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Insulin-like growth factor 2
receptor is a key immune-
related gene that is correlated
with a poor prognosis in patients
with triple-negative breast
cancer: A bioinformatics analysis

Ying Zhong1†, Xinyu Ren2†, Xi Cao1†, Yali Xu1, Yu Song1,
Yidong Zhou1, Feng Mao1, Songjie Shen1, Zhe Wang1

and Qiang Sun1*

1Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China, 2Department
of Pathology, Peking Union Medical College Hospital, Beijing, China
Background: Immunotherapy plays an important role in the treatment of

triple-negative breast cancer (TNBC). This study aimed to identify immune-

related genes that are associated with the prognosis of patients with TNBC as

possible targets of immunotherapy, alongside their related tumor-infiltrating

lymphocytes (TILs).

Methods: The clinical data and gene expression profiles of patients with breast

cancer were extracted from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases and divided into training (n = 1,053) and

verification (n = 508) groups. CIBERSORT was used to predict the differences in

immune cell infiltration in patient subsets that were stratified according to risk.

Gene Ontology (GO) enrichment analysis was used to identify pathways

associated with immune-related genes in patient subsets that were stratified

according to risk. The clinical data and insulin-like growth factor 2 receptor

(IGF2R) expression profiles of patients with breast cancer were extracted from

METABRIC. The expression of IGF2R and TILs were evaluated in a cohort

containing 282 untreated patients with TNBC. The correlations of IGF2R

expression, TILs, and clinicopathological parameters with patient prognosis

were analyzed in the whole cohort.

Results: The prognostic model, which was composed of 26 immune-related

gene pairs, significantly distinguished between high- and low-risk patients.

Univariate and multivariate analyses indicated that the model was an

independent prognostic factor for breast cancer. Among the identified

genes, the expression of IGF2R significantly distinguished between high- and

low-risk patients in TCGA (P = 0.008) and in METABRIC patients (P < 0.001).

The expression of IGF2R was significantly associated with clinical risk factors

such as TNBC, estrogen receptor (ER)–negative expression, human epidermal
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growth factor receptor 2 (HER2)–positive expression, and age ≤60 years old in

METABRIC patients. In addition, the patients with IGF2R-positive expression

had lower disease-free survival (DFS) rates than those with IGF2R-negative

expression in the TNBC cohort (67.8% vs. 78.5%, P = 0.023). IGF2R expression

also was significantly negatively correlated with TILs, particularly with CD8+

TILs and CD19+ TILs in the cohort of patients with TNBC.

Conclusion: IGF2R can be used as an indicator of a poor prognosis in patients

with TNBC and as a potential target and research direction for TNBC

immunotherapy in the future.
KEYWORDS

poor prognosis, triple negative breast cancer, TIL (tumor infiltrating lymphocytes),
CD8+ TILs, IGF2R
Introduction

Breast cancer is the most serious malignant tumor threatening

the health of women worldwide. It is the leading global cause of

cancer deaths in women and remains incurable when it reaches an

advanced stage (1). Approximately 3%–10% of patients with new

breast cancer are diagnosed with distant metastasis (2). Metastatic

breast cancer remains an almost incurable disease, with an overall

survival (OS) period of approximately 3 years and a 5-year

survival rate of approximately 25% (3).

Insulin-like growth factor 2 receptor (IGF2R) is a

membrane-binding glycoprotein whose main function is

transporting lysosomes from the trans-Golgi network to the

lysosomes. It plays an important role in cell growth and survival,

and its expression is closely related to tumors (4). IGF2R is also

associated with a variety of malignancies that include cervical

cancer (5), bladder cancer (6), osteosarcoma (7), and mucosal

melanoma (8). The loss of IGF2R activity affects tumor growth,

apoptosis, angiogenesis, and invasion (9). IGF2R plays an

important role in clearing apoptotic cells to maintain the

stability of tissue environments (10). IGF2R has been

confirmed to be involved in latent transforming growth factor

beta (TGFb) activation in human fibroblasts (11). In addition,

TGFb family cytokines are involved in immune regulation,

extracellular matrix synthesis, as well as the proliferation,

differentiation, and development regulation of various types of

cells (12). Moreover, IGF2R plays a key role in the survival of

CD8+ T cells (13) and in the activation and differentiation of T

cells (14). Furthermore, some immunological mechanisms and

pathways controlled by IGF2R have been discovered (15).

