients with GBM
(HERT-GBM)

Glioblastoma Child,
adult,

systemic

EGFR 03638167 EGFR806-specific CAR T Cell Locoregional
Immunotherapy for EGFR+ Recurrent or Refractory
Paediatric CNS Tumours

Glioma, Ependymoma, Medulloblastoma, Germ Cell Tumour,
Atypical Teratoid/Rhabdoid Tumour, Primitive
Neuroectodermal Tumour, Choroid Plexus Carcinoma,
Pineoblastoma (exclusion of DIPG)

1 year
to 26
years

tumour
resection cavity
or ventricular
system

B7-H3 04185038 Study of B7-H3-Specific CAR T Cell Locoregional
Immunotherapy for Diffuse Intrinsic Pontine
Glioma/Diffuse Midline Glioma and Recurrent or
Refractory Paediatric Central Nervous System
Tumours

Diffuse Intrinsic Pontine Glioma, Diffuse Midline Glioma,
Ependymoma, Medulloblastoma, Germ Cell Tumour, Atypical
Teratoid/Rhabdoid Tumour Primitive Neuroectodermal
Tumour, Choroid Plexus Carcinoma, Pineoblastoma, Childhood
Glioma

1 year
to 26
years

tumour
resection cavity
or ventricular
system
Table data were searched at clinicaltrials.gov (21st June 2021).
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A phase I trial of HER2 specific CAR T cells in patients with

HER2-positive GBM (NCT01109095) concluded that the

therapy was safe, although the mean age of this cohort was 49

years, and only 6 paediatric patients were included. Of the 16

cases, eight showed an objective response, including one partial

response (tumour regression) and seven patients with stable

disease (26). Whilst the patient numbers were small, the results

were encouraging, and the treatment was safe, paving the way for

futher trials.

Currently, HER2 CAR T cells are being tested in a clinical

trial for children with HER2+ brain tumours, over the age of 3

years (NCT02442297). The delivery method, as for the IL13Ra2
studies, was either by direct injection into the tumour resection

cavity or by intraventricular delivery. An ongoing trial currently

recruiting patients between the ages of 1 and 26 with HER2+

brain tumours, will test HER2 CAR T cell therapy, delivered via

an indwelling catheter in the tumour resection cavity or the

ventricles (NCT03500991). Interim analysis of the first three

patients, one with localised anaplastic astrocytoma and two with

metastatic ependymoma, confirmed that treatment was feasible

without dose-limiting toxicity, and that a local immune response

was activated by the CAR T cells. Two patients progressed

shortly after initiation of treatment (27).
EGFR

The epidermal growth factor receptor (EGFR or HER1) is

another ErbB family member (28) being targeted by CAR T.

EGFR is normally activated by ligand binding which triggers

homo- or heterodimerization with other family members.

Dimerization induces transphosphorylation of intracellular

receptor domains and initiates down stream signaling (29).

The oncogenic functions of EGFR are a result of constitutive

EGFR activation by gene amplification, structural variants or

point mutation. The spectrum of EGFR variants in childhood

brain tumours is significantly different compared to those

reported in adult glioma. In adult GBM, the EGFRvIII variant,

where exons 2-7 are deleted, is the most common activating

mutation. In childhood high-grade glioma (HGG), EGFRvIII

mutations are less common (30), with gene amplification events

and activating insertions in the tyrosine kinase domain being

more frequently detected. In childhood cancers, co-occuring

EGFR mutations and inactivating PTEN mutations are rare (14,

31). There are several potential therapeutic approaches to inhibit

EGFR activation, including small molecule inhibitors,

monoclonal antibodies and CAR T cells. Both small molecule

inhibitors and monoclonal antibodies have not shown

significant efficacy (32, 33). A completed clinical trial in adults

(NCT01454596) indicated that in most patients, CAR T could be

administered safely (with one treatment-related mortality), but

there were no objective responses and no significant

improvement in progression free survival. Another Phase I
Frontiers in Oncology 04
clinical trial (NCT 03638167) using EGFR806-specific CAR T

cells in children and young adults with recurrent or refractory

EGFR-positive CNS tumours is currently recruiting patients. In

contrast to the previously mentioned study in adult patients, this

study does not include concommitant adminstration

of chemotherapy.
B7-H3

Human B7-Homolog 3, B7-H3 (also known as CD276) is, in

a cancer context, an immune checkpoint factor which may

dampen the adaptive immune response to tumours. There is

considerable interest in the possibility that blocking monoclonal

antibodies directed agains B7-H3 could enhance CD8+

and NK cell infiltration into tumours (34). Interestingly,

immunohistchemical staining of Diffuse Midline Glioma

(DMG) patient samples showed that B7-H3 expression is

elevated, with diffuse membrane staining of tumour cells in

most tissues (35). This sugggests that B7-H3 could also be a

tumour-specific antigen targetable by CAR T. Indeed, B7-H3

protein is expressed on a wide range of paediatric cancers,

including high grade gliomas and medulloblastoma (36).

