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Identification of a novel
necroptosis-related classifier to
predict prognosis and guide
immunotherapy in breast
invasive carcinoma

Qin Zhou1, Yan Xu1, Liang Shen1, Xiaochen Yang1

and Li Wang2*

1Department of Breast Surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China,
2Department of Oncology, Kunshan Traditional Chinese Medicine Hospital, Kunshan, China
Background: Necroptosis plays a crucial function in the progression of breast

invasive carcinoma (BRCA). It may be triggered in cancer therapy to enhance

anti-tumor immunity. However, the functions of necroptosis in tumors and its

relationship with the tumor microenvironment (TME) remain largely unclear.

Methods: Necroptosis-related genes (NRGs) were collated from high-quality

literature reviews. A robust risk model was constructed to systematically

evaluate the clinical value, functional status, effects exerted by the risk model

on the TME, and the genomic variations based on the Gene Expression

Omnibus (GEO) and The Cancer Genome Atlas (TCGA) meta-cohorts.

Results: A risk model was constructed which comprised of six NRGs, including

TNF receptor-associated factor 5 (TRAF5), Toll-like receptor 3 (TLR3), a

riboflavin kinase (RFK), Fas ligand (FASLG), Fas-associated protein with death

domain (FADD), and baculoviral IAP repeat-containing 3 (BIRC3). The stability

and accuracy of the risk model were demonstrated for both the training and

validation cohorts and its utility as an independent prognostic model for BRCA

was verified. Patients in the low-risk group exhibited “hot” tumors having active

immune and cell killing functions, while those in the high-risk group showed

“cold” tumors having active tumor proliferation and immunosuppression.

Moreover, patients in the high-risk group had a greater number of CNV

events in their genome, while the somatic mutations were fewer.

Furthermore, patients in the low-risk group showed high sensitivity toward

immunotherapy and chemotherapy.

Conclusion: A reliable risk model based on NRGs to assess patient prognoses

and guide clinical decision-making was constructed and validated. Our findings
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may contribute to the understanding of necroptosis and aid clinical

management, along with precision treatment in BRCA.
KEYWORDS

breast invasive carcinoma, necroptosis, immunotherapy, tumor microenvironment,
risk model
Introduction

Breast invasive carcinoma (BRCA) is a commonly prevalent

cancer type and only the second top-ranking cause of tumor-

related deaths in women worldwide (1). Statistics of the last five

years on the prevalence of BRCA indicate that nearly 11% of the

total reported BRCA cases worldwide were from China (2).

Conventional therapies for BRCA include surgery, endocrine

therapy, chemotherapy, targeted therapy, immunotherapy, and

radiotherapy (3). Rapid advances in medicine have led to

significant improvements in the prognosis of BRCA. However,

patients with advanced BRCA often show resistance to

treatment, and consequently, poor clinical outcomes (4).

Accurate prognostic predictions for patients with BRCA can

potentially improve their survival rates and facilitate the

development of tailored treatment by physicians. Hence, new

prognostic markers need to be identified. In recent years, some

exciting developments have occurred in this field. Several reports

reveal that tumor mutation burden (TMB) can predict patient

prognoses in several cancer types, thereby making it a promising

biomarker of sensitivity toward the immune checkpoint

inhibitors (5, 6).

Necroptosis, a novel type of programmed cell death, was first

reported in 2005 (7). It is a genetically programmed, lysogenic

apoptosis mechanism, that is regulated in a caspase-independent

manner. It is an alternative mode of apoptosis that overcomes

resistance, along with triggering and enhancing anti-tumor

immunity in cancer therapy (8, 9). In the onset of necroptosis,

the activation of the protein kinases, including the Recombinant

Receptor Interacting Serine Threonine Kinase 3 (RIPK3) and

RIPK1, is implicated. This is followed by phosphorylation of the

executioner molecule, mixed lineage kinase domain-like

(MLKL), thereby inducing a rupture in the cell membrane

(10–12). In cancer, necroptosis is a double-edged sword. If, on

the one hand, apoptosis is not induced, necroptosis can provide

an alternative to apoptosis, thereby eliciting a strong adaptive

immune response and halting tumor progression. On the other

hand, in the case wherein the induced inflammatory responses

promote tumorigenesis and metastases, necroptosis can elicit the

formation of an immunosuppressive tumor microenvironment

(TME) under specified circumstances (8). Thus, to determine

the role of necroptosis for patient prognoses, immune
02
regulation, and therapy for different cancer types, a better

understanding of the mechanisms underlying necroptosis and

their physiological and pathological functions is warranted.

In the present study, 33 necroptosis-related genes (NRGs)

were systematically assessed and their patterns in BRCA were

analyzed using multi-omic data. Thus, seven independent

prognosis-related NRGs were selected after Cox regression and

then modeled using the robust iterative least absolute shrinkage

and selection operator (LASSO) regression for BRCA. Next, we

systematically assessed the prognostic model’s stability and

accuracy in both the external validation and the training

cohorts. The biological functions, TME, and genomic

variations in the prognostic model were evaluated in detail.

