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Purpose: Developing deep learning algorithms for breast cancer screening is limited due
to the lack of labeled full-field digital mammograms (FFDMs). Since FFDM is a new
technique that rose in recent decades and replaced digitized screen-film mammograms
(DFM) as the main technique for breast cancer screening, most mammogram datasets
were still stored in the form of DFM. A solution for developing deep learning algorithms
based on FFDM while leveraging existing labeled DFM datasets is a generative algorithm
that generates FFDM from DFM. Generating high-resolution FFDM from DFM remains a
challenge due to the limitations of network capacity and lacking GPU memory.

Method: In this study, we developed a deep-learning-based generative algorithm,
HRGAN, to generate synthesized FFDM (SFFDM) from DFM. More importantly, our
algorithm can keep the image resolution and details while using high-resolution DFM as
input. Our model used FFDM and DFM for training. First, a sliding window was used to
crop DFMs and FFDMs into 256 × 256 pixels patches. Second, the patches were divided
into three categories (breast, background, and boundary) by breast masks. Patches from
the DFM and FFDM datasets were paired as inputs for training our model where these
paired patches should be sampled from the same category of the two different image sets.
U-Net liked generators and modified discriminators with two-channels output, one
channel for distinguishing real and SFFDMs and the other for representing a probability
map for breast mask, were used in our algorithm. Last, a study was designed to evaluate
the usefulness of HRGAN. A mass segmentation task and a calcification detection task
were included in the study.

Results: Two public mammography datasets, the CBIS-DDSM dataset and the INbreast
dataset, were included in our experiment. The CBIS-DDSM dataset includes 753
calcification cases and 891 mass cases with verified pathology information, resulting in
a total of 3568 DFMs. The INbreast dataset contains a total of 410 FFDMs with
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annotations of masses, calcifications, asymmetries, and distortions. There were 1784
DFMs and 205 FFDM randomly selected as Dataset A. The remaining DFMs from the
CBIS-DDSM dataset were selected as Dataset B. The remaining FFDMs from the INbreast
dataset were selected as Dataset C. All DFMs and FFDMs were normalized to 100mm ×
100mm in our experiments. A study with a mass segmentation task and a calcification
detection task was performed to evaluate the usefulness of HRGAN.

Conclusions: The proposed HRGAN can generate high-resolution SFFDMs from DFMs.
Extensive experiments showed the SFFDMs were able to help improve the performance
of deep-learning-based algorithms for breast cancer screening on DFM when the size of
the training dataset is small.
Keywords: high resolution, conditional generative adversarial network, deep learning, breast cancer
screening, mammography
1 INTRODUCTION

Breast cancer has become one of the leading causes of cancer
death in women (1). It is crucial to detect breast cancer in the
early stages because early detection leads to a higher survival rate
(2). Mammography screening is one of the most effective
methods for the early diagnosis of breast cancer. Previous
studies show that mammography screening reduces the
mortality rate of breast cancer (3–7).

Digitized screen-film mammography (DFM) and full-field
digital mammography (FFDM) are two major techniques for
mammography screening. Although FFDM has become the
standard procedure for breast cancer screening, DFM had been
widely used and well-studied in the past. Leveraging the well-
studied DFM for better breast cancer screening in FFDM has
become a vital topic for developing a better breast cancer
screening system. Previous studies found that FFDM and DFM
have no significant difference in cancer detection rate other than
visual differences (8, 9). In this paper, we proposed to close the
gap between FFDM and DFM with a high-resolution
generative algorithm.

With the rapid development of deep learning algorithms, deep-
learning-based computer-aided diagnosis (CAD) systems have
shown significant potential in automatic breast cancer screening
(10, 11). However, the application of deep-learning-based CAD
systems is limited due to the lack of labeled data since well-
annotated medical images are difficult and laborious to acquire. In
the case of breast cancer screening with mammography, large-
scale public FFDM datasets with mass and calcification
annotations are yet to be built. Most FFDM CAD systems are
built based on limited size in-house datasets. Fortunately, large-
scale DFM datasets with annotations (12) are available publicly,
yet utilizing these DFM datasets for building better FFDM CAD
systems remains a vital challenge.