Monoclonal antibodies with high-specificity for tumour-

expressed B7-H3 were used as the basis for the development

of a CAR T product. In preclinical studies of immunodeficient

mice injected with a range of human cancer cell lines to generate

orthotopic models, they showed promising activity, including in

DMG and medulloblastoma (36). Further, atypical teratoid/

rhabdoid tumours (AT/RTs), typically associated with

germline mutations in the SWI/SNF complex gene SMARCB1

(37, 38), also almost universally express elevated B7-H3 (39). B7-

H3 CAR T cells, when administered by loco-regional routes,

rapidly cleared tumour cells from the brain. Strikingly, the CAR

T cells were able to traffic out of the CNS and prevent tumour

redevelopemnt when treated mice were rechallenged with the

parental cell lines (39). The current clinical study (NCT

04185038) builds from these observations of the safety and

feasibility of B7-H3-specific CAR T cell infusions delivered

into the tumour or ventricles. Since this CAR T demonstrates

preclinical activity against some of the most difficult to treat

paediatric brain cancers with particularly dismal prognosis in

the case of AT/RT, there is potential for significant

clinical impact.
Major challenges in CAR T cell
therapy for CNS tumours

Factors common to all CAR T cell therapies may determine

their efficacy, such as the antigen load and specificity in the target

cells, the proliferative capacity of the CAR T cells, their persistence
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post delivery, the biological features of the transduced T cells and

the nature of co-stimulatory signals included with the CAR (19,

40–43). More specific to cancers of the CNS are the challenges

presented by delivery of CAR T cells across the blood brain barrier

and the unique immunosuppressive nature of the brain tumour

microenvironment (TME).
The paediatric brain tumour
microenvironment

Brain tumour cel ls thrive by adapting to their

microenvironment. Infiltrating immune cells are among the

major non-cancer cell types in tumours and the key factors

influencing tumour biology and immunotherapeutic

efficacy (44). The establishment of an immunosuppressive

TME is a major contributing factor to failure of adoptive

immunotherapies in solid tumours, preventing immune cell

penetration of the tumours and quenching their activity. The

brain is also a relatively immune privileged organ (45). Much of

the current knowledge of the brain TME is based on adult brain

tumours, and the paediatric brain TME biology has, until

recently, been inferred from such studies even though it is well

understood that many significant age-specific changes occur

during pre- and postnatal development, and the immune

system continues to develop until adulthood (46). There are

also differences in blood brain barrier structure and function, as

well as differences in remodelling of the brain TME in response

to therapy. A common feature of both the adult and paediatric

brain TME is the cellular and molecular heterogeneity (47).

Using techniques such as multiplex immunohistochemistry, the

ability to not only measure the cellular and molecular

composition of the TME, but the ability to also interrogate the

spatial relationship between cells and immunomodulatory

factors is uncovering the functional biology of the TME (48).

Investigation of paediatric high-grade glioma tissue using

multiplex immunohistochemical highlights the TME cellular

heterogeneity and shows the extent of immune cell infiltration

and spatial distribution of the tumour infiltrating cells (TILs) in

relation to histopathological hallmarks (Figure 1A) and in adult

glioma tissue using multiplex immunohistochemistry

(Figure 1B). A recent study suggests that the composition and

extent of immune cell infiltration is a reliable prognostic

indicator of adult GBM patient survival and predictive of

patient response to chemotherapy (49). Paediatric gliomas also

exhibit distinct spatial localisation of specific T-cell subtypes.

TCF1+ T-cells, which are immature T-cells, were largely

localised within perivascular niches, while CD103+ tissue-

resident memory T-cells (TRM) were observed deep within

tumour cell-rich regions (50). Whether the distribution of

these T-cell subtypes will be important instructive in treatment

of paediatric glioma remains to be seen, but studies in other

cancers in adults, suggest that the presence of high tumour-
Frontiers in Oncology 05
specific TRM cell number in breast cancer patients correlates with

improved prognosis and longer overall survival and better

response to anti-PD-1 immunotherapy in advanced-stage

breast cancer patients (51). Thus, spatial analysis of TILs and

the TME, with respect to the immune cell type, and the extent of

infiltration into tumour cell-rich regions, will likely be an

important characteristic of paediatric brain tumour biology

and may correlate with response to immunotherapy, including

CAR T therapy.
Blood brain barrier

The blood-brain barrier is a key determinant of CAR-T

access to CNS tumours. The blood brain barrier is formed by

tight junctions between endothelial cells and is the first-line

physical barrier that contributes to the immune privileged status

of the CNS (52). While recent studies have shown that activated

immune cells are able to traverse the blood brain barrier, their

passage is significantly restricted (53). Disruptions to the blood

brain barrier is a well characterized feature of CNS diseases,

including multiple sclerosis (54) and ischemic stroke (55).