Finally, the value of the prognostic model was determined and its

clinical applicability in chemotherapy and immunotherapy of

BRCA was evaluated.
Methods

Data extraction from online databases

The clinical information of BRCA patients and their

corresponding transcriptomic RNA sequences, Mutect2

mutation, HumanMethylation450 arrays, and copy number

variation (CNV) data were extracted using the GDC application

programming interface from The Cancer Genome Atlas (TCGA)

(https://cancergenome.nih.gov/). Patients with incomplete clinical

data or those who were lost to follow-up were excluded, following

which, a total of 887 BRCA samples were included. We then

standardized and normalized the primary data to reduce the

heterogeneity between samples, the raw fragments per kilobase

million (FPKM) sequence data were normalized to transcript per

million (TPM) units and used as the training cohort. Additionally,

three datasets from the GPL580 platform of the Gene Expression

Omnibus (GEO) database, GSE20685, GSE20711, and GSE42568,

were collated(https://www.ncbi.nlm.nih.gov/geo/). The

microarray data were merged and normalized from the three

GEO datasets and the batch effects were eliminated using the

combat function of the “sva” package (13), resulting in the

collection of the meta-data of 519 BRCA patients having entire

clinical details in the validation cohort. In addition, we obtained
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the publicly available immunotherapy data with complete clinical

and transcriptomic information, resulting in a cohort of 298

patients with advanced uroepithelial cancer (Imvigor210) who

underwent anti-PD-L1 immunotherapy (14).
Generation and validation of the NRG-
related risk model

The model was trained based on the TCGA cohort. First,

for BRCA, all the independent prognostic factors were

screened using univariate COX regression, and only the

significant (P< 0.05) genes were included for further analysis.

The least absolute shrinkage and selection operator (LASSO)

penalized Cox proportional risk model was employed to

identify the best prognostic model. To avoid overfitting, a

five-fold cross-validation was performed. Considering

random sampling for cross-validation, a total of 250

iterations were performed to identify the most stable

prognostic model and the most frequently occurring model

among the 250 iterations was the final prognostic model. The

RiskScore was computed as follows:

Riskscore =oiCoefficient(mRNAi)� Expression(mRNAi)

We also constructed the RiskScore in both GEO and

Imvigor210 cohort based on the same formula. The

consistency index (c-index) was computed using “survcomp”

to assess the predictive power of the RiskScore in both the

training and validation cohorts; the larger the c-index, the more

accurate the model (15). The median RiskScore was used to

divide patients into the high- and low-risk groups. Moreover, the

prognostic value of the risk model was systematically assessed

using the following analyses: Kaplan-Meier survival curves,

time-dependent receiver operating characteristic (ROC) curves,

and multivariate and univariate Cox regression.
Functional enrichment and immune
infiltration analyses

We explored the potential biological function of NRGs in the

TCGA cohort. The pathway activities associated with the

samples were assessed by single-sample gene set enrichment

analysis (ssGSEA) using “gsva” in R. Gene markers for

angiogenesis, epithelial-mesenchymal transition (EMT),

myeloid inflammation, as well as other molecular markers of

immune-related pathways, were collated from previously

published high-quality literature (16–19). Molecular markers

for hypoxia were obtained from theMsigdb database (www.plob.

org/tag/msigdb) (20). Details on the gene markers are listed in

Table S1. In addition, for making a comparison between the risk

groups and screening the significant (P< 0.05) Kyoto
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Encyclopedia of Genes and Genomes (KEGG) pathways, a

gene set enrichment analysis (GSEA) was performed using the

GSEA software (version 4.2.2).

The abundant infiltration of 22 different immune cells in the

tumor samples was determined using the R package,

“CIBERSORT” (cibersort.stanford.edu) (21). In addition, the

immune activity and tumor purity of the samples were

assessed using the Estimate algorithm (22).
Landscape of genomic variations
between the groups

The genomic variations between the high and low-risk

group was evaluated in the TCGA cohort. To compare the

differences in the tumor mutation burden between the two

risk groups, we processed the mutation data using the

“maftools” package in R and calculated the total number of

mutations in the samples. Genes with a minimum number of

mutations > 30 were subsequently selected, and the

differences in the mutation frequencies between the risk

groups were compared using the chi-square tests and

visualized using maftools (23). CNV data were processed

using Gistic (version: 2.0) of the Genepattern webtool

(www.genepattern.org) and significant amplifications and

deletions were identified; the CNV landscape was visualized

using the R package, Circos (circos.ca).
Assessment of the clinical significance of
the risk model

First, the median inhibitory concentration (IC50) for four

first-line BRCA drugs (gemcitabine, docetaxel, paclitaxel, and

doxorubicin) was calculated in the validation and training

cohorts using ridge regression algorithm of the pRRophetic

package; the smaller was the IC50 value, the greater was the

sensitivity to the drugs (24). Differentially expressed genes

(DEGs) between the risk groups were the putative therapeutic

targets, we identified the DEGs based on the threshold fold

change>2 and FDR<0.05 using the “limma” R package. CMap

database was used to determine their putative target compounds

(https://clue.io/). After querying the top 150 upregulated and

downregulated DEGs, we predicted the putative small molecule

compounds (25). Moreover, the patient responses to

immunotherapy were predicted using the Tumor Immune

Dysfunction and Exclusion (TIDE) online tool (http://tide.dfci.

harvard.edu) (26). The unsupervised subclass mapping

algorithm assessed patient responses to anti-PD1 and anti-

CTLA-4 immunotherapies(https://cloud.genepattern.org/gp/).

Finally, the predictive utility of the RiskScore was verified in

the Imvigor210 immunotherapy cohort.
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Specimen collection

67 cases of surgically resected cancerous tissues of breast

cancer patients diagnosed and treated in our hospital from

September 2015 to April 2016, with a median age of 42 ~ 73

years and a mean age of (56.19 ± 9.1) years were selected.