Conditional generative adversarial network (cGAN) (13)
algorithms, including Pix2pix (14), pix2pixHD (15), and Cycle-
GAN (16), have been particularly successful in image-to-image
translation. Additionally, Cycle-GAN is state-of-the-art for
2

unsupervised image translation. However, Cycle-GAN is not
ideal for high-resolution image-to-image translation while
other high-resolution image-to-image translation methods such
as Pix2pixHD require supervised training with paired datasets.

In this study, we proposed HRGAN to tackle the challenge of
leveraging DFM for building better FFDM CAD systems by
closing the gap between DFM and FFDM with a generative
algorithm. Moreover, our proposed HRGAN required no
additional annotation, which makes it easy to apply to existing
FFDM CAD systems. Our method is based on the unsupervised
image translation algorithm Cycle-GAN. To generate high-
resolution FFDM from DFM, a pair with constraint (PWC)
training strategy was purposed. Additionally, multi-scale
networks were purposed in our method to better capture
details such as mass boundary and micro-calcifications. We
further evaluate our method in two breast cancer screening
tasks. Extensive experiments showed the synthesized FFDMs
(SFFDMs) generated by HRGAN were able to help improve the
performance of deep-learning-based algorithms for breast cancer
screening on FFDM when the size of the training dataset is small.

This work is a further development based on our preliminary
work (17). The present work complements the preliminary one
in several aspects. First, we improve the discriminators by
introducing the gradient map as input, which is inspired by
GGGAN (18), a recent study for generating FFDM from digital
breast tomosynthesis (DBT). Second, extensive experiments,
including the mass segmentation and micro-calcification
detection tasks, were conducted while the preliminary one only
evaluated with the density estimation task. Moreover, we present
a more in-depth discussion and analysis of the proposed method.
2 MATERIALS AND METHODS

This section is organized as below. We first describe the data we
used in our study. Second, the overall architecture of HRGAN is
presented. Last, we present detailed information on the essential
components of HRGAN in the following subsections.
April 2022 | Volume 12 | Article 868257
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2.1 Screening Mammography Data
Two public screening mammography datasets, a DFM dataset
CBIS-DDSM (19, 20) and a FFDM dataset INbreast (21), were
included in our study. The CBIS-DDSM, namely Curated Breast
Imaging Subset of DDSM, is an updated and standardized version
of the Digital Database for Screening Mammography (DDSM).
While DDSM was a large-scale screening mammography dataset
containing 2620 mammography studies, a relatively large subset
was selected from DDSM making CBIS-DDSM still a large-scale
DFM dataset. The CBIS-DDSM dataset includes 3568 DFMs with
verified pathology information. The INbreast dataset has a total of
410 FFDMs with annotations of masses, calcifications,
asymmetries, and distortions.

The above two mammography datasets were then
recombined into three independent datasets for this study.
There were 1784 DFMs from CBIS-DDSM and 205 FFDMs
from INbreast randomly selected into Dataset A. Mammograms
belonging to the same patient should be selected together during
the random selection process. The remaining DFMs in the CBIS-
DDSM dataset were selected as Dataset B. The remaining FFDMs
in the INbreast dataset were selected as Dataset C. All
mammograms were resampled to an isotropic pixel resolution
of 100mm × 100mm. Patches for training HRGAN were cropped
from the resampled mammograms. The size of patches was set to
be 256 × 256 pixels in our experiment.
Frontiers in Oncology | www.frontiersin.org 3
2.2 The Proposed HRGAN
The overall architecture is shown in Figure 1. First, DFMs and
FFDMs were cropped into small patches with the sliding window
method. The threshold method OTSU (22) was applied to extract
the background of mammograms. Patches were assigned to the
categories of breast region, boundary, or background depending
on the ratio of background in the patches. Second, these patches
were used as input of HRGAN. However, unlike the vanilla
Cycle-GAN where the input is a pair of images randomly picked
from the two objective domains, we applied the pair with
constraint (PWC) training strategy where the input pair is
picked from the same categories of the two objective domains.
We used U-Net (23) as the generators and a multiscale DNN
architecture (15) as the discriminators. More details are
described in the following subsections. In the inference stage,
the trained generator was applied to DFMs to generate synthetic
FFDMs (SFFDMs). Note that the model trained on patches can
be applied to full-field screening mammograms because our
generators were fully convolutional networks (24).
2.2.1 The Pair With Constraint (PWC)
Training Strategy
The PWC training strategy is simple but essential to our method.
Before applying the PWC training strategy, all patches cropped
from mammograms should be assigned to their corresponding
FIGURE 1 | Overall architecture of HRGAN.
April 2022 | Volume 12 | Article 868257
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categories. As described above, mammograms were first cropped
into small patches by a sliding window. Second, the background in
the patches was extracted by threshold methods and the
percentages of background in the patches were calculated. If the
whole patch was cropped from the background, then it is assigned
to the background category. If no background is contained in the
patch, it is assigned to the breast region category. The remaining
patches were assigned to the boundary category.