Tumour growth is accompanied by progressive necrosis in the

tumour core, triggering vascular endothelial growth factor

(VEGF) secretion in the surrounding cells, and the generation

of immature, leaky blood vessels (56). Vascular “leakiness”

might be expected to facilitate efficient trafficking of CAR T

cells into the tumour. Indeed, a clinical trial in adult GBM

patients using EGFRvIII CAR T cells showed evidence of post-

therapy tumour T-cell infiltration (57).
Immunosuppression in the paediatric
brain TME

In adult HGG, including GBM, immune cells can comprise

up to 40% of the TME, including macrophages, microglia, and

regulatory T-cells (58). Moreover, tumour cells and glioma

cancer stem cells can recruit immunosuppressive macrophages

via secretion of various immunosuppressive cytokines and

growth factors (59). Broadly, the paediatric brain cancer TME

is different with respect to the immune cell populations and the

cytokine milieu. Immunoprofiling of paediatric low-grade

glioma (LGG), DHG and DMG identified elevated numbers of

immunosuppressive macrophages (CD163+) in LGG and DHG

compared to non-tumour tissue, with a proportion of samples

also having CD8+ T-cell infiltrates. In contrast, the DMG TME

was largely devoid of CD163+ immunosuppressive macrophages

and T-cells. These differences suggest that factors influencing the

TME in glioma may include the distinct molecular features of

these tumours and perhaps even the anatomical location

(58, 60).
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The complexity of the interactions between CNS

tumour cells and surrounding and infiltrating cells are

increasingly recognised as determinants of the effectiveness of

immunotherapies, including CAR T cell therapies, and may be

influenced by a myriad of factors (61). Moreover, the TME is a

dynamic environment and may change over the course of

treatment. Intriguing but preliminary observations of CSF
Frontiers in Oncology 06
myeloid cells in patients treated with anti-GD2 CAR T for

DMG, suggests that the inflammatory nature of myeloid cells

varies depending on the route of CAR T administration

(intravenous compared to intraventricular) and the time of

sampling, after treatment (25). T-cell infiltration in paediatric

glioma is, to some degree, dependent on malignancy, with lower

grade gliomas tending to show increased CD3+ T cell number
A

B

FIGURE 1

(A) Extensive heterogeneity and distinct spatial distribution of immune cells in paediatric brain tumour microenvironment. Multiplex
immunohistochemistry analysis of paediatric high-grade glioma tissue using biomarkers to identify macrophages (CD68), dendritic cells (CD11c),
microglia (TMEM119) and proliferating cells (Ki67). DAPI labels all cell nuclei. Tumour infiltrating immune cells are often present in clusters, with
macrophages penetrating deeper into tumour cell-rich regions, compared with dendritic cells and microglia. Scale bar is 100µm. (B) Extensive
heterogeneity and distinct spatial distribution of T-cells and macrophages in adult brain tumour microenvironment. Multiplex
immunohistochemistry analysis of adult glioblastoma tissue using biomarkers to identify tumour cells (CD44), endothelial cells/blood vessels
(CD31), T-cells (CD3), macrophages (CD68), matrix metalloproteinase-9 (MMP9); DAPI labels all cell nuclei. Tumour infiltrating T-cells are often
present in clusters, in close proximity to blood vessels, while macrophages penetrate deeper into tumour cell-rich regions. Scale bar is 200µm.
frontiersin.org

https://doi.org/10.3389/fonc.2022.873722
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rao et al. 10.3389/fonc.2022.873722
compared to higher grade gliomas, although there is

considerable heterogeneity (50). Immunosuppressive T-cell

phenotype infiltration also tends to increase with disease

progression (62). It is not known whether T-cell infiltration in

some tumours is a response to specific tumour antigens, or what

immunosuppressive mechanisms and factors are important in

primary childhood CNS cancers. It may be that identification of

immunogenic T-cell peptide antigens may be useful targets for

future adoptive cellular therapies (63).
CAR T cell toxicity

CAR T cell therapy has significant toxicities, the most

common of which might be considered an “on-target” effect.

