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Objectives: Glioblastoma is the most common primary malignant brain tumor in adults
and can be treated with radiation therapy. However, tumor target contouring for head
radiation therapy is labor-intensive and highly dependent on the experience of the
radiation oncologist. Recently, autosegmentation of the tumor target has been playing
an increasingly important role in the development of radiotherapy plans. Therefore, we
established a deep learning model and improved its performance in autosegmenting
and contouring the primary gross tumor volume (GTV) of glioblastomas through
transfer learning.

Methods: The preoperative MRI data of 20 patients with glioblastomas were collected
from our department (ST) and split into a training set and testing set. We fine-tuned a deep
learning model for autosegmentation of the hippocampus on separate MRI scans (RZ)
through transfer learning and trained this deep learning model directly using the training
set. Finally, we evaluated the performance of both trained models in autosegmenting
glioblastomas using the testing set.

Results: The fine-tuned model converged within 20 epochs, compared to over 50
epochs for the model trained directly by the same training set, and demonstrated better
autosegmentation performance [Dice similarity coefficient (DSC) 0.9404 ± 0.0117, 95%
Hausdorff distance (95HD) 1.8107 mm ±0.3964mm, average surface distance (ASD)
0.6003 mm ±0.1287mm] than the model trained directly (DSC 0.9158±0.0178, 95HD
2.5761 mm ± 0.5365mm, ASD 0.7579 mm ± 0.1468mm) with the same test set. The
DSC, 95HD, and ASD values of the two models were significantly different (P<0.05).
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Conclusion: A model developed with semisupervised transfer learning and trained on
independent data achieved good performance in autosegmenting glioblastoma. The
autosegmented volume of glioblastomas is sufficiently accurate for radiotherapy
treatment, which could have a positive impact on tumor control and patient survival.
Keywords: glioblastoma, autosegmentation, deep learning, transfer learning, radiotherapy treatment
INTRODUCTION

Glioblastoma is the most common primary malignant brain tumor
in adults (1). At present, the standard treatment for this disease is
combination therapy, including postoperative radiotherapy and
adjuvant chemotherapy after the initial surgery. Intensity-
modulated radiotherapy (IMRT) is a commonly used method for
delivering radiotherapy to glioblastomas. An accurate radiotherapy
plan is required to ensure accurate patient treatment (2). The
delineation of brain tumor targets and other brain tissue structure
areas from multimodal MRI sequences can provide important
information for the radiotherapy plan. Traditionally, the manual
contouring of these areas is time-consuming and dependent on the
experience of the doctors.

The implementation of deep learning has resulted in the
development of new ideas for the automatic and accurate
delineation of brain tumors (3). Deep learning approaches
through convolutional neural networks (CNNs) have been
proposed for glioblastoma segmentation (4–6). For example, Yi
et al. (4) developed a framework of three-dimensional (3D) fully
CNN models for glioblastoma segmentation from multimodality
MRI data and achieved a Dice score of 0.89 in whole tumor
glioblastoma segmentationon the segmentation dataset of the
Brain Tumor Image Segmentation Challenge (BRATS) with 274
tumor samples.

Recently, transfer learning has found multiple applications in
brain MRI (7). Transfer learning allows the reuse of a pretrained
model to solve a related target problem, potentially yielding
better results from fine-tuning pretrained CNNs than training
CNNs from scratch (8). In this work, we provide a deep learning
model for the autosegmentation of the gross tumor volume
(GTV) of glioma. A deep learning model trained for
hippocampus autosegmentation was fine-tuned and trained
using a limited MR dataset of 20 glioblastoma patients. This
approach is expected to serve as a basis for accurate radiotherapy
dose calculation and optimization in the development of a high-
quality radiotherapy plan (9).
MATERIALS AND METHODS

Patient Characteristics
We retrospectively collected the MRI scans and medical records
of patients with histologically proven glioblastomas from a single
institute (Department of Radiation Oncology of Peking
University Third Hospital). The MRI examinations were
performed with preoperative contrast-enhanced T1-weighted
sequences. Details of the MRI characteristics are shown in
2

Table 1. The MRI dataset consisted of GTVs of high-grade
gliomas (HGGs) of 20 patients, which was then randomly split
into three cohorts: 16 patients as the training set (including 4
patients as the validation set) for training an autosegmentation
model and optimization of hyperparameters during model
training and 4 patients as the test set for evaluating the
performance of the trained model.