However, the role of IGF2R in the immunotherapy of patients

with breast cancer requires further study.

Cytotoxic chemotherapy, has long been the main treatment

for triple-negative breast cancer (TNBC), and TNBC is more
02
likely to metastasize than other types of breast cancer (16). The

proportion of tumor-infiltrating lymphocytes (TILs) in TNBC is

much greater than that in hormone receptor (HR)–tumors, and

the increased proportion of TILs indicates a better prognosis

(17). The cytotoxic T-lymphocyteassociatedantigen 4 (CTLA-4)

and programmed death 1 (PD-1)/programmed death ligand 1

(PD-L1) have been observed to block TILs and to promote

tumor growth and progression (18). Meanwhile, immune

checkpoint inhibitors (ICIs) have been used successfully in the

treatment of cancer (19), and immunotherapy has become the

first treatment choice for patients with TNBC diagnosed with

PD-L1–positive tumors (20). Anti-trophoblast cell surface

antigen 2 is an antibody–drug conjugate that has been

demonstrated to improve the progression-free survival of

patients with metastatic TNBC (21). The poly-ADP ribose

polymerase (PARP) inhibitors olaparib and talazoparib have

been used in patients with TNBC with the mutant breast cancer

gene BRCA who were resistant to chemotherapy (22). In

addition, chimeric antigen receptor-positive T cells have been

observed to kill tumor endothelial cells and tumor endothelial

marker-8–positive TNBC cells by secreting immune-stimulating

cytokines, but the relevant research is still in the preclinical stage

23. For patients with TNBC, the clinical benefit of

immunotherapy is limited and remains in the research stage.

Consequently, tumor immunity needs to be better understood to

identify additional immune biomarkers and potential

therapeutic targets.

To address these issues, in the present study, we aimed to

identify powerful biomarkers for the prediction of ICI

responsiveness using data extracted from The Cancer Genome

Atlas (TCGA), Gene Expression Omnibus (GEO), and

METABRIC databases. We combined these data with those in

the immunology database and analysis portal ImmPort to

investigate the relevant molecular mechanisms and immune
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cell relationships. Furthermore, from the breast cancer database

of Peking Union Medical College Hospital, we identified the

relationships between IGF2R expression and the clinical

characteristics of TILs.
Materials and methods

Collection of breast cancer gene
expression data

This was a retrospective study of the gene expression and the

corresponding clinical data of patients included in two

independent datasets obtained from publicly available

databases. In total, the data from 1,561 patients were analyzed.

The expression of 56,737 genes and the survival outcome data of

1,053 patients were obtained from TCGA (https://portal.gdc.

cancer.gov/repository). Data on gene expression and DFS of 508

patients were retrieved from the GEO database (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25066). The

expression of the IGF2R gene and the clinical characteristics

and survival outcomes of 1,818 patients were acquired from the

METABRIC database (http://www.cbioportal.org/datasets).
Construction of the prognostic model
based on immune-related gene pairs

To construct a prognostic model based on immune-related

genes, 2,498 immune-related genes were obtained from the

ImmPort database (https://www.immport.org/home) on 30

May 2020 . This gene plat form inc ludes a l i s t of

immunologically relevant genes, curated with functions and

Gene Ontology (GO) terms. The ImmuneRegulation web-

based tool identified regulators of immune system-specific

genes of interest, and the Immcantation framework analyzed

high-throughput adaptive immune receptor repertoire

sequencing datasets characterizing B-cell and T-cell receptors.

In this study, we retained only immune-related genes that were

identified in both the GEO and TCGA datasets with a median

absolute deviation of >0.5 (24). The relative expression within

each immune-related gene pair was compared for each patient in

the TCGA dataset. In each pair, if the expression of one gene was

larger than that of the other, then the value of the gene pair was

considered to be 1; otherwise, the value was considered to be 0.

