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We aimed to develop and validate a pyradiomics model for preoperative

prediction of initial treatment response to transarterial chemoembolization

(TACE) in patients with hepatocellular carcinoma (HCC). To this end, computed

tomography (CT) images were acquired from multi-centers. Numerous

pyradiomics features were extracted and machine learning approach was

used to build a model for predicting initial response of TACE treatment. The

predictive accuracy, overall survival (OS), and progression-free survival (PFS)

were analyzed. Gene Set Enrichment Analysis (GSEA) was further used to

explore signaling pathways in The Cancer Genome Atlas (TCGA)-HCC

cohort. Overall, 24 of the 1,209 pyradiomic features were selected using the

least absolute shrinkage and selection operator (LASSO) algorithm. The

pyradiomics signature showed high predictive accuracy across the discovery

set (AUC: 0.917, 95% confidence interval [CI]: 86.93-96.39), validation set 1

(AUC: 0.902, 95% CI: 84.81-95.59), and validation set 2 (AUC: 0.911; 95% CI:

83.26-98.98). Based on the classification of pyradiomics model, we found that

a group with high values base on pyramidomics score showed good PFS and

OS (both P<0.001) and was negatively correlated with glycolysis pathway. The

proposed pyradiomics signature could accurately predict initial treatment

response and prognosis, which may be helpful for clinicians to better screen

patients who are likely to benefit from TACE.
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Introduction

Hepatocellular carcinoma (HCC) is a major cause of cancer-

related death worldwide (1). Some patients with HCC are

ineligible for liver transplantation and surgical resection because

the curative surgery cannot be performed (2–4). For these patients

with intermediate and advanced-stage HCC, transarterial

chemoembolization (TACE) therapy is a promising treatment

method following the National Comprehensive Cancer Network

(NCCN) clinical practice guideline (5–7).

Initial treatment response has recently been reported to be a

powerful indicator of favorable outcomes, such as longer

progression-free survival (PFS) and overall survival (OS) (8–

10). Studies on tumor burden were evaluated using magnetic

resonance imaging (MRI) or computed tomography (CT) and

found associations between imaging features (e.g., tumor size,

tumor number) and treatment response to TACE in patients

with HCC (11–14). However, imaging features have a limited

accuracy of subjective judgment, and they do not reflect intra-

tumor heterogeneity. Developing a robust and accurate

algorithm to select patients who will show initial response to

treatment remains challenging and important. Thus, an accurate

model to identify patients with an initial response to TACE

could be useful to optimize individualized treatment strategy.

Nowadays, radiomics have been a new and promising field

that involves the extraction of large quantitative features from

radiographic images (15, 16). The radiomics algorithm offers an

unprecedented opportunity to improve cancer decision-making

in a low-cost and non-invasive manner. Previous studies have

shown that radiomics models of radiology images are

significantly associated with clinical outcomes in cancer

patients (17–21). We previously found that a radiomics model

based on CT images could precisely predict microvascular

invasion in HCC patients and the machine learning algorithm

could be used to predict clinic outcome in cancer (22, 23).

However, the standard method in this field was lacked and the

potential mechanism of radiomics model was unclear in the

HCC. Radiomics extracting from python package was named
Abbreviations: AFP, alpha-fetoprotein; AIC, Akaike information criterion;

AUC, area under the curve; BCLC, Barcelona Clinic Liver Cancer; CI,

confidence interval; CR, complete response; CT, computed tomography;

DFS, disease-free survival; HCC, Hepatocellular carcinoma; HR, hazard

ratio; ICCs, inter-correlation coefficients; KEGG, Kyoto Encyclopedia of

Genes and Genomes; LASSO, least absolute shrinkage and selection

operator; OS, overall survival; PD, progressive disease; PFS, progression-

free survival; PR, partial response; PRS, pyradiomics score; ROC, receiver

operating characteristic; ROI, regions of interest; SD, stable disease; TACE,

trans-arterial chemoembolization; TCGA, The Cancer Genome Atlas;

NCCN, National Comprehensive Cancer Network; MRI, magnetic

resonance imaging.
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pyradiomics and provide the chance. The role of pyradiomics

predictive models for initial response or prognosis in TACE

treatment, and the association with signal transduction pathway

remain unexplored.