Inclusion criteria: (1) All were diagnosed with breast cancer by

postoperative pathological examination; (2) All did not receive

radiotherapy or chemotherapy before surgery; (3) Clinical data

were complete. Exclusion criteria: (1) Combination of chronic

systemic diseases; (2) Combination of other malignant tumors.

Our ethics committee approved the study (IEC-C-001-A04-

V3.0), supervised by our ethics committee, and the subjects all

signed an informed consent form while enjoying the right

to information.
Immunohistochemistry staining

After regular dewaxing and rehydration of the tissue in

paraffin sections, the sections were closed with 3% H2O2 for

10 min to prevent non-specific staining; primary antibody was

added dropwise and incubated overnight at 4°C. The next day,

the overnight sections were rewarmed at 4°C, washed 3 times

with double distilled water, soaked and moistened with washing

buffer, added dropwise with secondary antibody working

solution, and stained at room temperature for 1h. The IHC

staining score was calculated by multiplying the staining

intensity (0, negative; 1, mild; 2, moderate; 3, strong) and the

proportion of positive cells (0, negative; 1,<10%; 2, ≥10%

and<33%; 3, ≥33% and<66%; 4, ≥66%) for each tissue in turn

according to the staining on the tissue sections. The expression

of HDAC11 in breast cancer tissues was classified as low (0-6) or

high (8-12) expression according to the tissue microarray

immunohistochemical staining score.
Bioinformatics and statistical analyses

All statistical analyses and graph plotting were done on R

(version: 4.04). Comparisons between groups were performed

using the Wilcoxon test. The Kaplan-Meier plotter was used to

generate survival curves and statistically significant differences

were assessed using the log-rank test. Time-dependent receiver

operating characteristic curves (tROC) were plotted using

‘survivalROC’. The R package, ‘survival’ was used to perform

multivariate and univariate Cox regression analyses; the ‘rms’

package was used to construct the nomogram and plot the

calibration curves; decision curve analysis (DCA) was

performed using the DCA package (27). Two-tailed p< 0.05

was the s t a t i s t i c a l s i gn ificance thr e sho ld un l e s s

stated otherwise.
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Results

The landscape of genomic variations in
NRGs in BRCA

A total of 33 NRGs from previously published high-quality

reviews were collated and details of the selected genes are listed

in TableS2. Specifically, first, the multi-omics profiles of NRGs in

TCGA-BRCA patients were summarized (Figure 1A). The

frequency of single nucleotide variations (SNVs) in NRGs was

low but that of CNVs, encompassed a wide range, especially for

USP21, TRAF5, OTUD7B, and FASLG, which hinted that CNVs

may exert dominant effects in NRG regulation as compared to

gene mutations. In addition, a significant correlation was

observed between methylation regulators and gene expressions

of NRGs, especially for RIPK3, CASP10, TNFSF10, TRAF5, and

FASLG. Seven genes (ZBP1, TRAF5, TLR3, RFK, FASLG,

FADD, and BIRC3) were found to exert significant protective

roles, and subsequently, these factors were used for the

construction of risk models. The results of the Cox regression

analysis are listed in Table S3. Figure 1B shows the CNV profiles

of NRGs on chromosomes. Next, the mutation profiles of NRGs

(Figure 1C) were summarized, and CASP8 and TLR4 were

found to be the two most frequently mutated genes. Moreover,

the most common mutation was missense; SNV was the most

common mutation type with cytosine to thymine change, being

the most frequent. The waterfall diagram shows the mutation

profiles of NRGs in patients (Figure 1D). We then queried the

NRGs based on the confidence level of 0.9 using the STRING

database (string-db.org) and obtained a protein interaction

network (Figure 1E); BIRC2 and BIRC3 genes were identified

as the hub. Finally, we mapped the correlation network of NRGs

and selected the significantly (P< 0.0001) positively correlated

pairs (Figure 1F).
Construction of the NRG-related
risk model

We performed 250 iterations of LASSO regression for

screening the most important prognostic factors and

constructing a stable risk model. The model containing six

genes, including TRAF5, TLR3, RFK, FASLG, FADD, and

BIRC3, was determined to be the most stable. It exhibited

good accuracy in both the training and validation cohorts

(TCGA: 0.6407; GEO: 0.6515) (Figure 2A). The model was

constructed based on an optimal l value of 0.00547

(Figure 2B), and the RiskScore was computed as follows:

Risk   Score =o​iCoefficient mRNAið Þ � Expression mRNAið Þ
The LASSO coefficients for the model genes are provided in

Table S4. Patients were classified into low-risk and high-risk
frontiersin.org
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groups based on the median RiskScore. The survival analysis

suggested that patients in the high-risk group showed markedly

lower survival relative to those in the low-risk group (Figure 2C;

P = 0.0017). Figure 2D–F shows the distribution of RiskScore

and the transcriptomic map of genes in the model for the TCGA

cohort. Additionally, the tROC analysis showed that RiskScore

and TNM staging were the best prognostic predictors
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(Figure 1E). Specifically, the model had 1-, 3-, 5-, and 8-year

AUC values of 0.63, 0.63, 0.64, and 0.67, respectively (Figure 1F).

The predictive utility of the model was assessed in the validation

cohort. The survival analysis suggested significantly worse

survival rates in the high-risk group (Figure S1A, P< 0.0001).