After removing immune-related gene pairs with relatively small

variations in expression within the pair (<20%), least absolute

shrinkage and selection operator (Lasso) regression was

performed for 1,000 simulations, and a prognostic model

containing 26 immune-related gene pairs was obtained. This

model was used to calculate the risk value of each patient in the

TCGA dataset. A receiver operating characteristic curve was

established using the risk values, and an optimal cutoff value was
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determined to distinguish between the low- and high-

risk patients.
Verification of the prognostic model
based on immune-related gene pairs

To further verify the prognostic model based on immune-

related gene pairs, the GEO dataset was used as the validation

group. The risk value of each patient in the GEO dataset was

calculated using the model, and the cutoff value obtained for the

training group was used to stratify the GEO patients into high-

and low-risk groups. Univariate and multivariate Cox

proportional hazards analyses were used to verify whether the

model could be used as an independent prognostic factor relative

to other clinical features such as age, HR expression, HER2

expression, and American Joint Committee on Cancer (AJCC)

stage in the GEO and TCGA datasets.
Immune cell infiltration is associated
with the prognostic model based on
immune-related gene pairs

The CIBERSORT algorithm was used to estimate differences

in immune cell infiltration using gene expression data in the

high- and low-risk TCGA groups (25). This algorithm uses gene

expression data to predict the proportions of 22 types of tumor-

infiltrating immune cells, such as T cells, B cells, macrophages,

and natural killer cells.
Enrichment analysis by GO

Enrichment analysis of the identified immune-related genes

was performed using g:Profiler (26). All GO gene sets were

downloaded from the Gene Set Enrichment Analysis website

(https://www.gsea-msigdb.org/gsea/index.jsp). Gene sets in the

high- and low-risk TCGA groups were compared using the

Bioconductor “fgsea” package in R. After 10,000 cycles,

significant enrichment pathways were obtained and sequenced.

Gene sets with statistical significance were selected with a false

discovery rate–adjusted P < 0.05.
Patients and immunohistochemistry

The tumor specimens from 282 patients with TNBC at

stages I–III were collected. These patients received surgical

treatment in our hospital between 2011 and 2014. Patients

with stage IV TNBC and patients who received neoadjuvant

chemotherapy were excluded. The formalin-fixed paraffin-

embedded tumor specimens of these patients were made
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into tumor microarrays (TMAs). When constructing the TMAs,

each tumor specimen included the epithelial components and

the tumor stroma after hematoxylin and eosin (HE) staining.

The median follow-up time was 69 months (1–104 months). All

sections of the TMAs were stained with IGF2R, CD8, and CD19

antibodies, and the frequencies of TILs were evaluated according

to the publication A Practical Review for Pathologists and

Proposal (27). IGF2R expression was detected by a rabbit

monoclonal antibody (#15128, Cell Signaling Technology;

dilution, 1:50). CD8 expression was detected by 4B11

(PA0183, prediluted; Leica Microsystems, Shanghai, China).

CD19 expression was detected by EP169 (ZA-0569, prediluted;

Zhongshan Golden Bridge Biotechnology Co. Ltd., Beijing,

China). Two pathologists reviewed all of the samples and

scored the immunohistochemical staining independently. The

expression of IGF2R was determined by histochemical scoring

(H-score), with consideration of the staining intensity and the

percentage of positive cancer cells (28). An H-score of 0–49 was

classified as the negative group, whereas H-scores of 50–99, 100–

199, and 200–300 were classified as 1+, 2+, and 3+, respectively.

An H-score classification of 1+, 2+, or 3+ was classified as the

positive group. TILs were divided into a low group and a high

group, with a median of 5%. CD8+ TILs were also divided into a

low group and a high group, with a median of 10%. Finally,

CD19+ TILs were divided into a low group and a high group,

with a median of 1%. Other pathological features of 282 patients,

such as tumor stage, lymph node (LN), tumor grade, and Ki-67,

were retrieved from the pathological report of the Beijing Union

Medical College Hospital.
Statistical analysis

Statistical analyses were performed using version 3.6.3 of the

R Statistical Software and SPSS 23.0. Comparisons of genes

between groups were performed using a t-test. The Kaplan–

Meier method and the “survival” package in R were used for

survival analysis. Cox proportional hazards regression analysis

was used for univariate and multivariate analyses of OS or DFS.