In this study, based on the preoperatively CT images and

machine learning algorithm, we aimed to develop and validate a

robust and accurate pyradiomics signature for a noninvasive

pretreatment prediction of initial response to TACE in HCC

patients. The mutual relationships between pyradiomics score

and clinical factors were further analyzed and validated in other

patient cohorts. The subgroup analyses, clinical utility and

prognosis of pyradiomics model were estimated. Gene Set

Enrichment Analysis (GSEA) tool was used to reveal the

association between pyradiomics model and Kyoto

Encyclopedia of Genes and Genomes (KEGG), which

contributes to interpretation of the potential mechanism but

not “black box” of these machine learning models.
Materials and methods

Study design and patients

The flowchart of the machine learning model is presented in

detail in Figure 1. This was a retrospective study of 313 patients

with Barcelona Clinic Liver Cancer (BCLC) stage B HCC who

underwent conventional TACE between February 2010 and

December 2020. Patients were recruited from the Nanfang

Hospital (n=141 patients, discovery set), Sun Yat-sen

University Cancer Center (n=121, validation set 1), and the

Second Affiliated Hospital of Gui Zhou Medical University

(n=51) (validation set 2). The inclusion criteria were

radiologically or pathologically confirmed HCC, initial TACE

treatment, BCLC sage B, and arterial-phase CT images

availability within 7 days before and 30 days after treatment.

Patients who underwent loco-regional or whole-body therapies

were excluded. According to the modified Response Evaluation

Criteria in Solid Tumors (mRECIST), the initial response to

TACE was classified as complete response (CR), partial response

(PR), stable disease (SD), and progressive disease (PD) by an

experienced radiologist as in the previous study (24). Initial

treatment response and non-response were strictly defined as

CR+PR and SD+PD, respectively. The OS was defined as the

time from the start of TACE or hepatectomy treatment until

death or the last contact; PFS was defined as the time between

the beginning of TACE treatment and the progression or death

of the tumor; disease-free survival (DFS) was defined as the time

between the beginning of hepatectomy treatment and disease

recurrence or death because of the tumor. This study was

approved by the three institutional review boards of Nanfang

Hospital, the Second Affiliated Hospital of Gui Zhou Medical

University, and Sun Yat-sen University Cancer Center.
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TACE procedure, CT acquisition and
manual segmentation of the region
of interest

TACE was performed under local anesthesia using the

traditional femoral approach. TACE was performed under the

guidance of digital subtraction angiography (Allura Xper FD 20,

Philips) through the left and right hepatic arteries directly

through the arteries supplying blood to the tumor when

technically feasible. Hepatic arteriography, performed using a 5

Fr (RH or Yashiro) catheter, was first used to assess the location,

number, size, and blood supply of the target tumor. The embolic

emulsion agent, including epirubicin (30–60mg), lobaplatin (30–

50 mg), and lipiodol (10–30 mL), was injected into the artery

supplying the tumor through a 2.7/2.8 Fr microcatheter. Thirty

days after treatment, according to the modified Response

Evaluation Criteria in Solid Tumors (ver. 1.1).

Contrast-enhanced computed tomography scans were

performed as previously described (22). Contrast-enhanced

computed tomography (CECT) was performed at hospital using

an MDCT scanner and the detail information of CT image

acquisition was described in the Supplementary Material. After

the routine CT scanning, a contrast agent (Ultravist 370, Bayer

SchL/s) was delivered via an injector (Ulrich CT Plus 150, Ulrich
Frontiers in Oncology 03
Medical, Ulm, Germany); and CECTwas performed immediately

after injection. Preoperative CT images were collected on the

Picture Archiving and Communication System (PACS; Nanfang

Hospital Network Center, China), with an optimal window

setting adjustment (window width: 300, window level: 50). The

CT images were downloaded through the Picture Archiving and

Communication System. Two senior radiologists blinded to the

treatment results manually segmented the three-dimensional

(3D) regions of interest (ROI) in HCC using the ITK-SNAP

(version 3.6, https://sourceforge.net/projects/itksnapx64/). Then,

they saved and stored the main images and 3D segmented images

for extraction of pyradiomics.
Extraction and reproducibility
examination of pyradiomics features

MATLAB 2014b (https://ww2.mathworks.cn/) was used to

standardize and reconstruct the segmented 3D ROI image. The

thickness of the layer was 1 mm. Python 3.6 (https://www.python.

