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Radiomics of dynamic contrast-
enhanced magnetic resonance
imaging parametric maps and
apparent diffusion coefficient
maps to predict Ki-67 status in
breast cancer

Shuqian Feng1,2 and Jiandong Yin1*

1Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning,
China, 2School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
Purpose: This study was aimed at evaluating whether a radiomics model based

on the entire tumor region from breast dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) parametric maps and apparent diffusion

coefficient (ADC) maps could indicate the Ki-67 status of patients with breast

cancer.

Materials and methods: This retrospective study enrolled 205 women with

breast cancer who underwent clinicopathological examination. Among them,

93 (45%) had a low Ki-67 amplification index (Ki-67 positivity< 14%), and 112

(55%) had a high Ki-67 amplification index (Ki-67 positivity ≥ 14%). Radiomics

features were extracted from three DCE-MRI parametric maps and ADC maps

calculated from two different b values of diffusion-weighted imaging

sequences. The patients were randomly divided into a training set (70% of

patients) and a validation set (30% of patients). After feature selection, we

trained six support vector machine classifiers by combining different parameter

maps and used 10-fold cross-validation to predict the expression level of Ki-67.

The performance of six classifiers was evaluated with receiver operating

characteristic (ROC) analysis, sensitivity, and specificity in both cohorts.

Results: Among the six classifiers constructed, a radiomics feature set

combining three DCE-MRI parametric maps and ADC maps yielded an area

under the ROC curve (AUC) of 0.839 (95% confidence interval [CI], 0.768

−0.895) within the training set and 0.795 (95% CI, 0.674−0.887) within the

independent validation set. Additionally, the AUC value, compared with that for
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a single parameter map, was moderately increased by combining features from

the three parametric maps.

Conclusions: Radiomics features derived from the DCE-MRI parametric maps

and ADC maps have the potential to serve as imaging biomarkers to determine

Ki-67 status in patients with breast cancer.
KEYWORDS

breast cancer, radiomics, dynamic contrast-enhanced magnetic resonance imaging,
apparent diffusion coefficient, Ki-67
Introduction

Breast cancer (BC) is the most prevalent malignant tumor

type threatening women’s health globally (1). According to an

immunohistochemistry (IHC) classification system, BC can be

divided into four subtypes, basal-like, HER2-enriched, and

luminal A and B subtypes, on the basis of the expression of

progesterone receptor (PR), estrogen receptor (ER), human

epidermal growth factor receptor 2 (HER2), and Ki-67 (2). Ki-

67 protein is a recognized marker of tumor proliferation and

invasiveness (3), as well as a recognized indicator of BC

prognosis (4). Ki-67 can be used as a molecular marker to

distinguish the molecular subtypes of luminal A and B (5). A

high expression level of Ki-67 is associated with poorer

prognosis (3, 6), greater risk of recurrence (7), and worse

survival outcomes (8). Hence, accurately identifying the status

of the Ki-67 index is crucial for the prognosis of BC.

Dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI) is useful for assessing tumor anatomical

information and angiogenesis (9). Radiomics involves high-

throughput extraction of many image-based features from

standard medical images and determining the potential links

between these features and pathophysiology (10, 11). Radiomics

analysis of features extracted from DCE-MRI images can be used

to distinguish the HER2 2+ status, predict lymphovascular

invasion, determine the status of lymph node metastasis, and

identify the degree of tumor malignancy (12–19). The apparent

diffusion coefficient (ADC), a quantitative parameter generated in

diffusion-weighted imaging (DWI), is the most used clinical

parameter reflecting the degree of tissue distribution according

to the diffusion of water molecules (20). Since ADC is influenced

by cell density and tissue structure, Choi (12) proposed that DCE-

MRI combined with DWI is helpful to evaluate the status of

lymphovascular invasion in patients with node-negative invasive

BC. In addition, ADC values have been shown to correlate with

the Ki-67 index (20, 21). Therefore, radiomics analysis based on

DCE parameters and ADCmight have the potential to predict Ki-

67 status and even improve predictive performance.
02
A previous study has shown that the radiomics features