The PWC training strategy was applied to select the input pair
for training HRGAN after all patches were assigned to the three
categories. First, a patch was randomly picked from all DFM
patches. Its corresponding category (breast, boundary, or
background) was marked. Second, another patch was
randomly picked from the same category of FFDM patches.
The selected DFM and FFDM patches formed the input of
HRGAN, unlike Cycle-GAN where the input is a pair of
images randomly picked from the two objective domains,
resulting in a possible situation where a background patch
could eventually be paired with a breast region patch as input
and introduce noise to the training stage. The PWC training
strategy simply divided the patches into three categories based on
background percentages and paired patches only from the same
category and eliminated noisy input from the model.

2.2.2 The Network Architecture of The Generator
The network architecture for generators is illustrated in Figure 2.
Like U-Net (23), it consists of a contracting path (left side) and
an expansive path (right side). First, the input image is fed into a
convolutional block to extract low-level feature maps. The
Frontiers in Oncology | www.frontiersin.org 4
features are then fed through residual blocks (25) to extract
higher-level feature maps. Then the feature maps are
downsampled and fed into the next layer. The contracting path
and the expansive path follow the typical architecture of a
convolutional network. Skip connections (23) are applied to
each layer to concatenate features of each layer in contracting
patches with features in the expansive path.

2.2.3 The Network Architecture of The Discriminator
The network architecture for discriminators is illustrated in
Figure 3. Inspired by Pix2pixHD (15), we applied the multi-
scale discriminator architecture in Pix2pixHD to HRGAN.
Additionally, we modified the input and output of the multi-
scale discriminator to better distinguish subtle differences
between real and synthesized images. First, the gradient map of
the input image is calculated through the Sobel filter (26). The
input image as well as its corresponding gradient map were
concatenated and fed through the first layer. Second, the input
image is downsampled and its corresponding gradient map is
calculated. The concatenation of the downsampled image and its
corresponding gradient map is fed through the second layer. We
denoted the input image as X and its corresponding gradient
map as X'. Then the input for the l-th layer of the discriminator
can be formulated as

Xl = ½X 1
2(l−1)

, (X 1
2(l−1)

)0�, l ∈ 1, 2, 3f g (1)

where X 1
2(l−1)

denoted X downsampled with factor 2(l-1).
FIGURE 2 | The network architecture of the generator.
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Introducing the gradient map as additional input for the
discriminator was inspired by GGGAN [19], a recent work that
was proposed to generate SFFDM from DBT. The study has
shown that introducing the gradient map enhanced the weak
edges to preserve small-scale structures such as subtle micro-
calcifications in SFFDM. Additionally, we found signing
discriminators with breast region boundary segmentation task
helped discriminators better distinguish synthesis mammograms
from real mammograms. Hence, the output is a two-channel
map, where the first channel is the prediction map, and the
second channel is a downsampled segmentation map indicating
the breast region for the input image. We denoted II as a matrix
whose value of every element is 1 with the same size of the
downsampled segmentation map, ml as the downsampled
segmentation map of the lth layer, and [∙,∙] as the concatenate
operation. The output of the l-th layer of the discriminator can be
formulated as

ml
i = ½i� I,ml�, i ∈ 0, 1f g, l ∈ 1, 2, 3f g (2)

By forcing the discriminator to do the breast segmentation
task, we implicitly guide the generators to learn the difference
between the inside and the outside of the breast region.