org/downloads/release/python-360/) was used to install the

package (https://github.com/Radiomics/pyradiomics) and extract

the pyradiomics features from 3D images. These values included

the texture, shape, size, and wavelet transform of the CT images.
FIGURE 1

Flowchart for the development of the machine learning model. All patients have radiologically or pathologically proven HCC and undergo CT
before TACE therapy. The radiologists manually segment the 3D ROIs. Thereafter, 1,167 features are extracted from the hepatic arterial CT
images based on the “pyradiomics” package of python. Using LASSO method, 24 features are selected, and the pyradiomics model is built.
Model validity is evaluated in two cohorts. The predictive performance of the pyradiomics model is compared with that of clinical factors. The
association between the pyradiomics model and cancer signaling pathways is analyzed using the TCGA-HCC cohort. 3D, three-dimensional;
HCC, hepatocellular carcinoma; CT, computed tomography; ROI, region of interest; LASSO, least absolute shrinkage and selection operator
algorithm; TCGA, The Cancer Genome Atlas.
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The intra- and inter-correlation coefficients (ICCs) of 50 hepatic

artery CT images between two observers were used to evaluate the

repeatability of pyradiomics feature extraction. To evaluate intra-

observer reproducibility, two radiologists independently and

manually segmented the ROIs of 50 patients. Meanwhile, to

assess repeatability between observers, two readers extracted the

high-dimensional pyradiomics features twice with at least 1-week

interval. ICCs greater than 0.75 were set to indicate favorable

consistency in pyradiomics extraction. These values, which

described the texture, shape, size, and wavelet transform of the

CT images, could be used to analyze the overall consistency and

select the robust pyradiomics features with good reproducibility.
Development and validation of the
pyradiomics signature for predicting
therapy response

The least absolute shrinkage and selection operator (LASSO)

is a powerful algorithm to choose the most important variables

from high-dimensional features (22, 23). LASSO is a reduction

method that shrinks the regression coefficient to a certain area.

The main idea in using LASSO is constructing a first-order

penalty function to obtain a refined model through the final

determination of some variables coefficient 0 for feature

screening. The penalty term of LASSO is:

o
n

i=1
wij j ≤ t

This constraint uses the first-order penalty function of

absolute value instead of the second-order function of square

sum. Although the form is only slightly different, the results are

very different. Some of the coefficients would generate to zero. In

this study, LASSO based on 5-fold cross-validation was used to

select 24 non-zero coefficients. Then, a pyradiomics score (PRS)

was calculated based on a logistic method. A pyradiomics

signature was consequently developed to predict TACE

treatment response. The pyradiomics model’s performance

was then evaluated in the discovery and two validation sets

using receiver operating characteristic (ROC) analysis. The

optimal cut-off value for predicting treatment response was

calculated using the Youden’s index. According to the optimal

cut-off PRS value, we divided the patients into two groups. The

patients with high values (>-0.14) were defined as RS1, and those

with low values (≤-0.14) as RS2. In our study, 112 patients from

Nanfang Hospital and 29 from the Second Affiliated Hospital of

Gui Zhou Medical University had the information of prognosis.
Gene Set Enrichment Analysis in the
TCGA-HCC cohort

The purpose of Gene Set Enrichment Analysis (GSEA) is to

explore the relationship between the level of imaging score and
Frontiers in Oncology 04
tumor-related signaling pathways and gene expression. The

GSEA analysis data included four files: 1. The Gene

Expression profiling data (Expression dataset) was derived

from the mRNA Expression profiles of HCC in The Cancer

Genome Atlas (TCGA), and contained 20,533 Gene Expression

information; 2. The Gene sets contained 2,074 known Gene sets;

3. Chip annotations listed each probe on the DNA Chip and its

matching Hugo gene symbols; 4. Phenotype labels were used to

categorize samples into two classes for research purposes and to

ensure that the order of the samples was consistent with that of

the expression spectrum files. TCGA expression spectrum data

were downloaded at: https://www.cancer.gov/about-nci/GDC.

The data for a total of 46 HCC patients with preoperative CT

images in TCGA database were downloaded from The Cancer

Imaging Archive (TCIA) (http://www.Cancer.imaging.archive.

net/). In this study, according to the value of PRS, 46 patients

with HCC were divided into two groups: RS1 and RS2. The two

groups were clustered to identify the distinct genes (fold change

≥2.0, P<0.05). Genes were identified using the “edgR” package.