derived from DCE-MRI functional parameter maps achieved

the best results in identifying sentinel lymph node metastasis

status in patients with BC (22). Another study has predicted

the Ki-67 index and HER2 2+ status by using intratumoral and

peritumoral radiomics features based on six DCE-MRI

functional parameter maps (14). Both of these studies used

single-layer lesions and consequently might have overlooked

the correlations between layers. Jong et al. have investigated

the correlation between quantitative MR parameters and Ki-

67 expression status by analyzing DCE-MRI and DWI

sequences in ER-positive invasive BC (23). However, their

analysis of the interstitial signal enhancement ratio used only

univariate and multivariate analysis, without radiomics

analysis. To our knowledge, few studies have used a

combination of breast MRI functional parametric maps and

ADC maps in radiomics analysis. Moreover, in most prior

studies, region of interest (ROI) depiction has been performed

primarily on the slice images showing the largest tumor size

(24–26). In this study, radiomics features were extracted from

the entire tumor volume on the basis of three semi-

quantitative parametric maps and ADC maps, and the

predictive performance of the classification models based on

three-dimensional features in terms of Ki-67 expression status

was evaluated.

Therefore, the purpose of our study was to evaluate the

performance of a radiomics model based on the entire tumor

region from three DCE-MRI parametric maps and ADCmaps to

determine the status of Ki-67 in patients with BC.
Materials and methods

Study population

This research was approved by the ethics committee of our

institution. Given the retrospective nature of the study, the

requirements for informed consent were waived.
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Between December 2018 and September 2020, 366 patients

with pathologically confirmed primary BC who underwent

breast DCE-MRI at Shengjing Hospital were enrolled in the

study. Figure 1 shows the patient recruitment process for this

study. The inclusion criteria were as follows. All included

patients 1) underwent DWI-MRI, 2) had clear breast lesions

on magnetic resonance images, 3) had BC confirmed through

histologic examination, and 4) underwent IHC examination,

including the Ki-67 index. The exclusion criteria were as follows.

The excluded patients 1) underwent biopsy before MRI, 2) had

incomplete pathological data, or 3) had insufficient MRI quality

because of clear motion artifacts.

The final cohort consisted of 205 patients who were

randomly divided into a training set and a validation set, in

proportions of 70% and 30%, respectively. The training dataset

(n = 143) comprised 65 patients with low Ki-67 expression and

78 patients with high Ki-67 expression. The validation dataset

(n = 62) comprised 28 and 34 patients with low and high Ki-67

expression, respectively. The clinical characteristics of all

patients are described in Table 1, and the framework for the

radiomics workflow is shown in Figure 2.
Pathological assessment

Streptavidin peroxidase IHC was used to detect the

expression levels of ER, PR, HER2, and Ki-67 in each patient.

If at least 1% of the tumor nuclei were ER or PR positive, the ER

or PR status was determined to be positive (27). A Ki-67

proliferation index ≥14% was considered high, and a

value<14% was considered low (28). HER2 status was

considered positive when the HER2 staining intensity score

was 3+ and negative when the score was 0 or 1+. If the HER2

staining intensity score was 2+, and further fluorescence in situ
Frontiers in Oncology 03
hybridization confirmed gene amplification, the result was

considered positive (29).
MR image acquisition

DCE-MRI was performed at 3.0 T with a Signa HDxt 3.0 T

MRI scanner (GE Healthcare Life Sciences, Chicago, IL, USA).

All patients were scanned in a prone position with a dedicated

eight-channel double-breast coil. Axial DWI sequence scanning

was performed before DCE-MRI acquisition. The acquisition

parameters were as follows: repetition time, 4,000 ms; flip angle,

90°; echo time, 83.30 ms; field of view, 340 × 340 mm2; matrix

size, 256 × 256; slice thickness, 4.50 mm; spacing between slices,

5.00 mm; and b values, 0 and 800 s/mm2. The ADC maps were

calculated from diffusion images with two b values.

Second, an axial fat-saturated T1-weighted pre-contrast scan

based on the VIBRANT-VX technique was acquired. After the

intravenous injection of a contrast agent (Magnevist, Bayer

Healthcare Pharmaceuticals, Berlin, Germany) at 4 ml/s with a

dose of 0.15 mmol per kg body weight, eight post-contrast scans

were acquired with the following parameters: repetition time, 4.14

ms; flip angle, 12°; echo time, 2.10 ms; slice thickness, 2.00 mm;

spacing between slices, 1.00 mm; and field of view, 340 × 340 mm2.