Figure S1B shows the distribution of RiskScore and model genes

in the GEO cohort. The 1-, 3-, 5-, and 8-year AUC values for the
A B

D

E

F

C

FIGURE 1

Genomic mapping for NRGs in BRCA (A). Heat map showing genomic changes and hazard ratios of NRGs in TCGA-BRCA cohort; from left to
right: correlation between mutation and CNV frequencies of NRGs, modifications in DNA methylation and expression of NRGs, and a univariate
Cox regression analysis showing risk ratios for NRGs; *p < 0.05, **p < 0.01, ***p < 0.001; (B). Circle plot demonstrating CNV events in NRGs on
the chromosomes; (C). Summary of CNV events in NRGs in TCGA-BRCA cohort; (D). Oncoplot showing the mutational map of NRGs; (E). PPI
network of NRGs based on STRING; (F). Correlation network of NRGs.
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model in the validation cohort were 0.62, 0.67, 0.69, and 0.70,

respectively (Figure S1C).
Predictive independence of the
risk model

First, we investigated the relationship of RiskScore and

corresponding clinical characteristics [including AJCC TNM

stage, estrogen receptor (ER), progesterone receptor (PR) and

human epidermal growth factor receptor 2 (Her2)] with the
Frontiers in Oncology 06
prognoses of patients using multivariate and univariate Cox

regression. The univariate Cox regression analysis suggested that

RiskScore (hazard ratio [HR] = 5.509, P< 0.001), TNM stage

(HR = 2.149, P< 0.001), ER+(HR = 0.551, P = 0.008), PR+ status

(HR = 0.515, P = 0.002), and Her2+ status (HR = 2.858,

P=0.0353) in the training cohort were significantly associated

with patient prognoses (Figure 3A); RiskScore (HR = 2.858, P<

0.001) and TNM stage (HR = 2.207, P< 0.001) were significantly

associated with patient prognoses (Figure 3A). After correction

for other clinical characteristics, the results of the multivariate

Cox regression confirmed that RiskScore remained an
A B

D

E F

C

FIGURE 2

Construction of the NRG-related risk model (A). Screening the best LASSO model; left: frequency of different gene combinations in the LASSO
Cox regression model, right: c-index of the best model in TCGA and GEO cohorts; (B). LASSO Cox regression model to identify the most robust
nine-gene signature marker having an optimal l value of 0.00547; (C). KM survival curves for the high- and low-risk groups in the TCGA cohort.
(D). Survival status of patients and expression of marker genes in TCGA cohort; (E). tROC curves for risk models and clinical characteristics in
TCGA cohort; (F). 1-, 3-, 5-, and 8-year ROC curves for the RiskScore in TCGA cohort.
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independent prognostic factor for the OS of patients (TCGA:

HR = 4.389, P< 0.001; GEO: HR = 2.552, P< 0.001) (Figure 3B).

Thus, RiskScore could serve as a prognostic marker for OS in

BRCA patients. Given that the TCGA cohort consisted of more

detailed molecular types of BRCA, we constructed the

nomogram to better quantify the risk assessment of these

patients (Figure 3C). The correction curves showed good 1-, 3-,

and 5-year stability, as also the accuracy of the nomogram

(Figure 3D). Moreover, the tROC analysis showed that the

nomogram was a better predictor relative to clinical

characteristics (Figure 3E). DCA was performed to assess the

decision benefit of the nomogram and the results showed its good

applicability in 1-, 3-, and 5-year risk assessment of patients with

BRCA (Figure 3F).
Frontiers in Oncology 07
Functional enrichment analysis of
the risk model

The correlations between RiskScore and some typical

biological pathways were assessed. The heat map shows the

relationship between RiskScore, activities of the biological

pathways, and clinical characteristics (Figure 4A). The results

of the correlation analysis between RiskScore and biological

pathways are shown on the right of the heat map (Figure 4B).

We found that angiogenesis was significantly positively

correlated with RiskScore, while all immune-related pathways

except myeloid inflammation were negatively correlated with

RiskScore. Consistently, we observed that angiogenesis was

significantly higher in the high-risk group, while the immune-
A B

D

E

F

C

FIGURE 3

Validation of the NRG-related risk model (A). Univariate Cox regression analysis for OS in TCGA and GEO cohorts; (B). Multivariate Cox
regression analysis for OS in TCGA and GEO cohorts; (C). Nomogram for the NRG-related risk model; (D). Calibration curves for the nomogram;
(E). tROC curves for the nomogram and clinical characteristics; (F). 1-, 3-, and 5-year DCA curves for the nomogram.
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related pathways were markedly enhanced in the low-risk

group (Figure 4C). Further, GSEA showed that the pathways

related to antigen presentation, chemokine secretion, and Toll-

like receptor signaling (Figure 4D) were markedly upregulated

in the low-risk group, while the high-risk group was

significantly enriched in pathways associated with the

ribosome and RNA splicing (Figure 4E). In summary, these

results suggested that tumor angiogenesis and DNA replication

were hyperactive in the high-risk group, while cell-killing and

immune activities were markedly enhanced in the low-

risk group.
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The immune landscape of the risk model

The association between the immune landscape and

RiskScore was assessed in detail. The heat map shows the

relationships between RiskScore, EstimateScore, the infiltration

abundance of immune cell types, typical immune checkpoints

(including PD-L1, PD-L2, PD-1, CTLA-4, LAG-3, and TIM-3),

and clinical characteristics (Figure 5A). The corresponding

correlations are shown on the right of the heat map

(Figure 5B). The box plot showed an enhanced abundance of

M0 macrophages, M2 macrophages, and activated dendritic cells
A B

D E

C

FIGURE 4

Functional analysis for the NRG-related risk model (A). Heat map showing the correlation between RiskScore, activities of biological pathways,
and clinical characteristics; (B). Correlation analysis between RiskScore and biological pathways; (C). Box plots showing the differences in the
activities of the biological pathways between the high-risk and low-risk groups; (D). GSEA plot showing the top five pathways of interest in the
high-risk group; (E). GSEA plot showing the top four pathways of interest in the low-risk group ****p < 0.0001. ns, p > 0.05.
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A B