Based on the specific genes, pathway analysis was conducted to

determine the potential mechanisms for the machine learning

model (DAVID, https://david.ncifcrf.gov/).
Statistical analysis

The “pROC” package was used to plot the receiver operating

characteristic (ROC) curves. A confidence interval (CI) of 95%

for the area under the curve (AUC) was calculated in all cohorts.

PRS was evaluated using the Mann-Whitney U test. The Akaike

information criterion (AIC) was used to select the optimal

model. The AIC is based on entropy and a measure of the

goodness of a statistical model. The smaller the AIC, the better

the model. The AIC can be expressed as: AIC = (2k-2L)/n. The

Kaplan-Meier curves of DFS, PFS, and OS were analyzed using

the “survminer” package. Decision curve analysis (DCA) was

used to quantify the probabilities of net benefits at different

threshold in patients with HCC, plotted by the “dca.R” package.

All statistical analyses were performed using the R statistical

software version 3.5.0 (R Core Team, 2018) and GraphPad prism

7.0. Two-sided P values<0.05 were considered significant.
Results

Patient characteristics

In total, 18 (12.76%), 13 (10.75%), and 10 (19.61%) patients

in the training set, validation set 1, and validation set 2 were

females, respectively. Furthermore, 93 (65.96%), 85 (70.25%),

and 33 (64.70%) patients were aged less than 60 years,

respectively. The baseline patient characteristics are shown in

Table 1. Most patients (82.27, 86.78, and 82.35%) had Child-
frontiersin.org
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Pugh A disease and a low number of tumors (≤3) (85.82, 86.64,

and 76.47%) in the training set, validation set 1, and validation

set 2, respectively. Overall, 51.06, 52.06, and 49.01% of the

patients in the training set, validation set 1, and validation set

2, respectively, had high alpha-fetoprotein (AFP) levels. Patients

with small tumor size (≤5 cm) accounted for 13.47, 12.39, and

15.69% of the population in the discovery set, validation set 1,

and validation set 2, respectively. There were 56 (39.72%), 51

(42.15%), and 19 (37.25%) patients in these three cohorts,

respectively, who achieved CR/PR. There was no significant

difference in the treatment response rate between the three sets.
Pyradiomics signature development and
associated analysis of clinical factors

Pyradiomics features were extracted as described in previous

studies (25–27). A total of 1,167 features were extracted from the

hepatic arterial 3D-CT images. A total of 457 pyradiomics

features were eliminated in the ICC analysis. The remaining

710 features were then subjected to feature selection and LASSO

coefficient analysis. Based on 5-fold cross-validation via the

maximum criteria, 24 coefficients were selected (Supplemental

Figure S1). Twenty-four pyradiomics features were analyzed via
Frontiers in Oncology 05
multi-variable logistic regression and included to develop the

pyradiomics signature (PRS) (Table 2).

Treatment responders showed significantly higher PRS than

non-responders in the three cohorts (all P<0.001) (Figures 2A-

C). Tumor size was also associated with treatment response in

the three cohorts (P<0.001, P<0.001, and P=0.017, respectively)

(Supplemental Figure S2). However, we found there was no

association between treatment response and other clinical

factors, such as tumor number, AFP level. Meanwhile, PRS

was also not correlated with age, sex, Child-Pugh classification,

AFP level, and tumor number across all three cohorts

(Figures 2D-F). In contrast, PRS was significantly associated

with tumor size (r=-0.416, P<0.001; r=-0.514, P<0.001; r=-0.568,

P<0.001, respectively) and treatment response (r=0.605,

P<0.001; r=0.539, P<0.001; r=0.588, P<0.001, respectively).
Evaluating classifiable accuracy of
machine learning model by PRS

The area under the ROC curves of tumor size and the

pyradiomics signature were analyzed. We used Youden’s index

(defining as sum of sensitivity and specificity minus 1) to

calculate the optimal cut-off value (-0.14) in the ROC analysis.
TABLE 1 Patient characteristics by study set.