Finally, eight subtraction sequences were obtained through the

subtraction of each pre-contrast scan sequence from the eight

post-contrast scan sequences.
Tumor segmentation

Tumor segmentation must be completed before the

extraction of high-throughput quantitative features. We used

ITK-SNAP software to perform three-dimensional manual
FIGURE 1

Flowchart of the patient recruitment process in this study.
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segmentation (open-source software; www.itk-snap.org). Two

radiologists with 8 years (reader 1) and 10 years (reader 2) of

experience in breast MR imaging diagnosis completed the layer-

by-layer manual segmentation of tumor area in the MR images.

DCE-MRI images in all cases were segmented on the fourth

subtraction sequence, which is usually useful for visual

examination because it is usually the most enhanced among all

time series (30). For the ADC map, the tumor contour was

manually drawn along the boundary of the high signal area on

each transverse DWI slice (b value of 800 s/mm2) (21). After

manual sketching, the software automatically generated the

three-dimensional tumor volume model, which was finally

copied to the corresponding ADC maps.
Parametric map generation

Before the extraction of radiomics features, three functional

parameter maps and ADC maps were calculated pixel by pixel

according to the following formula.

Wash-in maps:

((SI1  – SI0) =SI0) � 100% (1)
Frontiers in Oncology 04
Wash-out maps:

((SI1  – SI8) =SI1) � 100% (2)

Signal enhancement ratio (SER) maps:

((SI1  – SI0)=(SI8  – SI0)) � 100% (3)

ADC maps:

(InSIb0  – InSIb800)=(b – b0) (4)

where SI is the signal intensity of each pixel in the image, SI0
represents the value of the pixel in the pre-contrast image, SI1
and SI8 represent the pixel value in the first and eighth post-

contrast scans, and SIb0 and SIb800 represent the signal intensity

when the b value of the DWI sequence is 0 and 800 s/mm2,

respectively. Representative images of DCE-MRI parametric

maps and ADC maps are shown in Figure 3.
Radiomics feature extraction

Feature extraction was performed with an in-house texture

extraction platform developed with the Python (3.6.2) package
TABLE 1 Clinicopathological characteristics according to Ki-67 proliferation status.

Variables Total (n = 205) Low-Ki-67 (n = 93) High-Ki-67 (n = 112) p-Valuea

Age, mean ± SD, years 50.56 ± 9.7 49.9 ± 9.9 51.1 ± 9.6 0.394

Tumor size, mean ± SD, mm 27.60 ± 15.2 25.4 ± 15.5 29.4 ± 14.9 0.061

ER statusc <0.05b

Negative 35 (17.1%) 9 (9.7%) 26 (23.2%)

Positive 170 (82.9%) 84 (90.3%) 86 (76.8%)

PR statusc <0.05b

Negative 51 (24.9%) 11 (11.8%) 40 (64.3%)

Positive 154 (75.1%) 82 (88.2%) 72 (35.7%)

HER2 statusc <0.05b

Negative 141 (68.8%) 80 (86.0%) 61 (54.5%)

Positive 64 (31.2%) 13 (14.0%) 51 (45.5%)

Histological typed <0.05b

Invasive ductal carcinoma 191 (93.2%) 79 (84.9%) 112 (100%)

Other 14 (6.8%) 14 (15.1%) 0 (0.0%)

Histological graded <0.05b

I 13 (6.3%) 13 (14.0%) 0 (0.0%)

II 162 (79.0%) 70 (75.3%) 92 (82.1%)

III 30 (14.7%) 10 (10.7%) 20 (17.9%)

TIC typed 0.068

Plateau 51 (24.9%) 30 (32.3%) 21 (18.8%)

Wash-out 150 (73.2%) 62 (66.7%) 88 (78.6%)