The Wilcoxon test was used to compare differences in immune

cell infiltration. The chi-squared test was used to compare TILs,

CD8+ TILs, and CD19+ TILs, and P < 0.05 was considered

statistically significant. Statistical differences were recorded as

follows: *P < 0.05, **P < 0.01, and ***P < 0.001.
Results

Construction of the prognostic model
based on immune-related gene pairs

A total of 56,735 genes and 2,498 unique immune-related

genes were obtained from the TCGA and ImmPort databases,
Frontiers in Oncology 04
respectively. Among them, 1,653 immune-related genes were

included in the data obtained from both databases. Then, the

immune-related genes from ImmPort and the genes obtained

from the GEO dataset were intersected to locate the same genes.

Among 606 common immune-related genes, 31,896 immune-

related gene pairs were found after removing gene pairs with

relatively small internal variations. The immune-related gene

pairs from the TCGA dataset were combined with the

corresponding clinical data, revealing 69 immune-related gene

pairs that were significantly associated with the patient

prognosis. Next, the Lasso method for Cox proportional

hazards regression analysis was used to construct the

prognostic model based on immune-related gene pairs for the

training group. Finally, 26 immune-related gene pairs

comprising 43 immune-related genes were selected in the

model (Table 1).
Prognostic value of the model based on
immune-related gene pairs for survival
analysis

The prognostic model significantly distinguished between

high- and low-risk patients in terms of their OS in the

TCGA dataset; the OS of the high-risk patients was

significantly shorter than that of the low-risk patients

(Figure 1A, P < 0.001). To verify the predictive value of the

prognostic model based on immune-related gene pairs, we

applied the model to the GEO dataset and stratified the

patients into high- and low-risk groups. The DFS values of the

two validation groups were similar to those of the training

groups; the DFS of the high-risk group was significantly less

than that of the low-risk group (Figure 1B, P = 0.026).

Next, univariate and multivariate Cox proportional hazards

regression analyses were used to study the corresponding

clinical data in the TCGA dataset. The prognostic model based

on immune-related gene pairs and the AJCC stage were

determined to be independent prognostic factors in the TCGA

dataset (Supplementary Figures 1A, B). In addition, univariate

and multivariate Cox proportional hazards regression analyses

were used to analyze the corresponding clinical data in the GEO

dataset (Supplementary Figures 1C, D). The prognostic model

based on immune-related gene pairs was determined to be an

independent prognostic factor in the GEO dataset, according to

the univariate Cox proportional hazards regression analysis

(Supplementary Figure 1C).
Immune cell infiltration in different
risk groups

CIBERSORT, which has been applied to many tumor

microenvironments (29), was used to predict the infiltration of
frontiersin.org
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21 different immune cell types in the high- and low-risk TCGA

groups (Supplementary Figure 2A), including M0 and M2

macrophages, CD8+ T cells, and resting dendritic cells. M0

(Supplementary Figure 2B, P < 0.001) and M2 (Supplementary

Figure 2C, P < 0.001) macrophages were highly expressed in the

high-risk group, whereas CD8+ T cells (Supplementary

Figure 2D, P < 0.001) and naive B cells (Supplementary

Figure 2E, P < 0.001) were highly expressed in the low-

risk group.
Functional evaluation of immune-related
gene pairs

To determine the biological processes and signaling

pathways associated with the immune-related gene pairs in the

prognostic model, GO enrichment was used to analyze the

identified immune-related genes in the TCGA dataset, and

pathways with significant differences between high- and low-

risk patients were detected (Supplementary Figure 3). CCR

chemokine receptor binding, regulation of leukocyte-mediated
Frontiers in Oncology 05
cytotoxicity, T-cell migration, T-cell receptor complex, and

other pathways were determined to be significantly enriched in

low-risk patients (Supplementary Figures 4A–F). The

enrichment of these pathways in low-risk patients confirmed

the importance of immune cells in the treatment and prognosis

of patients with breast cancer.
Prognostic value of IGF2R and its
relationship with clinical characteristics

Of the 1,098 patients with breast cancer in the TCGA

dataset, those with a higher level of IGF2R had a lower OS

compared with those with a lower level of IGF2R (Figure 2A, P <

0.001). In the METABRIC dataset including 1,818 patients with

breast cancer, the OS was lower in the patients with a higher

IGF2R expression level compared with the patients with a lower

IGF2R expression level (Figure 2B, P = 0.008). Of the patients

included in the METABRIC dataset, IGF2R expression was

greater in the patients with TNBC vs. the other patients

(Figure 3A, P < 0.001), in the ER-negative patients vs. the ER-
TABLE 1 Prognostic model based on immune-related gene pairs.