Variable Discovery set (n = 141) Validation set 1 (n = 121) Validation set 2 (n = 51) P value

Sex 0.286

Female 18 (12.7%) 13 (10.7%) 10 (19.6%)

Male 123 (87.3%) 108 (89.3%) 41 (80.4%)

Age (years) 0.687

≤60 93 (65.9%) 85 (70.3%) 33 (64.7%)

>60 48 (34.1%) 36 (29.7%) 18 (35.3%)

Child–Pugh classification 0.573

A 116 (82.3%) 105 (86.7%) 42 (82.3%)

B 25 (17.7%) 16 (13.3%) 9 (17.7%)

AFP (ng/mL) 0.935

≤20 72 (51.1%) 63 (52.1%) 25 (49.1%)

>20 69 (48.9%) 58 (47.9%) 26 (50.9%)

Tumor size (cm) 0.967

≤5 19 (13.5%) 15 (12.4%) 8 (15.7%)

>5, ≤10 62 (44.0%) 57 (47.1%) 23 (45.1%)

>10 60 (42.5%) 49 (40.5%) 20 (39.2%)

Tumor number 0.915

≤3 121 (85.8%) 100 (86.6%) 39 (76.5%)

>3 20 (14.2%) 21 (13.4%) 12 (23.5%)

Treatment response 0.823

CR/PR 56 (39.7%) 51 (42.2%) 19 (37.3%)

SD/PD 85 (60.3%) 70 (57.8%) 32 (62.7%)
front
P value is derived from the difference between the discovery data set and the two validation data sets. AFP, alpha-fetoprotein; CR, complete response; PR, partial response; SD, stable disease;
PD, progressive disease.
iersin.org
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The AUCs showed that the tumor size (AUC=0.752, 95% CI:

66.89-83.60, P<0.001) and pyradiomics signature (AUC=0.916,

95% CI: 86.93-96.39, P<0.001) could be the predictors of

treatment response to TACE in patients with HCC

(Figure 3A) (Supplemental Table S1). Furthermore, the model

of the pyradiomics signature in the validation sets 1 and 2 also

demonstrated a high AUC for predicting treatment response,

with the AUC consistent with that in the discovery set

(AUC=0.902, 95% CI: 84.81-95.59, P<0.001; AUC=0.911, 95%

CI: 83.26-98.98, P<0.001, respectively). The AUCs of the tumor

size were 0.778 (95% CI: 52.00-82.60, P<0.001) and 0.690 (95%

CI: 54.66-83.33, P=0.024, Figures 3B, C). Based on boostrap

(n=2000) analysis, the efficiency of the pyradiomics signature

was significantly higher than that of the tumor size in the

discovery (P=0.016) and the two validation sets (P=0.016 and

P=0.008). The AIC of the model comprising a combination of

the pyradiomics signature and tumor size was not superior to

that of the model comprising only the pyradiomics signature in

the discovery set (240.53 vs. 238.94). The examples of two

patients with response (RS1) or no response (RS2) are shown

in our study (Figure 3D). The patient 1 had higher pyradiomics

score than patient 2 did (5.44 vs.-3.10).
Frontiers in Oncology 06
Clinical utility and subgroup analysis of
PRS predictive accuracy

The DCA of the pyradiomics signature showed relatively good

performance of themodel regarding clinical application (Figure 4A).

It was suggested from the DCA curve that when the threshold

probability in a patient was 42%, more initial response could be

achieved through a pyradiomics signature than either treat-all or

treat-none strategies. The probability of acquiring treatment

response ranged from 8 to 100%. Thus, a pyradiomics signature

accurately identifies the patients who have the initial response and

may benefit from TACE therapy. The patients were divided into

subgroups based on six clinical variables to estimate the classification

performance of the pyradiomicsmodel further (Supplemental Table

S2). TheAUCwas higher in the female patients than that in themale

patients (0.966,95%CI:92.18-100.00vs.0.8985,95%CI:86.12-93.59,

P=0.021) (Figure 4B). Meanwhile, the predictive accuracy was not

affected by age, Child–Pugh classification, andAFP levels, compared

with bootstrap=2000 (P=0.354, P=0.998, and P=0.424, respectively)

(Figures 4C-E). Subgroup analysis by tumor number and tumor size

alsoshowednosignificantdifference inAUCs(P=0.443andP=0.597,

respectively) (Figures 4F-G).
TABLE 2 Formula for calculating pyradiomics signature.