Wash-in 4 (1.9%) 1 (1.0%) 3 (2.6%)
fron
SD, standard deviation; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; TIC, time-intensity curve.
ap-Value comparing low Ki-67 to high Ki-67.
bp< 0.05 is considered statistically significant.
cData were tested with the chi-square test.
dData were tested with Fisher’s exact test.
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PyRadiomics (31). A total of 946 radiomics features were extracted

from each map. These features included 86 original features

(consisting of five categories of features: first-order statistics,

gray-level co-occurrence matrix, gray-level run-length matrix,

gray-level size zone matrix, and gray-level dependence matrix),

172 Laplacian of Gaussian (sigma = 3.0, 5.0 mm) features, and 688

wavelet features (also composed of five categories of features). After

the addition of eight shape features from DCE-MRI, we ultimately

obtained 3,792 radiomics features from the SER maps, wash-out
Frontiers in Oncology 05
maps, wash-in maps, and ADC maps. The details of the extracted

features are shown in Supplementary Table 1.
Feature selection and radiomics
model construction

Prior to feature selection, we calculated the intra-class

correlation coefficients (ICCs) to evaluate the reproducibility
B

A

FIGURE 3

(A) Representative images of DCE-MRI parametric maps and ADC maps of low Ki-67 status. (B) Representative images of DCE-MRI parametric maps
and ADC maps of high Ki-67 status. DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; ADC, apparent diffusion coefficient.
FIGURE 2

Framework for the radiomics workflow.
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and stability of radiomics features extracted from segmented

images performed by two experienced radiologists. Features with

a good consistency (ICC > 0.8) were retained for further

radiomics analysis.

For feature selection, significant radiomics features with p<

0.05 between patients with high versus low Ki-67 expression

were first identified with the Mann–Whitney U-tests through a

backward selection approach. Second, the remaining features

were normalized separately with the Z-score to make the

dynamic ranges comparable. Subsequently, the least absolute

shrinkage and selection operator (LASSO) logistic regression

method, which is suitable for dimensionality reduction of high-

dimensional data, was used to select the radiomics features of the

training data. To avoid overfitting, the optimal value of the

LASSO regularization parameter lambda was determined

through 10-fold cross-validation. Finally, the most important

features obtained in LASSO selection were used to establish

support vector machine classifiers to predict the Ki-67

proliferation status in BC, wherein the kernel parameter was

set as a linear kernel, and the other parameters were set as default

values (32).

Feature selection and machine learning classifier

construction were executed in Python software (version 3.6.2,

Welcome to Python.org).
Statistical analysis

The statistical differences in age and tumor size between

groups with high and low Ki-67 expression were evaluated with

independent-samples t-tests. Differences in categorical variables

between the molecular subtype characteristics were evaluated

with chi-square tests. If the expected frequency of any cell in the

table was less than five, it was tested with Fisher’s exact test.

Receiver operating characteristic (ROC) curves were drawn with

the optimal threshold determined by the maximum Youden

index. The area under the ROC curve (AUC) and the

classification sensitivity and specificity in the training and

validation groups were calculated to predict the Ki-67 status.

The AUC between the two models in the validation set was

statistically compared using DeLong’s test. Statistical analysis

was performed in SPSS software (version 23.0, Chicago, IL,

USA). Professional statistical software MedCalc (version

20.0.3, https://www.medcalc.org/) was used to construct the

ROC curves.
Results

Patient characteristics

The statistical test results of the correlations between

molecular subtypes and pathologica l and cl in ica l
Frontiers in Oncology 06
characteristics are listed in Table 1. We observed no significant

difference in mean age, mean maximum tumor diameter, or

dynamic enhancement time-intensity curve type between the

groups with high or low Ki-67 expression (p = 0.394, 0.061, and

0.068). However, we did observe significant differences in ER

status, PR status, HER2 status, pathologic type, and pathologic

grade (p< 0.05).
Radiomics model construction and
assessment of performance

Among the 3,792 radiomics features initially extracted, 2,622

(69.1%) had good interobserver consistency (ICCs > 0.8) and

were included in further analysis.

To perform Ki-67 status recognition, five, four, six, and one

features were selected from the wash-out, wash-in, SER, and

ADC maps, respectively, and 14 and 15 features were selected

from two combined parameter maps (DCE-MRI parameter

maps and DCE-MRI combined with ADC maps, respectively).