IRG1 IRG2 Coefficient

IGF1R IGF2R -0.280680737393679

CD74 CRABP2 -0.129381388033907

HSPA2 NEDD4 -0.431472955510512

CIITA TLR7 -0.0861166676605254

CIITA PLXNB3 -0.1318512759267

MICA PLXNB1 0.397483055209339

RELB CCR1 -0.126764197388246

RFXAP IGLV6-57 0.0399268657548744

TAPBPL IGF2R -0.266631594480481

CXCL14 HMOX1 -0.0424869848483334

CCL8 CD3D 0.123645099256706

S100B PLXNB3 -0.0745978715504017

APOBEC3G PLXNB3 -0.349449105911909

TRIM5 IL27RA 0.187761415761893

TYK2 PTK2 -0.237158486425192

MSR1 |IL18 0.2957793442697

PPARG PLXNB3 -0.128237814963708

VAV1 ITGAL 0.318667102339933

RAC2 C3AR1 -0.319397161742718

IGHD BTC -0.00256266119415776

IGHD SCG2 -0.019365921132164

IGHD NPR3 -0.252893524646672

IGHD ZAP70 -0.194457565172438

SEMA3B SEMA6C -0.192591720762394

SEMA3B BTC -0.18492459694902

ACVRL1 IL27RA 0.116702510407455
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positive patients (Figure 3B, P < 0.001), in the HER2-positive

patients vs. the HER2-negative patients (Figure 3C, P < 0.001), in

the patients aged ≤60 years old vs. those aged >60 years old

(Figure 3D, P < 0.001), and in patients that had undergone

chemotherapy vs. those without chemotherapy (Figure 3E,

P < 0.001).
Prognostic value of IGF2R and its
relationship with clinical characteristics
in patients with TNBC

IGF2R staining was evaluated in a cohort of 282 patients

with TNBC. There were 159 (56.4%) patients with an H-score of

0, 63 (22.3%) patients with an H-score of 1+, 54 (19.1%) patients

with an H-score of 2+, and six (2.1%) patients with an H-score of

3+ (Figure 4). The 4-year DFS of IGF2R-positive TNBC patients

was lower compared with that of IGF2R-negative patients

(Figure 5; 67.8% vs. 78.5%, P = 0.023). IGF2R expression

independently predicted the DFS in univariate and

multivariate Cox proportional hazards regression analyses

(Figure 6A, P = 0.025; Figure 6B, P = 0.026), whereas the

AJCC stage, LN−/+, T-stage, Ki-67, grade, and menopause

status of patients did not predict the DFS.
Frontiers in Oncology 06
Prognostic value of IGF2R and immune
markers in the tumor microenvironment
of TNBC

TILs, CD8+ TILs, and CD19+ TILs were detected in the 282

patients with TNBC. High frequencies of TILs, CD8+ TILs, and

CD19+ TILs were observed in 97.0%, 44.3%, and 63.5% of

patients with TNBC. The percentages of TILs, CD8+ TILs,

CD19+ TILs, and IGF2R expression were analyzed (Figure 7).

Patients with TNBC with IGF2R-positive expression had lower

frequencies of TILs compared with patients with IGF2R-

negative expression (Figure 8A, P = 0.046). Moreover, patients

with TNBC with IGF2R-positive expression had lower densities

of CD8+ TILs and CD19+ TILs compared with those with

IGF2R-negative expression (Figures 8B, C, P = 0.031 and

P = 0.05).
Discussion

In the current study, we demonstrated that a prognostic

model constructed with 26 immune-related gene pairs from 43

independent immune-related genes predicted the OS and DFS of

patients with breast cancer. Relative sequencing and pairing of
A

B

FIGURE 1

(A) Overall survival between the high- and low-risk patients in the TCGA datasets. (B) Disease-free survival between the high- and low-risk
patients in the GEO datasets.
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A