Pyradiomic features Coefficients P value

Intercept 1.479e+02 0.243

exponential_glrlm_Long Run Emphasis 2.502e+04 0.989

exponential_glrlm_Long Run Low Gray Level Emphasis -2.502e+04 0.989

exponential_glszm_Small Area High Gray Level Emphasis 1.976e+01 0.624

logarithm_first order_Skewness -9.396e-02 0.046*

logarithm_glcm_Idmn 1.004e+02 0.192

original_gldm_Dependence Variance -5.060e-02 0.145

original_gldm_Small Dependence High Gray Level Emphasis -3.662e-02 0.818

original_glszm_Gray Level Non Uniformity -1.305e-04 0.851

original_shape_Maximum 2D Diameter Slice 4.262e-03 0.732

original_shape_Maximum 3D Diameter 6.609e-03 0.559

original_shape_Sphericity 9.891e+00 0.030*

square_glszm_Small Area Emphasis -1.362e+00 0.115

wavelet.HHL_firstorder_Skewness 6.523e-01 0.159

wavelet.HHL_glcm_Cluster Prominence 3.869e-05 0.660

wavelet.HHL_glszm_Gray Level Non Uniformity -2.459e-04 0.308

wavelet.HHL_glszm_Large Area High Gray Level Emphasis -8.487e-11 0.059

wavelet.HHL_glszm_Low Gray Level Zone Emphasis 2.924e+00 0.001*

wavelet.HLH_gldm_Dependence Non Uniformity Normalized -2.301e+01 0.030*

wavelet.LHH_first order_Skewness -4.023e-01 0.072

wavelet.LHL_glszm_Large Area Low Gray Level Emphasis -4.079e-08 0.252

wavelet.LLH_first order_Median 1.630e+00 0.251

wavelet.LLH_glcm_Cluster Shade -9.764e-01 0.082

wavelet.LLL_first order_90 Percentile 2.615e-03 0.083

wavelet.LLL_glcm_Idmn -2.532e+02 0.068
front
*P<0.05 indicates statistical significance.
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FIGURE 2

Association between the pyradiomics score and clinical factors. (A-C) Correlations between the pyradiomics score and object response (CR+PR) in the
discovery and two validation sets. (D-F) Correlation heatmaps of the pyradiomics score and clinical factors in the three cohorts. SD, stable disease; CR,
complete response; PD, progressive disease; PR, partial response.
A B

D

C

FIGURE 3

Pyradiomics signature and tumor size predict treatment response to TACE. (A-C) ROC curves show the predictive performance of pyradiomics
signature and tumor size for estimating CR and PR. The bootstrap (n=2000) test results of the two ROC curves indicate that the AUC of the sum
of pyradiomics signature is significantly higher than those of the tumor size in the discovery and in validation 1 and 2 sets. (D) Examples of two
patients with response (RS1) or no response (RS2). ROC, receiver operating characteristic; AUC, area under curve; CR, complete response; PR,
partial response.
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The prognostic value of PRS in patients
undergoing TACE treatment

According to the optimal cut-off value of PRS, we divided the

patients into two groups. The patients with high values (>-0.14)

defined as RS1, and the patients with low values (≤-0.14) defined as

RS2. In our study, 112 patients from Nanfang Hospital and 29

patients from the Second Affiliated Hospital of Gui Zhou Medical

University had the information of prognosis. Therefore, based on

stratification of RS1andRS2, PFS andOSwere analyzed in a total of

141 patients.We found the patients with RS1 had a longer PFS and

OS than those with RS2 (Median PFS: 25 vs. 9 months, hazard ratio

[HR]=2.78, 95% CI: 1.93-4.00, P<0.001; Median OS: 49 vs. 22

months, HR=2.23, 95% CI: 1.47-3.38, P<0.001, respectively)

(Figures 5A, B). Moreover, we used the biomarkers of RS1 and

RS2 to predict the 1-, 3-, and 5-year-OS and PFS rates. In the time-

dependent ROC curve estimation from censored survival, the

higher accuracies were 1-year-OS/PFS predictions than 3- and 5-

year-OS/PFS predictions (0.679 vs.0.676 vs.0.662; 0.737 vs. 0.602

vs.0.617, respectively) (Figures 5C, D).
Association between PRS and glycolysis
pathway genes stratify prognosis in
TCGA-HCC patients (No-TACE treatment)