The details of the 15 features selected from the combined DCE-

MRI and ADC maps are shown in Table 2. The feature details

selected from other maps are shown in Supplementary Tables 2–

5. We then established six support vector machine classifiers to

predict Ki-67 status according to the final retained features. The

performance of the classifiers was evaluated on the basis of ROC

curves, and the results are presented in Figure 4. Classifiers

containing features extracted from a wash-out, wash-in, SER,

and ADCmaps were evaluated. After the addition of the features

of ADC maps, the performance of the model combined with the

three parameter maps improved, and the AUC value was 0.839

(95% CI, 0.768, 0.895) in the training set and 0.795 (95% CI,

0.674, 0.887) in the validation set (Table 3). In addition,

compared with that of the single parameter image, the

predictive performance of the support vector machine (SVM)

model in the training dataset was significantly improved by

combining the features of each map (i.e., wash-out, wash-in,

SER, and ADC maps) (p< 0.001; p = 0.001, 0.001, 0.002). The

performance of the combined model in the validation data set

was higher than that of the model based on the SER parameter

maps (p = 0.040; Table 4).
Discussion

In this study, we explored whether the radiomics features of

DCE-MRI parameter maps and ADC maps in patients with BC

could be used to predict the preoperative Ki-67 proliferation

index. The radiomics model constructed in this study performed

well in identifying the low and high expression status of Ki-67.

Many previous studies have described Ki-67 expression, on

the basis of IHC, as a prognostic and predictive indicator of BC.

Higher Ki-67 expression status is associated with poorer
frontiersin.org
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response to treatment and poorer prognosis (33). The Ki-67

index can also play a role in distinguishing molecular subtypes of

BC together with HER2 expression status (2). However,

pathological biopsy only requires sampling in a part of the

tumor tissue, so the Ki-67 proliferation index in the test

results may not reflect tumor heterogeneity. With the

development of imaging technology in recent years, imaging

can provide a holistic picture of the anatomy and function of the

tumor tissue. Therefore, imaging methods may be more

convenient and may even provide more biological information

for determining the expression status of Ki-67.
Frontiers in Oncology 07
DCE-MRI is a highly sensitive method but has only

moderate specificity for the diagnosis of invasive BC (34). In

recent years, DWI with ADC maps has been increasingly used in

multiparameter imaging environments for BC examination

because it can be performed without a contrast agent (35–37).

DWI can quantitatively measure the Brownian motion of free

water in the tissue to provide functional information about the

tissue structure and does not require intravenous injection (38).

In addition, ADC has been found to increase the specificity of

breast tumor diagnosis and complement DCE-MRI in tumor

qualitative aspects (39, 40). In this study, we selected radiomics
BA

FIGURE 4

ROC curves of six classifiers for identification of Ki-67 status in each cohort. (A) ROC curves of classifiers for identification of Ki-67 status in the
training cohort. (B) ROC curves of classifiers for identification of Ki-67 status in the validation cohort. Fusion 1 represents the SVM model
established by combining radiomics features from three DCE-MRI parameter maps (SER, wash-in, and wash-out). Fusion 2 represents the SVM
model established by combining radiomics features from three DCE-MRI parameter maps and ADC maps. ROC, receiver operating
characteristic; SVM, support vector machine; SER, signal enhancement ratio.
TABLE 2 Description of the selected radiomics features from DCE-MRI combined with ADC maps.

Different map Radiomics feature Radiomics group Feature class filter

SER Dependence non-uniformity normalized Gldm Log-sigma-3.0 mm

SER Dependence variance Gldm Log-sigma-3.0 mm

SER Minimum First order Log-sigma-5.0 mm

SER Tenth percentile First order Wavelet-LLH

SER Run variance Glrlm Wavelet-LHL

SER Autocorrelation Glcm Wavelet-LHH

Wash-in Minimum First order Log-sigma-3.0 mm

Wash-in Large area high gray-level emphasis Glszm Log-sigma-5.0 mm

Wash-in range First order Wavelet-LHH

Wash-in Small dependence high gray-level emphasis Gldm Wavelet-LHH

Wash-in Large dependence low gray-level emphasis Gldm Wavelet-HHL

Wash-out Size zone non-uniformity normalized Glszm Log-sigma-3.0 mm

Wash-out Correlation Glcm Log-sigma-3.0 mm

Wash-out Joint energy Glcm Wavelet-LLL

ADC Gray-level non-uniformity Gldm Original
SER, signal enhancement ratio; ADC, apparent diffusion coefficient; Gldm, gray-level dependence matrix; Glrlm, gray-level run length matrix; Glcm, gray-level co-occurrence matrix;
Glszm, gray-level size zone matrix; LoG, Laplacian of Gaussian.
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features extracted from DCE-MRI parameter maps and ADC