Gross Tumor Volume Contours by Human
Experts
The MRI examinations of the 20 patients were assigned to two
expert radiation oncologists (ST and ZD, both with more than 15
years of experience in radiotherapy treatment of head and neck
tumors) to delineate the ground-truth GTVs via consensus. A
third radiologist (CW, with more than 20 years of experience)
specializing in radiation oncology was consulted in cases of
disagreement. A diagram of the GTV contours delineated by
the human experts is presented in Figure 1.

Image Processing
Preprocessing
All MRI sequences were cropped to only include regions of non-
zero value to reduce the size of the network input and thereby
reduce the computational load of the network (10). To enable
our network to properly learn spatial semantics, all MRI
sequences were resampled to the median voxel spacing of the
dataset, where third-order spline interpolation was used for the
images of all MRI scans and nearest-neighbor interpolation for
their corresponding contours. All images were additionally
normalized by simple Z score normalization for the individual
patients (11).

Augmentation
To overcome the overfitting problem caused by training a deep
network with limited data, we adopted a number of real-time
data enhancement techniques, such as random flip, random
zoom, random elastic deformation, gamma adjustment, and
mirroring, to increase the diversity of the data.

Architecture of the Deep Convolution
Neural Network
U-Net is a popular encoder-decoder network (11, 12) that has
been widely used in semantic segmentation fields. Its encoder
part works similarly to a traditional classification CNN in that it
successively aggregates semantic information at the expense of
spatial information. Its decoder receives semantic information
from the bottom layer of the encoder and recombines it with
higher-resolution feature maps obtained directly from the
April 2022 | Volume 12 | Article 856346
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encoder through skip connections (13) to recover the spatial
information missing in the encoder.

Since 3D CNNs have demonstrated high effectiveness in
aggregating valuable information in the context of 3D medical
images (14), we implemented a 3D deep CNN to extract
representative features for complicated GTVs based on the MRI
sequences. Our network is based on the architecture of 3D U-Net
(15), with 5 encoders and 5 decoders. In each encoder and decoder,
we designed a couple of convolutional layers with a 3×3×3
convolution kernel to extract the feature of the image, each
convolutional layer followed by the LeakyReLU (negative slope 1e–
2) and the instance normalization (16) with a dropout of 0.5, which
respectively replaced the more common ReLU activation function
and batch normalization in the popular deep learning model. We
used the 2×2×2max pooling to create a downsampled feature map in
each encoder; conversely, we used the 2×2×2 deconvolution kernel to
create an upsampled feature map in each decoder. The layers in the
encoders were skip connected and concatenated with layers in the
corresponding decoders to use fine-grained details learned in the
encoders to construct the feature maps in the decoders. The detailed
architecture of our network is shown in Figure 2.

Objective Loss
Due to the limited available Graphics Processing Unit (GPU)
memory, we slid and cropped smaller image patches from the
original images as the input of the segmentation network.
Frontiers in Oncology | www.frontiersin.org 3
Although this patch-based training method limits the field of
view of the model and is unable to collect sufficient contextual
information, the impact on small target segmentation is minimal.

The objective loss L of the segmentation network is the
weighted sum of Dice loss Ldice and cross-entropy loss LCE:

L = a1Ldice + b1LCE
Here, the weightsa1 and b1 were set to 0.4 and 0.6, respectively.
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where C is the number of divided categories, N is the number of
voxels in each patch sample in the training set, and Gk

i and P
k
i are

the contour corresponding to the ith voxel of the kth category and
the probability output of the model prediction, respectively.

Experiments and Evaluation
Model Implementation
We used PyTorch 1.6 to build 3D U-Net on Ubuntu 18.04 and
trained the model framework on an NVIDIA Tesla V100. When
training the model, the model input patch size was 32 × 256 × 256,
the batch sizewas 2, the optimizerwasRMSprop, the initial learning
rate was 0.001, the gradient descent strategy was stochastic gradient
descent (SGD) with momentum (0.9), and the maximum number
of training rounds (epochs) was 150. In addition, due to the limited
amountof collecteddata,wedidnotdivide the test set separately but
adopted an 8:2 dataset division method. For the segmentation
results of each patch of the model, we used Gaussian fusion to
obtain the full-resolution segmentation result for each class, which
was postprocessed with the largest connected component as the
final segmentation result.
TABLE 1 | Characteristics of MRI.