D E

C

FIGURE 5

The immune landscape of the NRG-related risk model (A). Heat map showing the correlations between RiskScore, EstimateScore, the
abundance of immune cell infiltration, immune checkpoint expression, and clinical characteristics; (B). from top to bottom: correlation between
RiskScore and EstimateScore, between RiskScore and immune cell infiltration abundance, and between RiskScore and immune checkpoint
expression; (C). Box plot showing the differences in the abundances of immune cell infiltration between the high-risk and low-risk groups; (D).
Box plot showing the differences in EsimateScore between the high-risk and low-risk groups; (E). Box plot showing the differences in immune
checkpoint expression between the high-risk and low-risk groups *p < 0.05; **p < 0.01; ***p < 0.001 **** p < 0.0001. ns, p > 0.05.
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in the high-risk group, while M1 macrophages, CD8T cells, and

Gamma delta T cells are markedly upregulated in the low-risk

group (Figure 5C), consistent correlational findings. Further, a

significant positive correlation was observed between RiskScore

and tumor purity, while those between EstimateScore,

ImmuneScore, and expressions of the six immune checkpoints

showed a substantial negative association. Consistently, box

plots showed that tumor purity was elevated in the high-risk

group, whereas EstimateScore, ImmuneScore, and expressions

of the six immune checkpoints were elevated in the low-risk

group (Figures 5 D, E). Overall, these results suggested that the

high-risk group showed immunosuppression of antitumor

effects, while the low-risk group exhibited active anti-tumor

immune activity and cell-killing functions.
Genomic mutations of subtypes

Recent studies show a strong correlation of TMB with anti-

tumor immunity and immunotherapeutic efficacy, as high TMB

generates a greater proportion of mutated peptide fragments that

can be recognized by the immune system, resulting in an

enhanced anti-tumor immunity function. Considering the

clinical significance of TMB, we examined the correlation

between TMB and RiskScore and the results showed a

significant negative correlation between the two (correlation =

-0.10, p = 0.034). There was no significant elevation in TMB in

the low-risk group (Figure 6A). The forest plot shows that

CDH1, PCLO, RYR2, and SPTA1 were significantly more

frequently mutated in the high-risk group, whereas PIK3CA,

FAT3, FAT4, and LRP1B were commonly mutated in the low-

risk group (Figure 6B). In addition, the oncoplot showed the

detailed mutational landscape in the high- and low-risk groups

in BRCA (Figure 6C). As CNVs too can cause chromosomal

variations, we further evaluated the correlation between

RiskScore and CNVs. We found a greater number of CNV

events (deletion and amplification) in the high-risk group

(Figure 6D) relative to the low-risk group (Figure 6E). Box

plots showed a significant increase in both deletion and

amplification events in the high-risk group (Figures 6F, G).
The role of the risk model in guiding
clinical decision-making

We first assessed differences in the sensitivity of BRCA

patients to different chemotherapeutic agents and the findings

suggested that the patients in the low-risk group of the TCGA

cohort had enhanced sensitivity to gemcitabine, paclitaxel, and

doxorubicin (Figure 7A). Same results in the validation cohort

were obtained (Figure S2A). Overall, patients in the low-risk

group exhibited a greater sensitivity towards chemotherapy and

the DEGs between the risk groups could be potential targets of
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small molecule compounds. Thus, DEGs were queried on the

Clue database for the identification of putative small molecule

drugs. The waterfall diagram shows the potential 21 small

molecule drugs and their corresponding target biological

pathways (Figure 7B). Our results for immune landscape and

genomic variations between groups suggested that RiskScore

may be significantly related to the efficacy of immunotherapy.

Hence, we assessed the patient response rates to immunotherapy

using the TIDE algorithm (tide.nki.nl). Patients in the low-risk

group of the TCGA cohort were more likely to respond to

immunotherapy (P = 0.043, Figure 7C). Although the number of

responses to immunotherapy was higher in the low-risk group of

the training cohort, it was not statistically significant (P = 0.073,

Figure S2B) Subsequently, subclass mapping results suggested

that patients in the low-risk group showed enhanced sensitivity

to anti-PD1 therapy in both TCGA and GEO cohorts (TCGA:

false discovery rate [FDR] = 0.007, GEO: FDR = 0.001)