maps and finally established six SVM classifier models. The ROC

curve showed that the AUC score of the model combined with

the parameter maps and ADC maps was higher than that of

other single-parameter models in the training set and validation

set. Therefore, the radiomics model including features of DCE-

MRI parameter maps and ADC maps could improve the

performance of Ki-67 expression status discrimination.

Radiomics, which provides potential biomarkers for clinical

results through extracting and analyzing image features, is a

relatively new technology (11). BC is highly heterogeneous.

Compared with traditional genomics and proteomics,

radiomics not only can non-invasively assess the tumor and its

microenvironment but also can predict the genetic heterogeneity

of the tumor (41). Herein, we used radiomics to quantitatively

extract features within tumors on the basis of DCE-MRI

parameters and ADC maps to reflect the heterogeneity of the
Frontiers in Oncology 08
internal tumor structure. A previous study has modeled

radiomics features extracted from T2-weighted and contrast-

enhanced T1-weighted images of BC and indicated that T2-

weighted classifiers were important predictors of Ki-67 status

(42). Li et al. (14) have combined peritumoral and intratumoral

features from DCE-MRI functional parameter maps to

determine Ki-67 status. Therefore, in this study, we established

a multiparameter model based on the radiomics features of

functional parametric maps and ADC maps. Our study achieved

better predictive performance than the above multiparameter

studies. Another multiparametric MRI study also using DWI

sequences has achieved good performance in predicting Ki-67

status (24). However, these prior studies have analyzed only the

largest tumor slices in two dimensions and therefore were

unlikely to fully assess the heterogeneity of BC. The radiomics

features that we extracted in this study were obtained from the

three-dimensional volume model of the tumor, taking into
TABLE 4 p-Values of DeLong’s test between SVM models.

Model Cohort ADC SER Wash-in Wash-out Fusion 1 Fusion 2

ADC Training / 0.204 0.892 0.507 0.027 0.002

Validation / 0.459 0.644 0.897 0.207 0.095

SER Training 0.204 / 0.167 0.035 0.099 0.001

Validation 0.459 / 0.784 0.399 0.242 0.114

Wash-in Training 0.892 0.167 / 0.581 0.006 0.001

Validation 0.644 0.784 / 0.615 0.377 0.219

Wash-out Training 0.507 0.035 0.581 / 0.001 <0.001

Validation 0.897 0.399 0.615 / 0.082 0.040

Fusion 1 Training 0.027 0.099 0.006 0.001 / 0.004

Validation 0.207 0.242 0.377 0.082 / 0.340

Fusion 2 Training 0.002 0.001 0.001 <0.001 0.004 /

Validation 0.095 0.114 0.219 0.040 0.340 /
fron
Fusion 1 represents the SVMmodel established by combining radiomics features from three DCE-MRI parameter maps (SER, wash-in, and wash-out). Fusion 2 represents the SVMmodel
established by combining radiomics features from three DCE-MRI parameter maps and ADC maps.
ADC, apparent diffusion coefficient; SER, signal enhancement ratio.
TABLE 3 Predictive performance of six models in the training and validation cohorts.