2.2.4 Loss Functions for HRGAN
We denoted X as a selected patch from DFMs, Y as a selected
patch from FFDMs, G: DFM!FFDM and F: FFDM!DFM as
generators,DX as the multi-scale discriminator to distinguish real
and synthesized DFMs, and DY as the multi-scale discriminator
to distinguish real and synthesized FFDMs. Additionally, we
denoted X̂ = F(Y) and Ŷ = G(X).
Frontiers in Oncology | www.frontiersin.org 5
The loss function for backpropagating discriminator DX can
be formulated as

LGrad(DX) =o3
l=1½(Dl

X(Xl) −ml
1)

2 + (Dl
X(bX l) −ml

0)
2� (3)

where Dl
X is denoted the l-th layer of the multi-scale

discriminator DX and X̂ l = ½X̂ 1
2(l−1)

, X̂ 1
2(l−1)

)0�.
Similarly, we have

LGrad(DY ) =o3
l=1½(Dl

Y (Yl) −ml
1)

2 + (Dl
Y (bY l) −ml

0)
2� (4)

where Dl
Y is denoted the l-th layer of the multi-scale

discriminator DX and Ŷ l = ½Ŷ 1
2(l−1)

, Ŷ 1
2(l−1)

)0�.
The loss function for backpropagating generator G follows

Cycle-GAN, which can be formulated as

L(G) = LGAN(DY , Ŷ ) + lLcyc(G, F,X) (5)

where l is the hyperparameter to balance LGAN and Lcyc

LGAN(DY , Ŷ ) =o3
l=1(D

l
Y (Ŷ l) −ml

1)
2 (6)

Lcyc(G, F,X) = ∥ F(G(X)) − X ∥1 (7)

Similarly, the loss function for backpropagating generator F
follows Cycle-GAN, which can be formulated as

L(F) = LGAN(DX , X̂ ) + lLcyc(F,G,Y) (8)

where l is the hyperparameter mentioned above

LGAN(DX , X̂ ) =o3
l=1(D

l
X(X̂ l) −ml

1)
2 (9)
FIGURE 3 | The network architecture of the discriminator.
April 2022 | Volume 12 | Article 868257
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Lcyc(F,G,Y) = ∥G(F(Y)) − Y ∥1 (10)

The training procedure for HRGAN follows Cycle-GAN.
At each iteration, generators are fixed and discriminators
are updated. Then discriminators are fixed and generators
are updated.
3 EXPERIMENTAL RESULTS

This section is organized as follows. First, we describe detailed
information on the experimental setup. Then we describe our
evaluation metrics. Last, we present the experimental results.
3.1 Experimental Setup
As is described in Section 2.1, we used datasets A,B,C
created from the CBIS-DDSM dataset and the INbreast dataset
for our study. First, our proposed HRGAN was trained
on dataset A. We set the hyperparameter l = 10. We used
Adam solver (27) with a batch size of 16. All networks were
trained from scratch with a learning rate of 0.0005. We kept
the same learning rate for the first 80 epochs and linearly
decayed the rate to zero over the next 120 epochs. Second,
SFFDMs were generated from dataset B by the HRGAN
trained on dataset A. Third, two tasks for breast cancer
screening, a mass segmentation task and a calcification
detection task, were performed on dataset C. FFDMs on
dataset C were downsampled to400mm for the segmentation
task. The 100mm FFDMs on dataset C were tiled into 224 × 224
pixel-sized patches for the calcification detection task. Patches
containing more than 80% of background were removed. Patches
containing calcifications were given the label 1; otherwise, they
were given the label 0. The goal of the calcification detection task
is to classify these patches into two categories. U-Net (23) model
was used for the segmentation task. Vgg-16 (28) was used for the
calcification detection task.