(Figure 7D; Figure S2C). Finally, we computed the RiskScore

in a well-established immunotherapy cohort, which showed

significantly worsened survival in patients belonging to the

high-risk group (P = 0.044, Figure 7E). The RiskScore was

significantly higher in patients who did not respond to

immunotherapy (Figure 7F). We then evaluated the

relationship between TMB and neoantigens and RiskScore in

the immunotherapy cohort, which showed that RiskScore was

negatively correlated with TMB and neoantigen counts, both of

which were markedly elevated in the low-risk group (Figures 7G,

H). Thus, these results confirmed that the generated risk model

was a powerful tool for guiding immunotherapy in patients

with BRCA.
Validation of key NRGs in the
clinical samples

To further validate the stability of the model, we collected

tumor tissues from 67 breast cancer patients from the clinic and

examined the correlation between the staining intensity of the

screened Markers: TRAF5, TLR3, RFK, FASLG, FADD, BIRC3,

MAPK8 and the TME-related Markers CD11b and CD163 by

immunohistochemical staining (Figure 8). We observed that the

staining intensity of TRAF5, TLR3, RFK, FASLG, FADD,

BIRC3. The staining intensity of MAPK8 showed a significant

positive correlation with the staining intensity of CD11b and

CD163 in TME (P< 0.01),the correlation coefficient of TRAF5

with CD11b was 0.106 and with CD163 was 0.506; the

correlation coefficient of TLR3 with CD11b was 0.560 and

with CD163 coefficient was 0.427; RFK had a correlation

coefficient of 0.663 with CD11b and 0.280 with CD163;

FASLG had a correlation coefficient of 0.508 with CD11b and

0.363 with CD163; FADD had a correlation coefficient of 0.606

with CD11b and 0.491 with CD163 0.491; BIRC3 had a

correlation coefficient of 0.6540 with CD11b and 0.612 with
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CD163; MAPK8 had a correlation coefficient of 0.537 with

CD11b and 0.569 with CD163. Overall, 7NRGS was positively

correlated with TME, which is consistent with our results.
Discussion

In the present study, we constructed a prognostic model for

BRCA patients using a robust LASSO algorithm based on NRGs.

In addition, the associations of the model with the biological

functions, immune microenvironment, and genomic variations

in cancer progression were systematically assessed and the value
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of the prognostic model in guiding clinical treatment decisions

was examined. We confirmed the suitability and accuracy of the

constructed prognostic model for predicting survival in BRCA

patients in the external validation and the training cohorts.

Tumor angiogenesis and DNA replication were active, whereas

immune and cell-killing activities were hyperactive in the low-

risk group. Moreover, immune microenvironment analysis

demonstrated that immune function and anti-tumor immunity

were more active in BRCA patients having low RiskScores.

Genomic variation analysis suggested a significantly higher

frequency of mutations of CDH1, PCLO, RYR2, and SPTA1 in

the low-risk group. Moreover, chromosomal amplification and
A
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FIGURE 6

Landscape of genomic variations for the NRG-related risk model (A). Correlation between RiskScore and TMB; (B). Forest plot showing genes
with significant differences in mutations between the high-risk and low-risk groups; (C). Oncoplot showing the significantly mutated genes
between the high-risk and low-risk groups; (D). Circle plot showing the CNV landscape in the high-risk group; (E). Circle plot showing the CNV
landscape in the low-risk group; (F). Box plot showing the differences in the number of chromosomal deletions between the high-risk and low-
risk groups; (G). Box plots showing the differences in the number of chromosome amplifications between the high-risk and low-risk groups
*p < 0.05; **p < 0.01. ns, p > 0.05.
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deletion events were also significantly higher in the high-risk

group. For clinical applicability, we determined that patients

with BRCA in the low-risk group were more sensitive to

chemotherapeutic agents. Finally, we predicted better

immunotherapeutic responses among BRCA patients having

low RiskScores by TIDE and subclass mapping algorithms,

along with determining the predictive performance of the risk

model in an external immunotherapy cohort.

Apoptosis is strongly associated with cancer progression,

metastasis, and treatment response. Inhibiting apoptosis enhances

tumor metastasis and resistance of malignant cells to chemotherapy

(28, 29). Ferroptosis, pyroptosis, and necroptosis are emerging

forms of apoptosis. As most tumors are innately resistant to

apoptosis, the induction of apoptosis mechanisms is emerging as

a new strategy for cancer treatment (9). Existing evidence confirms

the predictive value of pyroptosis and ferroptosis for predicting the

prognosis of BRCA (30, 31). In this study, for the first time, we focus

on necroptosis as an alternate apoptosis mechanism. The NRGs-

based risk model showed excellent predictive performance in both

the training and external validation cohorts, with a significant

reduction in survival rates among the high-risk patients, which

suggested that NRGs may exert important effects in precision

medicine for BRCA.
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To examine the functional biological mechanism underlying

the survival differences, the correlation between the risk model

and biological pathways was analyzed. We found that angiogenic

activity was significantly higher in the high-risk group. Previous

studies report that active angiogenesis is critical for tumor

growth and metastasis. It is associated with the suppression of

immune functions. Inhibition of angiogenesis is also a promising

therapeutic target for impeding tumor growth (32–34).

However, immune-related pathways, including those involved

in cell killing, CCR, antigen presentation, interferon response,

and myeloid immunity were found to be more active in the low-

risk group, which suggested that antigen presentation, anti-

tumor immunity, and cell killing are more potent in this risk

group (35–37). In addition, GSEA suggested active ribosomal

functions and RNA replication in patients belonging to the high-

risk group, as also elevated levels of antigen presentation,

chemokine Toll-like receptor signaling, and natural killer cell

activity in patients in the low-risk group, which suggested active

tumor proliferation in patients in former and immune

hyperfunct ion in the la t ter (38–40) . Overa l l , the

aforementioned findings suggested that tumor proliferation

and metastasis are stronger in patients in the high-risk group

causing significantly poorer survival in these patients; those in
A

B

D

E

F

G

H

C

FIGURE 7

NRG-related risk model in guiding decision-making for clinical treatment (A). Box plot showing predicted IC50 values of four commonly used
drugs between the two risk groups; (B). Oncoplot showing the target small molecule compounds, wherein the horizontal axis represents the
name of the small molecule inhibitor, while the vertical axis represents the specific biological pathway targeted by the small molecule inhibitor;
(C). TIDE algorithm for predicting immunotherapeutic responses in the high-risk and low-risk groups; (D). Subclass mapping for predicting
sensitivity to anti-PD1 and anti-CTLA4 treatment in patients belonging to the high-risk and low-risk groups; (E). KM survival curves for the high-
risk and low-risk groups in the IMvigor 210 cohort; (F). Box plot showing the differences in RiskScore between patients in the treatment-
responsive and non-responsive groups in IMvigor 210; (G). Correlation between RiskScore and TMB in the IMvigor210 cohort; (H). Correlation
between RiskScore and neoantigens in the IMvigor 210 cohort *p < 0.05; ***p < 0.001.
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FIGURE 8