B

FIGURE 2

Overall survival between the high- and low-risk patients in (A) the TCGA datasets and (B) the METABRIC, according to IGF2R expression.
A

B

D

E

C

FIGURE 3

IGF2R expression with other clinical characteristics in the METABRIC datasets. (A) IGF2R expression in patients with TNBC and in other patients.
(B) IGF2R expression in ER-negative patients and ER-positive patients. (C) IGF2R expression in HER2-positive patients and HER2-negative
patients. (D) IGF2R expression in patients aged ≤60 years old and in patients aged >60 years old. (E) IGF2R expression in patients with
chemotherapy and in patients without chemotherapy.
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genes to create a prognostic model based on immune-related

gene pairs have provided reliable results for many types of

tumors (30, 31). The prognostic model based on immune-

related gene pairs was an independent prognostic factor in the

TCGA dataset. The findings from this study revealed that M2

andM0macrophages were highly expressed in high-risk patients

with breast cancer, whereas CD8+ T cells and naive B cells were

highly expressed in low-risk patients with breast cancer. In this

study, the identified immune-related genes were associated with

multiple pathways related to immune cell infiltration, migration,

and immune checkpoint enhancement. Among them, regulation

of the leukocyte-mediated cytotoxicity pathway is associated

with tumor progression and decreased CD8+ infiltration in
Frontiers in Oncology 08
pancreatic cancer (32). In addition, the T-cell migration

pathway has been demonstrated to enhance tumor immunity

and increase the efficacy of ICIs in preclinical breast cancer

models (33). This pathway can increase the number of T cells in

tumors and intratumoral T-cell diversity (34).

Among 43 independent immune-related genes, IGF2R was

selected for further research. We found that a high level of

IGF2R expression was significantly associated with a poor

prognosis in patients included in the TCGA and METABRIC

databases. In addition, we observed that IGF2R was closely

related with poor clinical characteristics, such as TNBC,

premenopause, ER-negative expression, and chemotherapy.

Furthermore, we identified that the expression level of IGF2R
frontiersin.o
FIGURE 4

Hematoxylin and eosin (HE) staining and classification of IGF2R expression by the H-score in patients with TNBC. (A) HE staining of the tumor
cells (original magnification, ×100). (B) HE staining of the tumor cells (original magnification, ×200). (C) IGF2R-negative expression on tumor cells
(original magnification, ×200). (D) IGF2R 1+ expression on tumor cells (original magnification, ×200). (E) IGF2R 2+ expression on tumor cells
(original magnification, ×200). (F) IGF2R 3+ expression on tumor cells (original magnification, ×200).
FIGURE 5

Disease-free survival between IGF2R-positive patients and IGF2R-negative patients in the TNBC cohort.
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was significantly associated with a poor prognosis and lower

frequencies of TILs and CD8+ TILs in the cohort of patients

with TNBC.

IGF2R is a growth inhibitory factor 35. IGF2R deletion or

mutation may contribute to the development and progression of

cancer 36. The deletion of the IGF2R allele has been shown to be

an early event in the etiology of breast cancer (36) as a tumor

suppressor (37). In addition, low levels of IGF2R have been

associated with a poor prognosis in patients with breast cancer

(38). However, IGF2R is overexpressed in HR-negative breast

cancer (39). Moreover, IGF2R plays a central role in the

differentiation of TNBC subsets. The IGF receptor family also

has been related to tumor differentiation and the prognosis of

patients with TNBC (40). In fact, IGF2R has been demonstrated

to be an unfavorable prognostic factor for patients with ER-
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negative breast cancer (41). In addition, luminal A and luminal B

patients with a high expression of IGF1R and a low expression of

IGF2R had significantly higher survival rates than patients with

other types of breast cancer (39). Overexpression of IGF2R also

has been shown to significantly increase the migration and

invasion of MDA-MB-231 cells (42). The level of IGF2R

mRNA in MDA-MB-231 cells has been determined to be

higher than that in MCF-7 cells (43). Likewise, our study

observed that a high expression of IGF2R was associated with

a poor prognosis of patients with TNBC.