Fivefold cross-validation (29) was performed on dataset C for
the breast cancer screening tasks. For each fold, the U-Net and
Vgg-16 models were trained on the training set of dataset C.
They were denoted as the baseline models. We used Adam solver
(27) with a batch size of 8 and a learning rate of 0.0001 for
training the baseline U-Net. We used Adam solver (27) with a
batch size of 16 and a learning rate of 0.0005 for training the
baseline Vgg-16. To show the usefulness of HRGAN, we trained
another U-Net model and another Vgg-16 model on the
SFFDMs generated from dataset B. Similarly, we downsampled
the SFFDMs to 400mm for the segmentation task and tiled the
100mm SFFDMs into 224 × 224 pixel-sized patches for the
calcification detection task. Then we finetuned these two
models on the training set of dataset C. We denoted them as
the finetuned models. We used Adam solver (27) with a batch
size of 8 and a learning rate of 0.0001 for training the finetuned
U-Net. We used Adam solver (27) with a batch size of 16 and a
learning rate of 0.0005 for training the finetuned Vgg-16. We set
the learning rate to 0.00005 for both finetuned models at the
finetuning stage and finetuned them for 200 epochs.
Frontiers in Oncology | www.frontiersin.org 6
3.2 Evaluation Metrics
We used dice coefficient to evaluate the segmentation task. The
dice score can be formulated as

dice =
2 A ∩ Bj j
Aj j + Bj j (11)

HereA is denoted as ground truth,B is denoted as the prediction.
For the calcification detection tasks, we used the area under

the receiving operator characteristic (ROC) curve (AUC) (30) to
evaluate the performance of the classification models.

3.3 Results
We first showed an example of the SFFDMs generated with
HRGAN. A visual comparison of DFM and SFFDM is shown in
Figures 4, 5. Proper window width and window level were set in
the comparison. An example of a whole high-resolution DFM
and corresponding high-resolution SFFDM is shown in Figure 4.
Two patches cropped from the DFM are illustrated in Figure 4
and the corresponding patches cropped from the same location
in SFFDM are shown in Figure 5.

We also showed the usefulness of HRGAN with two breast
cancer screening tasks performed on dataset C. The average dice
score with standard deviation across five folds for the
segmentation task was shown in the first column of the table.
The average AUC with standard deviation across five folds for
the calcification detection task was shown in the second column
of the table. As is shown in Table 1, the models pretrained on
SFFDMs and finetuned on the training set of dataset C
significantly (p < 10-10) outperformed the baseline models
trained on the training set of dataset C.
4 DISCUSSION

We proposed the HRGAN to generate detailed preserved high-
resolution SFFDMs from DFMs. There was 100mm SFFDMs
generated from 100mm DFMs in our experiments. Two breast
cancer screening tasks including a mass segmentation task and a
calcification detection taskwere performed to evaluate the usefulness
of HRGAN. Extensive experiments showed the SFFDMs generated
by HRGAN were effective to improve the performance of deep-
learning-based models.

The original Cycle-GAN model was widely used in unpaired
image translation tasks including translation of natural images and
medical images. Despite the great power of Cycle-GAN, its
performance in generating high-resolution images is limited as it
failed to capture details in high-resolution images. Hence, Cycle-
GAN is used for low-resolution medical images, such as CT and
MR, whose resolutions are usually less than 512 × 2000 pixels but
are rarely used to generate high-resolution screening
mammograms whose resolutions were usually larger than 200 ×
200 pixels.

