AUTHOR=Zhuang Hongkai , Chen Bo , Tang Chenwei , Chen Xinming , Tan Wenliang , Yang Lei , Xie Zhiqin , Ma Xiaowu , Wang Qingbin , Zhang Chuanzhao , Shang Changzhen , Chen Yajin TITLE=Identification of LSM Family Members as Novel Unfavorable Biomarkers in Hepatocellular Carcinoma JOURNAL=Frontiers in Oncology VOLUME=12 YEAR=2022 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.871771 DOI=10.3389/fonc.2022.871771 ISSN=2234-943X ABSTRACT=Background

Smith-like (LSM) family members play critical roles in multiple oncologic processes in several types of malignancies. The study on LSM family members of HCC might provide new insights into the tumorigenesis and therapeutic strategies of HCC.

Methods

The clinical significance and oncologic biological functions of LSM family members were assessed through multiple bioinformatics methods and in vitro studies. The potential correlation between LSM family members and tumor immunity was also investigated using single sample gene set enrichment analysis (ssGSEA) and the ESTIMATE algorithm.

Results

LSM family member overexpression in HCC was significantly correlated with poor clinical outcomes such as higher TNM stage, advanced histologic grade, and worse prognosis. A risk score system based on LSM5, LSM10, LSM12, and LSM14B showed a reliable predictive ability for OS of HCC patients. Functional enrichment analysis demonstrated that LSM family members overexpressed were all involved in cell cycle related biological processes. Besides, LSM12, LSM14A, and LSM14B were found to be significantly associated with PI3K-Akt-mTOR and T cell receptor signaling pathways. Tumors with LSM12, LSM14A, and LSM14B overexpression exhibited lower infiltration of activated CD8+ T cells with declined cytolytic activity and immune score, but increased infiltration of Th2 cells and Th2/Th1. LSM12, LSM14A, and LSM14B overexpression is also associated with higher tumor-related immune checkpoints (e.g., PD-L1, B7-H3, and PVR) expression and increased therapeutic insensitivity to immune checkpoint blockade (ICB). Moreover, the knockdown of LSM12, LSM14A, and LSM14B significantly inhibited the proliferation and invasion of HCC cells.

Conclusion

This study systematically investigated the expression pattern and biological values of LSM family members in HCC and identified LSM family members as novel therapeutic targets in HCC.