Cancer Glioblastoma
Tumor Gross tumor volume
Grade High-grade gliomas
Modality contrast-enhanced T1-weighted imaging
Quantity 20 patients
Resolution (144~176) × 256 × 256
Spacing [mm3] [1,1,1]
A B C

FIGURE 1 | MRI examination of the glioblastoma (A), GTV contours delineated by human experts (B), and 3D diagram corresponding to the GTV contours (C).
April 2022 | Volume 12 | Article 856346
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Model Evaluation
We calculated the Dice similarity coefficient (DSC), 95%Hausdorff
distance (95HD), and average surface distance (ASD) between the
GTVs segmented automatically by the model and the
corresponding manual annotations as quantitative assessments of
the accuracy of the model segmentation. The DSC is defined as:

DSC =
2 P ∩ Gj j
Pj j + Gj j

where P is the automatically segmented contour, G is the ground-
truth contour.DSC is an indicativedegreeof similarity for agreement,
which measures the spatial overlap between the automatic
segmentation and the ground-truth segmentation. The 95HD is
defined as:

dH(P,G) = max dPG, dGPf g

= max max
x∈X

min
y∈Y

d(p, g), max
y∈Y

min
x∈X

d(p, g)

� �

DSC is more sensitive to the inner filling of the segmented
contour, while Hausdorff distance (HD) is more sensitive to the
boundary of the segmented contour. The 95%HD is similar to
maximum HD. However, it is based on the calculation of the
95th percentile of the distances between boundary points in P
andG. The purpose of using this metric is to eliminate the impact
of a very small subset of the outliers. The ASD is defined as:
Frontiers in Oncology | www.frontiersin.org 4
ASD =
1

S(P)j j + S(G)j j o
p∈S(P)

min
g∈S(g)

jjp − gjj
 !

+ o
g∈S(G)

min
p∈S(P)

jjg − pjj

where S(P and S(G) denote the point set of automatic
segmentation pixels and ground-truth pixels, respectively. The
most consistent segmentation result can be obtained when ASD
equals 0.
Model Fine-Tuning
Transfer learning is a process by which existingmodels are reused to
solve a new challenge, usually the problem of overfitting due to data
scarcity (17). Given the limited size of the dataset delineated by our
human experts and the fact that our modified 3D U-Net is a kind of
supervised learning method that works well depending on the
severity of the big data, we applied transfer learning to this work
to fine-tune the glioblastoma segmentation model.

To apply transfer learning in this work, the 3D U-Net was
trained to autosegment the hippocampus with the data from 50
patients with T1C glioblastomas (spacing[mm]: 0.5×0.36×0.36,
resolution: (327~364) ×640×640). This hippocampal dataset was
collected from a single institute (The First Hospital of Tsinghua
University) for the radiotherapy treatment of brain metastases.
All contours of the hippocampus were delineated by two expert
radiation oncologists (ZD, with more than 15 years of experience
in radiotherapy treatment of head and neck tumors; RZ, with
April 2022 | Volume 12 | Article 85634
FIGURE 2 | Architecture of the segmentation network.
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more than 20 years of experience in radiotherapy treatment)
according to the results of the RTOG0933 trial and then cross-
checked and revised.

Our 3D U-Net for the autosegmentation of the hippocampus
was trained with the hippocampus data from 40 patients,
converged within 150 epochs, and was denoted as model-
hippo; the training process is shown in Figure 3. The model
achieved a DSC of 0.897 (±0.011) for the left hippocampus and
0.895 (±0.019) for the right hippocampus with the test set
(10 cases).

The model for autosegmenting the GTV of glioblastomas was
trained as follows. First, the parameters of our 3D U-Net were
randomly initialized, and the model was trained simply with 50
epochs on the training set of gliomas, as illustrated in Figure 4A;
the model thus developed was denoted as model-glioma. Second,
transfer learning was applied to fine-tune model-glioma.
Specifically, instead of random parameter initialization, the
network parameters of model-hippo were used as the initial
parameters of model-glioma, and the resulting model was then
trained for 50 epochs using the same training set for training
model-glioma. This model was denoted as model-glioma-TL,
where TL refers to transfer learning. The corresponding training
process is shown in Figure 4B.