To tackle the challenge of generating high-resolution
medical images, we adopted the Cycle-GAN framework for
unpaired image translation and supplemented our method
with several techniques. A PWC training strategy was
April 2022 | Volume 12 | Article 868257
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FIGURE 4 | Visual comparison between DFM and SFFDM. Breast tissues are enhanced in SFFDM compared to DFM. Additionally, the breast region boundary was
barely visible in the left DFM while the boundary was complete and clear in the right SFFDM. This clear boundary helped us locate the nipple position easily.
FIGURE 5 | A more detailed visual comparison between DFM and SFFDM. The DFM patch in the first row of the first column showed apparent density while the
SFFDM patch in the first row of the second column showed that density is due to overlapping tissue. Additionally, the nipple was barely seen in the DFM patch in the
second row of the first column while it was recovered in the SFFDM patch in the DFM patch in the second row of the second column.
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 8682577
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especially designed for generating SFFDM. Our pair with
cons t ra in t t ra in ing s t ra tegy s ign ificant ly reduced
inappropriate pair input and forced the model to learn
proper features. In order to expand the capacity of HRGAN
and capture detailed information for image translation, the U-
Net-based generators were adopted. The convolutional blocks
in the original U-Net were replaced by residual blocks for
better capacity. The multi-scale discriminators proposed by
Pix2pixHD were also adopted in our model. Besides modified
network architectures, loss functions for HRGAN were also
modified to capture subtle gradient changes in screening
mammography. We adopted GGGAN to enhance weak
edges to preserve small-scale structures.

Visual comparisons are shown in Figures 4, 5. As we see in
Figure 4, the breast region boundary is barely visible in the left
DFM while the boundary is complete and clear in the right
SFFDM. This clear boundary helped us locate the nipple position
easily. A more detailed comparison is shown in the second row
of Figure 5.

As was reported in Reference (9), digital mammography
resulted in fewer recalls than did screen-film mammography
because fortuitous positioning caused recall on screen-film
mammography but not on full-field digital mammography. A
detailed visual comparison in the first row of Figure 5 showed
similar results. DFM patches in the left showed apparent
density while SFFDM showed that density is due to
overlapping tissue. Another advantage we can observe from
the detailed comparison in Figure 5 is SFFDM has better
contrast than DFM.

To quantitatively evaluate the usefulness of HRGAN, we
leveraged the SFFDMs generated by HRGAN to improve the
performance of deep-learning-based models when only a small
number of annotated FFDMs were available. A mass
segmentation task and a micro-calcification detection task were
included for the evaluation. We trained the baseline models on
the small FFDM dataset. For comparison, the finetuned models
were first trained on SFFDMs and later finetuned on the small
FFDM dataset, unlike the vanilla transfer learning (31) for
medical imaging where models are usually pretrained on
ImageNet (32) and finetuned on the target dataset, resulting in
a large domain gap between natural images and medical images.
We proposed to pretrain the breast cancer screening models on
SFFDMs and finetuned FFDMs. Because the difference between
SFFDMs and FFDMs is very small, the pretrained model
provides a good initialization for feature extraction and is able
to be finetuned to match the certain task.

One major limitation of this work is that a reader detection
study was not performed. Moreover, we only performed the
Frontiers in Oncology | www.frontiersin.org 8
comparison between the baseline and finetuned models on U-
Net for mass segmentation and on Vgg-16 for calcification
detection. A comparison between the baseline and finetuned
models on various network architectures is needed in the
future. Since the major purpose of this study is not to compare
different network architectures, this study did not conduct a
wide investigation on various network architectures.

Additionally, our model was only trained on certain
public datasets, with data acquired from limited systems.
To investigate the potential capacity of the proposed
method to translate DFMs to other systems such as
Hologic and GE systems, more work needs to be done in
the future to further quantify the cross-vendor potential of
the proposed method.
5 CONCLUSION

In conclusion, the proposed HRGAN can generate high-
resolution SFFDMs from DFMs. The SFFDMs were visually
similar to FFDMs. Furthermore, extensive experiments showed
the SFFDMs can help improve deep-learning-based model
trained FFDMs.
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TABLE 1 | Experimental results of two breast cancer screening tasks.

Dice score for the
segmentation task

AUC for the calcification
detection task

Baseline models 0.7012 ± 0.0102 0.8227 ± 0.0113
Finetuned models 0.7523 ± 0.0098 0.8641 ± 0.0125
p-value <10-10 <10-10
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