TRAF5, TLR3, RFK, FASLG, FADD, BIRC3, MAPK8 showed significant positive correlation with the staining intensity of TME markers (A). Staining
intensity of TRAF5 with TME-associated Markers CD11b and CD163, correlation coefficient of TRAF5 with CD11b is 0.106 and with CD163 is
0.506; (B). Staining intensity of TLR3 with TME-associated Markers CD11b and CD163, correlation coefficient of TLR3 with CD11b is 0.560 and
the correlation coefficient with CD163 was 0. 427; (C). Staining intensity of RFK with TME-associated Markers CD11b and CD163, the correlation
coefficient of RFK with CD11b was 0.663 and the correlation coefficient with CD163 was 0.280; (D). FASLG with TME-associated Markers CD11b
and CD163 correlation coefficient, the correlation coefficient of FASLG with CD11b was 0. 508 and with CD163 was 0.363; (E). Correlation
coefficient of FADD with TME-related Marker CD11b and CD163, the correlation coefficient of FADD with CD11b was 0.606 and with CD163
was 0.491; (F). Correlation coefficient of BIRC3 with staining intensity of TME-associated Markers CD11b and CD163, the correlation coefficient
of BIRC3 with CD11b was 0. 6540 and with CD163 was 0.612; (G).The correlation coefficient of MAPK8 with TME-associated Markers CD11b and
CD163, the correlation coefficient of MAPK8 with CD11b was 0.537 and with CD163 with a correlation coefficient of 0.569.
Frontiers in Oncology frontiersin.org13

https://doi.org/10.3389/fonc.2022.852365
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2022.852365
the low-risk group showed stronger anti-tumor immunity,

which may contribute to resistance to treatment.

As TME and immune activity are strongly associated with

cancer treatment and patient prognoses (41, 42), we assessed

differences in TME and immune activity between the low-risk

and the high-risk groups. Notably, the low-risk group had higher

immune scores and immune checkpoint activity, which

suggested that these patients were more immunocompetent.

Increased abundance of M2 macrophages, M0 macrophages,

and activated dendritic cells in the high-risk group was

consistent with the findings of our previous study (43). In

contrast, the abundance of M1 macrophages, CD8T cells, and

Gamma delta T cells in the low-risk group suggested that these

patients exhibited stronger anti-tumor immunity (43, 44). These

results indicated a greater probability of occurrence of

immunosuppressed ‘cold’ tumors with a weaker anti-tumor

response in the patients belonging to the high-risk group,

ultimately leading to a poorer prognosis. In contrast, patients

in the low-risk group developed immunocompromised ‘hot’

tumors, thereby showing better prognoses.

TMB is a biomarker of immunotherapeutic responses. In

general, higher TMB results in the production of more neo-

antigenic peptides, that are recognized by the immune system,

thereby allowing for enhanced sensitivity to immunotherapy;

however, there is heterogeneity in its predictive efficacy for

different tumors (6, 45). Our findings suggested that RiskScore

was significantly negatively associated with TMB. The TMB was

not substantially elevated in the low-risk group, which suggested

that RiskScore could robustly identify patients with

immunologically active ‘hot’ tumors relative to TMB. We also

analyzed the CNV events in patients in the TCGA-BRCA cohort.

Patients in the high-risk group had a greater proportion of

chromosomal amplification and deletion events. Previous

studies show that somatic structural rearrangement events in

chromosomes actively drive oncogenesis, thereby leading to

greater tumor heterogeneity and chemoresistance (46–48).

These results suggested that patients in the high-risk group

may not respond well to treatment and that those in the low-

risk group may be more sensitive to immunotherapy

and chemotherapy.

As our previous findings strongly suggested that patients in

the low-risk group exhibited enhanced sensitivity to treatment,

we analyzed the sensitivity of the patients in both BRCA risk

groups towards chemotherapy and immunotherapy. Both in

the validation and training sets, it was confirmed that the

patients in the low-risk group exhibited elevated sensitivity to

gemcitabine, paclitaxel, and doxorubicin. In addition, TIDE

and subclass mapping algorithms also predicted that patients

in the low-risk group showed enhanced sensitivity to PD1

immunotherapy. Moreover, in an external immunotherapy

cohort, the patients in the low-risk group were more

sensitive to PD-L1 treatment and had a longer survival

duration. This may be attributed to the elevated TMB and
Frontiers in Oncology 14
neoantigen counts among patients in the low-risk group. In

conclusion, these results confirmed that the risk model used in

this study was a powerful tool for guiding the treatment of

patients with BRCA in clinical settings.