As shown in Figure 4, we found that model-glioma-TL
converged faster than model-glioma did within the same 50
epochs. The validation metric reached 0.9 within 10 epochs for
model-glioma-TL but within 40 epochs for model-glioma.
Moreover, the validation metric of model-glioma-TL on the
final epoch was greater than that of model-glioma.
Frontiers in Oncology | www.frontiersin.org 5
RESULTS

Two sets of experiments (model-glioma and model-glioma-TL)
were conducted to verify the effectiveness of transfer learning on
training with small sample data and to evaluate the performance of
the two models by the DSC, 95HD, and ASD metrics. The
evaluation metrics of two sets of experiments with the same test
set, including themean, standard deviation (SD), and P value for the
T test (two-tailed), are presented in Table 2. We found that model-
glioma-TL significantly outperformed model-glioma in these terms
[DSC 0.9404 & 0.9158, 95HD 1.8107mm & 2.5761mm, ASD
0.6003mm & 0.7579mm (and P<0.05). The autosegmentation
results of a test sample are visualized in Figure 5 and its 3D
morphology are visualized in Figure 6.
DISCUSSION

The rapid development of modern radiotherapy technology has
resulted in more abundant relevant multimodal medical imaging
information (18). Since a considerable amount of time is necessary
to manually contour MRI slices and the segmentation results of
artificial tumors often depend on the doctor’s prior knowledge and
work experience, the final target volume results can be variable (19,
20). Therefore, deep learning technology combined with MRI can
help improve the accuracy of tumor target delineation and reduce
differences caused by subjective factors (10). Additionally, it can
help doctors efficiently and practically complete their tumor target
area delineation tasks (21, 22).
FIGURE 3 | The training process of model-hippo: the loss is the objective loss L and the metric is DSC.
April 2022 | Volume 12 | Article 856346
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TABLE 2 | Results for autosegmentation of the GTVs of glioblastomas.

Model Model-glioma Model-glioma-TL P value

Mean SD Mean SD

DSC 0.9158 0.0178 0.9404 0.0117 0.0404
95HD [mm] 2.5761 0.5365 1.8107 0.3964 0.0275
ASD [mm] 0.7579 0.1468 0.6003 0.1287 0.0182
Frontiers in Oncology | www.fronti
ersin.org 6
 April 2022 | Volume 12 | Article
A B

FIGURE 4 | The training processes of model-glioma (A) and model-glioma-TL (B).
A C DB

FIGURE 5 | Visualization of the test samples for the two models. The performance of model-glioma-TL was superior to that of model-glioma in the
autosegmentation of glioblastoma GTVs, especially in the recognition of the small GTV in the upper and lower MRI slices (A, D) and the boundary delineation of the
GTV contours in the intermediate MRI slices (B, C).
856346
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Gliomas are the most common primary brain tumors and
seriously endanger human health (23). Therefore, segmentation
of the images of brain tumors has become a popular research topic
(24, 25). In recent years, brain tumor image segmentationmethods
have undergone continuous improvement, transitioning from
manual to half-motion and automatic segmentation techniques
(22, 26). In the present study, we have demonstrated that the
performance of the transfer learning approach is comparable to
the models trained through 3D CNN (4, 6), but a much smaller
dataset and fewer epochs are required. Indeed, this method should
be further evaluated using larger datasets such as BRATS.

In conclusion, transfer learning is feasible and effective in
training models for accurate and consistent glioblastoma
autosegmentation. This is more crucial for a radiation
oncology department that is willing to implement deep
learning with limited number of clinical cases.

In this work, the artificial intelligence (AI) algorithm based on
transfer learning has achieved good results for the autosegmentation
of glioblastoma GTV; however, there are still several issues that need
to be cleared. 1) The location and boundary of glioblastoma GTV
not only need to consider the enhanced area of contrast-enhanced
T1-weighted imaging and the abnormal area of T2 FLAIR in clinical
practice, perhaps the autosegmentation of the glioblastoma tumor
usingmultimodalityMRI is more satisfying for clinical practice (27).
2) Scanners from different manufacturers or different scanning
protocols often result in medical imaging with different voxel
spacing and resolution, as well as image quality and style. These
differences are especially pronounced for MRI. Additionally,
Frontiers in Oncology | www.frontiersin.org 7
different tumor delineation styles come from the subjectivity of
different doctors; these various differences seriously affect the
generalizability of the AI algorithms. Therefore, further study
using the data from multiple centers is an important topic. 3) We
confirmed that transfer learning can significantly improve the
automatic segmentation of the glioblastoma GTV in this work;
however, some organs or tumor target areas, such as the optic
chiasm, have a similar X-shape, while the brain stem has a similar
apple shape (28, 29), and it needs to be judged by combining
different medical imaging procedures and the rich medical prior
knowledge of professional doctors (30, 31). How to incorporate
such shape and prior knowledge and medical prior knowledge into
the AI model to further improve the generalizability and
generalization of AI algorithms still is an open problem.
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