The therapeutic goal of exciting a cellular immune response in

the brain is a partiuclar concern. Cytokine release sydrome

(CRS) is an inflammatory condition arising as a consequence

of the activation of the infused CAR T by its target antigen. The

inflammatory consequences include systemic symptoms such as

fever, myalgia and rigors but may also prgress to more serious

consequences include capilliary leak syndrome and consequent

hypotension, circulatory collapse, and end-organ failure

including neurotoxicity (64). Of the many cytokines detectable

in the peripheral blood during CRS, Interleukin-6 levels

correlate most closely with disease severity (65), and IL-6

inhibition is effective therapy for severe CRS (64).

Interestingly, host antigen presenting cells and not the infused

CAR T are the source of IL-6 in CRS (66). Neurological toxicity

is a specific concern, at least in theory, for CAR T therapy for

CNS cancers. The early clinical experinces from the phase I trials

indicate that dose limiting toxicities have not yet been a major

issue. Anecdotal experience from these studies clearly describes

local inflammation after CAR T, which when it is in critical

anatomical sites such as the brainstem, may have life-threatening

consequences (25). Since the toxicity of CAR-T therapy derives

from the on target activation of the CAR T, another way to

control this is to limit the life span of the CAR T cells. So-called

“suicide switches” are engineered into the CAR T. Most

commonly, these involve a constuct encoding chimeric proetin

with a dimerization domain and a functional domain which can

induce CAR T cell death (such as a caspase-9). Whilst not yet

features of current approved CAR T therapies, are an effective

mechansim to clear the CAR T cells (67, 68). The trade-off is that

killing the CAR T precludes any further therapeutic beneift.

Finally, clinical observations in 9 patients with B-cell

maliganacies treated with anti-CD19 CAR T suggests that

there may be reduced toxicity associated infusion following

low dose chemotherapy (69). It is unknown how prior therapy

might influence the response to CAR T in CNS patients, except

to not that all the phase I clinical trials currently active recruit

heavily pretreated patients.
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Meeting the challenges for CAR
T cell therapy for paediatric
brain tumours

Beyond the identification of target antigens in paediatric

brain tumours and the development of effective CARs, there are

important therapeutic considerations to ensure effective

trafficking of CAR T cells to the brain, either by direct

inoculation to the tumour site or with the use of targeted

combination therapy to overcome the immunosuppressive

brain tumour microenvironment. Some of these therapeutic

strategies are discussed below.
The blood brain barrier

Several strategies have been used to deliver CAR T cells

across the BBB, most prominently by direct introduction into

the tumour resection cavity or into the ventricular system of

the brain.

The direct innoculation of CAR T to the tumour site is an

obvious strategy to bypass tumour-intrinsic or anatomical

barriers, including the BBB, and immunosppressive niches

which restrict traffiking of CAR T within tumours following

systemic adminstration (70). Moreover, direct tumour

innoculation may diminish on-target side effects of CAR T

therapy by limiting the exposure of normal tissue expressing

the target antigen to the CAR T cells (71). Both efficacy and

safety considerations, together with clear evidence from

preclinical studies (9), underpin the use of direct deleivery of

CAR T cells to into the tumour resection cavity or ventricular

system (NCT 03500991, NCT 03638167, NCT 04185038).

Another potential approach is to modify the BBB so that it

presents a less challenging barrier for CAR T passage into the

brain. For example, Sabbagh et al. showed low intensity pulsed

ultrasound could enhance tumour infiltration of systemically

delivered CAR T, in a preclinical xenograft model of glioma (72).

Radiation therapy prior to CAR T adminstration also appears to

an effective mechanism to provide CAR T cells with access

beyond the BBB (73). Although it is beyond the scope of this

review, there are many molecular and physical differences

between the BBB in the tumour microenvironment compared

to normal tissue (reviewed in (74)). Some of these may resent

opportunities for intervention to give systemically depvered

CAR T access to their intracranial targets. However at this

stage, more direct delivery options seem to be the best option.
Combination therapy