The development of breast cancer is characterized by an

increased infiltration of immune cells in the parenchyma and

stroma of a tumor (44). It has been demonstrated that stromal

infiltrating lymphocytes (sTILs) have predictive and prognostic

value for TNBC and that high percentages of sTILs indicate a
A

B

FIGURE 6

(A) Univariate analysis and (B) multivariate analysis of IFG2R expression and clinical characteristics for patients in the TNBC cohort.
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better prognosis (44). CD8+ lymphocyte infiltration has been

shown to be an independent favorable prognostic indicator in

TNBC (45), and a high CD8+ T-cell score is associated with

better survival rates in patients with TNBC (46). Improved

outcomes of atezolizumab have been observed only in CD8+

and sTILs+ patients (47). The PARP inhibitor olaparib induces

CD8+ T-cell infiltration through activation of the cyclic GMP-

AMP synthase/stimulator of interferon genes pathway, and

CD8+ T-cell depletion severely compromises antitumor

efficacy (48). Immunotherapy methods, including PD-1/PD-L1

blocking and chimeric antigen receptor T-cell therapy, have

been shown to improve antitumor activity through the

proliferation of CD8 + T cells (49). Although PD-1/PD-L1

blocking has triggered great progress in the treatment of

TNBC, the benefits are still limited (50–52). Therefore, more

immunological targets and therapies through TILs need to be

explored to improve the survival rates of patients with TNBC.

The IGF2R polyclonal antibody has been demonstrated to

induce the blockade of T-cell differentiation at the CD8− stage

and decrease the percentage of CD8+ cells (53). In addition, it

has been shown that IGF2R and CD8+ T cells coexist in

transplanted hearts and are involved in acute cellular rejection

(54). Moreover, the enhancement of IGF2R expression has been

revealed to increase apoptosis in CD8a+ dendritic cells, with a

consequent reduction in the expression of interleukin (IL)-12

and interferon (IFN)-g (55), while IL-12 and IFN-a/b provide

signal support for CD8+ T memory programming (56).

Furthermore, IGF2R is involved in the activation of TGFb
(57). TGFb enhancement inhibits the proliferation of

regulatory T cells (58), decreases the CD8+ T effector cell

penetration in tumors (59), and suppresses the immune

response (60). This may explain our findings, which show that

patients with TNBC with a high expression of IGF2R had a low

density of TILs and a low density of CD8+ TILs, thus promoting
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immune escape and leading to a poor prognosis for

these patients.

CD19 is the common therapeutic target of hematological

malignancies (61). Anti-CD19 chimeric antigen receptor T-cell

therapy directed against B-cell lymphoma has been

demonstrated to be efficacious. However, efforts to utilize this

approach for breast cancer have delivered only modest

improvements (62). The frequencies of CD19+ B cells in

breast cancer are greater than those in normal tissues (63).

Compared with fibroadenoma, the density of CD19+ B cells in

breast cancer is greater and is significantly associated with higher

tumor grades and an ER-negative status (64). CD19 is also

highly expressed in patients with high-risk breast cancer (65).

CD19+ B lymphocytes play an important role in breast cancer

through PD-L1 in immune suppression and tumor escape (64).

CD19+CD25+ regulatory B cells inhibit TILs and are closely

related to the metastasis of breast cancer (66). These studies

suggest that CD19+ B cells are a feature of patients with breast

cancer with a poor prognosis. In our research, we found that a

high percentage of CD19+ TILs was associated with a low

expression of IGF2R, whereas a low expression of IGF2R was

correlated with a high percentage of TILs. Therefore, we

speculate that IGF2R may cause breast cancer immune escape

through CD19+ TILs. Future targeting of IGF2R may promote

the proliferation of CD19+ TILs by reducing the expression of

inflammatory factors, thereby inhibiting the progression

of TNBC.

IGF2R inhibits the proliferation of T cells and the infiltration

of T cells in a tumor by TGFb activation. In addition, IGF2R has

been shown to promote the secretion of IL-10 by B cells (67), and

IL-10 directly activates or expands T cells in a tumor (68).