The necroptosis model can be simply implemented based on

PCR-based assay, suggesting the potential for clinical translation

and implementation of this study. Nevertheless, this study has

some limitations. First, due to the paucity of data, only inter-

patient heterogeneity was considered; intratumoral

heterogeneity remained unaccounted for. Second, although we

have used some algorithms for the assessment of the accuracy of

this risk model in predicting the sensitivity of patients towards

chemotherapy and immunotherapy, further validation in a

prospective cohort study and clinical data are required. Third,

some commonly used biochemical and test indicators are

seriously inadequate in the public database, this may obscure

potential associations between NRG models and certain

variables and affect clinical implementation. Finally, although

we preliminarily confirmed the negative correlation between

NRGs and TME in BRCA by immunohistochemistry, further

mechanism experiments are necessary to explore their

biological functions.
Conclusions

In summary, we pioneered the construction of an NRG-

based risk model and identified high- and low-risk patients,

showing heterogeneity in their functional status, immune

microenvironment, genomic variant events, and clinical

outcomes. In addition, the constructed risk model could be

employed to predict BRCA patient sensitivity towards

immunotherapy and chemotherapy. Overall, these results are

expected to advance the understanding of necroptosis in

tandem with the clinical management and precise treatment

for BRCA.
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SUPPLEMENTARY FIGURE 1

The NRG related risk model in GEO cohort (A). KM survival curves for the

high- and low-risk groups in the GEO cohort (B). Survival status of patients
and expression of marker genes in GEO cohort; (C).1-,3-,5-,and8-year
ROC curves for the RiskScore in GEO cohort.

SUPPLEMENTARY FIGURE 2

Validation of the treatment decisions in GEO cohort (A). Boxplot showing
predicted IC50 values of four commonly used drugs between the two risk

groups in the GEO cohort; (B). TIDE algorithm for predicting
immunotherapeutic responses of two risk groups in the GEO cohort;

(C).Subclass mapping for predicting sensitivity to anti-PD1 and anti-

CTLA4 treatment in patients belonging to the high-risk and low-
risk groups
References
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer
statistics, 2012. CA: Cancer J Clin (2015) 65(2):87–108. doi: 10.3322/caac.21262

2. Li T, Mello-Thoms C, Brennan PC. Descriptive epidemiology of breast cancer
in China: Incidence, mortality, survival and prevalence. Breast Cancer Res Treat
(2016) 159(3):395–406. doi: 10.1007/s10549-016-3947-0

3. McDonald ES, Clark AS, Tchou J, Zhang P, Freedman GM. Clinical diagnosis
and management of breast cancer. J Nucl Med (2016) 57 Suppl 1:9s–16s.
doi: 10.2967/jnumed.115.157834

4. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative
breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev
Clin Oncol (2016) 13(11):674–90. doi: 10.1038/nrclinonc.2016.66

5. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY,
et al. Tumor mutational load predicts survival after immunotherapy across multiple
cancer types. Nat Genet (2019) 51(2):202–6. doi: 10.1038/s41588-018-0312-8

6. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis
of 100,000 human cancer genomes reveals the landscape of tumor mutational
burden. Genome Med (2017) 9(1):34. doi: 10.1186/s13073-017-0424-2

7. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical
inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain
injury. Nat Chem Biol (2005) 1(2):112–9. doi: 10.1038/nchembio711

8. Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, et al. The role of necroptosis
in cancer biology and therapy. Mol cancer (2019) 18(1):100. doi: 10.1186/s12943-
019-1029-8

9. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis,
and pyroptosis in anticancer immunity. J Hematol Oncol (2020) 13(1):110.
doi: 10.1186/s13045-020-00946-7

10. Chan FK, Luz NF, Moriwaki K. Programmed necrosis in the cross talk of cell
death and inflammation. Annu Rev Immunol (2015) 33:79–106. doi: 10.1146/
annurev-immunol-032414-112248

11. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation.
Nature (2015) 517(7534):311–20. doi: 10.1038/nature14191
12. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase
domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell
(2012) 148(1-2):213–27. doi: 10.1016/j.cell.2011.11.031

13. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinf (Oxford England). (2012) 28(6):882–3. doi: 10.1093/
bioinformatics/bts034

14. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al.
TGFb attenuates tumour response to PD-L1 blockade by contributing to exclusion
of T cells. Nature (2018) 554(7693):544–8. doi: 10.1038/nature25501

15. Schröder MS, Culhane AC, Quackenbush J, Haibe-Kains B. Survcomp: an
R/Bioconductor package for performance assessment and comparison of survival
models. Bioinf (Oxford England). (2011) 27(22):3206–8. doi: 10.1093/
bioinformatics/btr511

16. McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B,
et al. Clinical activity and molecular correlates of response to atezolizumab alone or
in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat
Med (2018) 24(6):749–57. doi: 10.1038/s41591-018-0053-3

17. Gibbons DL, Creighton CJ. Pan-cancer survey of epithelial-mesenchymal
transition markers across the cancer genome atlas. Dev dynamics (2018) 247
(3):555–64. doi: 10.1002/dvdy.24485

18. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR,
et al. IFN-g-related mRNA profile predicts clinical response to PD-1 blockade. J
Clin Invest (2017) 127(8):2930–40. doi: 10.1172/jci91190

19. Liang JY, Wang DS, Lin HC, Chen XX, Yang H, Zheng Y, et al. A novel
ferroptosis-related gene signature for overall survival prediction in patients with
hepatocellular carcinoma. Int J Biol Sci (2020) 16(13):2430–41. doi: 10.7150/
ijbs.45050

20. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P,
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