The same algorithm of machine learning in the training

cohort was used in the CT images of 46 patients with HCC

from the TCGA database (TCGA-HCC cohort) and the PRS was
Frontiers in Oncology 08
calculated by the pyradiomics formulation. According to the

above cut-off value of pyradiomics score, all patients were then

divided into two groups, which were defined as RS1 group (n=23)

and RS2 group (n=23). In this experiment, high pyradiomics

scores were mostly observed in the RS2 group and low

pyradiomics scores were contrary. Through differential gene

expression analysis (RS1 vs. RS2), between-group comparisons

showed that 151 genes were significantly downregulated, while

167 genes were upregulated (FDR adjust P<0.05) (Figure 6A)

(Supplemental Figure S3). The GSEA found several KEGG

pathways were significantly associated with PRS, such as small

molecule catabolic process, glycolysis, and recycling of bile acids

and salts. In many pathways, we speculated that glycolysis

resulting from tumor hypoxia status were mostly associated

with TACE treatment. Therefore, we mainly focused on the

glycolysis pathway genes and found that RS1 group was

negatively associated with HK2 and PFKP presence (Figure 6B)

(Supplemental Figure S4). We cound not determine the ability of

the PRS in this study to evaluate clinical prognosis in patients with

HCC who underwent hepatectomy but did not receive TACE

therapy. We subsequently found that RS1 group had significantly

longer DFS and OS time than the RS2 group did (P<0.001 and

P=0.008, respectively) (Figures 6C, D).
Discussion

Based on preoperatively CT images, this study developed a

pyradiomics signature to accurately predict the initial treatment
A

B D

E F G

C

FIGURE 4

DCA and subgroup analysis of the pyradiomics signature for predictive treatment response to TACE. (A) DCA of the pyradiomics signature.
(B-G) Pyradiomics signature of clinical subgroup predicts therapy response in all patients (n=313) undergoing TACE treatment. The two ROC
curves are compared using the bootstrap (n=2000) test. DCA, decision curve analysis; ROC, receiver operating characteristic; TACE, transarterial
chemoembolization.
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response and prognosis in HCC patients who underwent TACE

therapy. The DCA and subgroup prediction analysis showed the

good clinical performance of the model. We further analyzed the

association between the pyradiomics model and KEGG pathway

genes in TCGA-HCC database. Our findings provided a novel

insight into the interpretability of the machine learning model for

predicting therapy responseorprognosis indifferent typesof tumors.

TACE is a standard treatment modality for HCC patients

with BCLC stage B disease (7). Although recent studies reported

that there was a non-superiority of TACE with respect to bland

embolization, and direct incremental costs of drug-eluting beads

TACE (DEB-TACE) can be acceptable in hepatocarcinoma

patients (28, 29), considering the extensiveness of method and

health policy in our country, we chose the conventional TACE

treatment in this study. Treatment response to the first TACE is

a well-known predictor of clinical outcomes in patients with

middle-stage HCC. This study used pyradiomics algorithms
Frontiers in Oncology 09
from the python package to extract features of tumor shape,

texture, intensity, and wavelet transform characteristics from

three-dimensional CT images in HCC patients who underwent

TACE as reported by previous studies (30, 31). In our study, we

used LASSO of 5-fold cross-validation to chose pyradiomics

features for CT images, and 24 features were finally selected. We

then used logistic regression analysis to calculate the

pyradiomics score among HCC patients who underwent

TACE. The results showed significantly higher pyradiomics

scores in the response group. The response group also showed

smaller tumor size, which was consistent with previous reports

(32, 33). There was a significantly negative correlation between

the pyradiomics score and tumor size. Compared with tumor

size, the pyradiomics model showed higher accuracies for

predicting treatment response. This could be because the

pyradiomics model included larger amount of radiology

information than the model based on tumor size did (34), and
A B

DC

FIGURE 5

Prognosis prediction of PRS in patients undergoing TACE treatment. (A, B) The OS and PFS of two classification (RS1 vs. RS2) are compared
in the patients. (C, D) Time-dependent ROC curve analysis is performed in 1-year-OS/PFS, 3-year-OS/PFS and 5-year-OS/PFS predictions.
PFS, progression-free survival; OS, overall survival; PRS, pyradiomics score; TACE, transarterial chemoembolization; ROC, receiver
operating characteristic.
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a machine learning method, such as LASSO, made a great

contribution to enhance the predictive ability of diagnosis,

therapy response or prognosis in solid tumors. However, the

model combining the pyradiomics signature and tumor size did

not show superior AIC to that using the pyradiomics signature

alone. The machine learning model had a robust accuracy for

predicting initial treatment response to TACE and the method

could be used as an invasive stool in the other cancers.