However, IL-10 promotes the depletion of CD8+ T cells in vivo

(69) and inhibits the activity of CD8+ T cells (70). The invasion

of IL-10 has been demonstrated to activate CD19+ B cells in the
FIGURE 7

IGF2R expression association with CD8+ TILs and CD19+ TILs. (A, B) The patients with IGF2R-positive expression and a low percentage of CD8+

TILs. (C, D) The patients with IGF2R-negative expression and a high percentage of CD8+ TILs. (E, F) The patients with IGF2R-positive expression
and a low percentage of CD19+ TILs. (G, H) The patients with IGF2R-negative expression and a high percentage of CD19+ TILs.
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pathogen (71). Whether or not IGF2R inhibits the recruitment

of TILs through some pathways or cytokines and whether it

promotes the depletion of TILs in the tumor might be a direction

for future research related to TNBC. An IGF2R inhibitor might

be one of the target drugs for the treatment of TNBC in

the future.

In summary, by analyzing patients from the TCGA and

GEO databases, we found that IGF2R is a gene that is associated

with a poor prognosis in patients with breast cancer. In the
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METABRIC database, the expression of IGF2R distinguished

patients with breast cancer with a poor prognosis from those

with a more favorable prognosis and was highly expressed in

patients with TNBC. Patients with a high expression of IGF2R

had a poor prognosis, and a high IGF2R expression was

negatively correlated with TILs, CD8+ TILs, and CD19+ TILs

in the TNBC cohort. The datasets originated from retrospective

studies including patients without ICI therapies. Thus, our

prognostic model and IGF2R expression must be more widely
A

B

C

FIGURE 8

(A) Frequencies of TILs between IGF2R-negative expression and IGF2R-positive expression patients in the TNBC cohort. (B) Frequencies of
CD8+ TILs between IGF2R-negative expression and IGF2R-positive expression patients in the TNBC cohort. (C) Frequencies of CD19+ TILs
between IGF2R-negative expression and IGF2R-positive expression patients in the TNBC cohort.
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validated in prospective cohort studies. In addition, the

association of IGF2R, CD8+ TILs, and CD19+ TILs as well as

their related immune factors and molecular mechanisms require

further verification in vitro and in vivo.
Conclusion

We es tab l i shed a prognos t i c mode l based on

immunogenomics that reliably predicted the prognosis of

patients with breast cancer. We identified that the immune-

related gene IGF2R may play an important role in the treatment

of TNBC in the future and may provide new targets for

immunotherapy. Furthermore, we demonstrated that CD8+

TILs and CD19+ TILs were highly expressed in patients with

TNBC with a low expression of IGF2R. Targeting CD8+ TILs

and CD19+ TILs combined with IGF2R expression should be

investigated in future TNBC treatment research.
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SUPPLEMENTARY FIGURE 1

(A) Univariate analysis and (B) multivariate analysis of the prognostic
model based on immune-related gene pairs for patients in the TCGA

datasets. (C) Univariate analysis and (D) multivariate analysis of the
prognostic model based on immune-related gene pairs for patients in

the GEO datasets.

SUPPLEMENTARY FIGURE 2

(A) Infiltration of 21 different immune cell types, (B) M0 macrophage
infiltration, (C)M2macrophage infiltration, (D) CD8+ T cell infiltration, and

(E) naive B cell infiltration in the high- and low-risk groups by the
prognostic model based on immune-related gene pairs in the

TCGA datasets.

SUPPLEMENTARY FIGURE 3

Pathways identified with significant differences between high- and low-
risk groups by the prognostic model based on immune-related gene pairs

in the TCGA datasets.

SUPPLEMENTARY FIGURE 4

(A) The CCR chemokine receptor binding pathway was significantly

enriched in low-risk patients by the prognostic model based on

immune-related gene pairs. (B) The regulation of the leukocyte-
mediated cytotoxicity pathway was significantly enriched in low-risk

patients by the prognostic model based on immune-related gene pairs.
(C) The T cell migration pathway was significantly enriched in low-risk
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patients by the prognostic model based on immune-related gene pairs.
(D) The T cell receptor complex pathway was significantly enriched in

low-risk patients by the prognostic model based on immune-related
gene pairs. (E) The cytokine receptor binding pathway was significantly
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enriched in low-risk patients by the prognostic model based on immune-
related gene pairs. (F) The response to the chemokine pathway was

significantly enriched in low-risk patients by the prognostic model
based on immune-related gene pairs.
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