Vascular endothelial growth factor A (VEGFA) is a

proangiogenic growth factor that functions as a ligand for
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VEGF Receptor 2 (VEGFR2). Blocking VEGFA antibodies also

have an immunomodulatory effect. Stickingly, VEGFA-blocking

antibodies significantly delayed tumour progression in a

melanoma model (B16 cells) when combined with a CAR T

engineered to recognize a tumour specific antigen. Notably,

without the CAR T, the antibody had no effect on tumour

progression, suggesting the effect was not solely the result of an

antiangiogenic effect (75). Moreover, simultaneous targeting of

the tumour specific antigen and VEGFR2 by CAR T cells caused

tumour regression in the same model (76). It seems likely that

the immunomodulatory effects of disrupting the VEGF-VEGFR

axis is a result of both direct effects on immune cells and effects

on tumour vaculature (77). Since the anti-VEGFA antibody

Bevacizumab is approved for use in GBM, the potential of

combining this agent with a CAR T in CNS tumour therapy is

an intriguing possibility (78), but as yet, there are no published

data in humans. Emerging clinical evidence in adult

mesothelioma supports the principle of combining VEGFA

inhibitors with checkpoint inhibitor drugs to activate TILs

(79). Whether such combinations can extend to CAR T in

CNS cancers in children is not known, but an intriguing and

promising line of investigation. There is also likely to be further

complexity in the brain since the VEGF signalling also regulate

the BBB (74) and it is plausible that VEGF inhibition might

reduce BBB permeability.
Overcoming the immunosuppressive
brain tumour microenvironment

There is interest in understanding whether existing drugs

which inhibit immuno-suppresive checkpoints can facilitate the

entry of CAR T into CNS tumours. Checkpoint inhibitors have

had virtually no clinical impact in paediatric maligancies with

the sole, but important, exception of hypermutated cancers

arising in the context of germline mutations of mismatch

repair genes (Mismatch Repair Deficiency – MMRD), with or

without Polymerase Proofreading deficiency (PPD). In

chiildhood, a significant proportion of such patients present

with gliomas (80). These tumours have orders of magnitude

more mutations than non-MMRD tumours, and as a

consequence, a much larger number of potential neoantigens.

From this perspective, these missmatch repair mutated tumours

resemble cancers with high tumor mutation burden, such as

melanoma, which is one of the cancers most responsive to

checkpoint inhibition. However, there is evidence to support

the view that combining checkpoint inhibitor drugs with

exogenously delivered CAR T may be an effective strategy,

although the evidence is primarily derived from adult phase I

trials in patients with malignant pleural disease, and not from

patients with CNS cancer (81). A high proportion of T-cells in

paediatric CNS tumours exhibit an exhausted phenotype and

expression of PD-L1 (60). Observations that concomitant CAR
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T and anti-PD-1 therapy results in CAR T cell expansion,

downregulated CAR T PD-1 expression and tumour

regression, particularly in diffuse large B-cell lymphoma

(DLBCL) (82), further supports the promise of this approach.

However, the phase 1b PORTIA study testing tisagenlecleucel, a

CD19 directed CAR T cell in combination with pembrolizumab,

in patients with refractory or relapsed DLBCL did not report

improved efficacy compared to tisagenlecleucel alone, in a small

cohort of patients, leading to an early termination of the study

(NCT03630159) (83). Alternative mechanisms to disprupt

checkpoint signaling in CAR T prior to administration,

including targeted gene deletion, have been reviewed elsewhere

(84). For patients with GBM, a clinical study (NCT04003649) is

evaluating the safety and feasability of a combination therapy of

IL13Ra2-specific CAR T cells alone, or in combination with the

immune check point inhibitors, nivolumab or ipilimumab.
Conclusion

Immunotherapy in cancer treatment is having a renaissance,

with checkpoint inhibitor therapy for melanoma and lung

cancer, and CAR T cell therapy for B-cell malignancies

showing promising results (5, 85, 86). The successes for these

diseases raises the question on how immunotherapy can be

improved to provide longterm anti-tumour responses? The

challenges presented by maligancies of the CNS in children

and in adults, are considerable, and as yet, are largely unrealised.

However this should not be taken to mean that these challenges

are insurmountable. From the CAR T perspective, the search for

new CNS-tumour specific antigens against which CARs can be

generated is supported by the remarkable increase in the

genomic and transcriptomic profiling of paediatric cancers

[reviewed in Jones et al. (87)]. Moreover, there are many

potential innovative strategies to alter the CNS tumour

microenvironment with existing drugs including checkpoint

inhibitors and kinase inhibitors, and the ability to modify

CAR T cells directly to enhance traffiking to and activity

within the CNS. Perhaps the most important endevours are

those seeking to understand the fundamental basis of the

immune environment of the CNS, and how the cancer cells

interact with the non-cancer cells, including tumour infiltrating

immune cells. A more fundamental appreciation of the immune

mechanisms that permit CNS tumours to escape immune

survellence will provide the knowledge base for the

development novel and successful immune-based therapies.
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