The DCA revealed that the pyradiomics model could predict

the treatment response when the probability of acquiring

treatment response ranged from 8 to 100%. This result

indicated that the pyradiomics signature could help determine

clinical strategy and identify the patients who had initial

treatment response according to the above the optimal cut-off

value (>-0.14). Additionally, some clinical variables may affect

the predictive accuracy of the pyradiomics model (6, 35), and the

model’s predictive accuracy in patient subgroups was rarely

reported and was still unclear. Interestingly, in this study, our

subgroup analysis (Supplemental Table S2) showed that our

machine learning model had a better predictive accuracy in

females than in male patients. Of note, the sample size of female

patients was significantly smaller than that of male patients (41

vs. 272). The different result of TACE treatment in male or

female could be further confirmed by large patients. Meanwhile,

subgroup analysis by age showed no significant difference in
Frontiers in Oncology 10
accuracies between patients aged ≤60 years and >60 years. There

were also no significant differences in accuracy according to the

Child–Pugh classification, AFP, tumor size, and number of

tumors. Collectively, these results support that our

pyradiomics model can accurately predict individual treatment

response to TACE and may help identify patients who will

benefit from the treatment. In addition, the correlation between

predictive classification of pyradiomics model and prognosis was

investigated. We found the RS1 group indicating well response

of initial TACE treatment had better OS and PFS than RS2 group

did. This result further demonstrated the initial response could

improve the OS and PFS in the patients receiving TACE therapy.

Moreover, our model based on the series CT images and analysis

of time-dependent ROC curve could preoperatively predict the

prognosis and to screening of patients who could benefit from

TACE treatment among the BCLC stage B patients with HCC.

To explore the potential mechanism of the pyradiomics

model, we used CT images from the TCGA-HCC cohort to

screen the different genes and related cancer signaling pathways

(Supplemental Figure S3). RS1 group was significantly associated

with hypoxia. Previous studies have reported that the tumor

hypoxia status is associated with resistance to chemotherapy,

targeted therapy, and radiation therapy (36–38). This indicates

that our machine learning model predicts treatment response to

TACE by characterizing the hypoxia change in tumors from CT
A B

DC

FIGURE 6

Different genes, signaling pathways, and prognosis associated with predicted treatment response. (A) The heat map plot of mRNA expression
from different genes. Patients with HCC are shown on the y-axis, and gene expression is shown on the x-axis. (B) Some genes are enriched in
certain signaling pathways, such as in the glycolysis and gluconeogenesis pathways. (C, D) The responder group shows better DFS and OS than
the non-responder group does. HCC, hepatocellular carcinoma; DFS, disease-free survival; OS, overall survival.
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images. In the TCGA-HCC patients (No-TACE treatment), RS2

group with severe hypoxia also showed a significantly poorer

prognosis than the RS1 group, suggesting the hypoxic status of

HCC may be associated with resistant mechanism to TACE

treatment, which is consistent with previous findings (39–41).

Improving the hypoxic status in tumors is potentially one of the

methods to improve the therapy effect and this mechanism

should be analyzed in more detail.

Our study has some limitations. First, the number of patients

with middle-stage HCC was relatively small. Second, the study

was conducted retrospectively.However, we usedCT images from

four centers, and all the CT images were normalized before

extracting pyradiomics features to develop a robust predictive

model. Multi-center model analysis also showed robust predictive

performance. However, the model still needs to be validated in

larger prospective studies. Third, we trained and validated all the

pyradiomics signatures in four medical centers. Extracting

features from ROI images may have issues in reproducibility. In

this study, we evaluated the reproducibility of pyradiomics and

found a good agreement (ICC>0.75), markedly improving the

predictive model’s robustness. Future studies should develop an

automatic segmentation model for liver tumors andminimize the

discrepancies among pyradiomics features.

In conclusion, the machine learning model based on

pyradiomics features from 3D-CT images is a noninvasive yet

highly accurate model for predicting the initial response and

prognosis to TACE in patients with HCC. Thus, it may be a

feasible tool for identifying patients who will benefit from TACE.

The association between the pyradiomicsmodel and cancer-related

signaling pathways might help clinicians further understand the

internal mechanism of machine learning. Finally, this radiology

method could be used to improve the accuracy in clinical decision-

making for other types of malignant tumors.
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