Model Training Validation

AUC (95% CI) SEN (95% CI) SPE (95% CI) AUC (95% CI) SEN (95% CI) SPE (95% CI)

ADC 0.711 (0.629–0.784) 0.680 (0.564–0.781) 0.723 (0.598–0.827) 0.676 (0.545–0.789) 0.677 (0.495–0.826) 0.643 (0.441–0.814)

SER 0.766 (0.688–0.833) 0.859 (0.762–0.927) 0.615 (0.486–0.733) 0.731 (0.603–0.836) 0.706 (0.525–0.849) 0.643 (0.441–0.814)

Wash-in 0.704 (0.622–0.777) 0.756 (0.646–0.847) 0.631 (0.502–0.747) 0.711 (0.629–0.819) 0.529 (0.351–0.702) 0.821 (0.631–0.939)

Wash-out 0.673 (0.590–0.749) 0.769 (0.660–0.857) 0.554 (0.425–0.677) 0.666 (0.535–0.781) 0.618 (0.436–0.778) 0.643 (0.441–0.814)

Fusion 1 0.804 (0.730–0.866) 0.769 (0.660–0.857) 0.739 (0.615–0.840) 0.770 (0.646–0.867) 0.941 (0.803–0.993) 0.536 (0.339–0.725)

Fusion 2 0.839 (0.768–0.895) 0.846 (0.747–0.918) 0.739 (0.615–0.840) 0.795 (0.674–0.887) 0.941 (0.803–0.993) 0.571 (0.372–0.755)
Fusion 1 represents the SVMmodel established by combining radiomics features from three DCE-MRI parameter maps (SER, wash-in, and wash-out). Fusion 2 represents the SVMmodel
established by combining radiomics features from three DCE-MRI parameter maps and ADC maps.
AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; CI, confidential interval; SER, signal enhancement ratio; ADC, apparent diffusion coefficient.
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account the interlayer correlation, and thus fully revealed the

BC heterogeneity.

The current study had several limitations. First, the

retrospective design of this study might have introduced

inherent variations and biases. One source of variation was the

changes in repetition time during DCE-MRI acquisition;

however, the difference in MR signal intensity was not the

principal factor in our study, because the radiomics features

were derived from three parametric maps reflecting the changes

in contrast medium concentration. Although the enhancement

ratio is a function of repetition time, these functions change

relatively slowly (43). Therefore, a well-designed prospective

study supporting the results of this study is necessary. Second,

this was an independent single-center study, and the number of

patients included was limited. Therefore, the model established

herein had several limitations, and datasets from other imaging

units might have different spatial resolutions. Consequently,

further research is required to verify the diagnostic

performance of our model in a large multi-center patient

sample. Finally, only semiquantitative parametric images were

analyzed in this study. The application value of quantitative

parametric images in radiomics will be further explored in

future studies.
Conclusion

In this study, our experimental results demonstrated that

radiomics analysis based on DCE-MRI parameter maps and

ADCmaps can feasibly be used to predict the Ki-67 status in BC.

Given that several different biomarkers must be integrated to

make clinical management decisions for patients, our proposed

model can be further extended in the future, such as by including

more scanning sequences and predicting more molecular

subtypes to support clinical decisions.
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Ethics statement

The studies involving human participants were reviewed and

approved by Shengjing Hospital of China Medical University.
Frontiers in Oncology 09
The ethics committee waived the requirement of written

informed consent for participation. Written informed consent

was not obtained from the individual(s) for the publication of

any potentially identifiable images or data included in

this article.
Author contributions

SF conducted data analysis and manuscript writing. JY was

responsible for the manuscript revision. All authors critically

reviewed and revised the manuscript. All authors contributed to

the article and approved the submitted version.
Funding

This study is supported by Research and development

(R&D) foundation for major Science and Technology from

Shenyang (No.19-112-4-105), Big data foundation for health

care from China Medical University (No. HMB201902105) and

Natural Fund Guidance Plan (No. 2019-ZD-0743).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.847880/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.847880/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.847880/full#supplementary-material
https://doi.org/10.3389/fonc.2022.847880
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Feng and Yin 10.3389/fonc.2022.847880
References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68:394–424.
doi: 10.3322/caac.21492

2. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index,
HER2 status, and prognosis of patients with luminal b breast cancer. J Natl Cancer
Inst (2009) 101:736–50. doi: 10.1093/jnci/djp082

3. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast
cancer: prognostic and predictive potential. Lancet Oncol (2010) 11:174–83.
doi: 10.1016/S1470-2045(09)70262-1

4. de Azambuja E, Cardoso F, de Castro GJr., Colozza M, ManoMS, Durbecq V,
et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of
published studies involving 12,155 patients. Br J Cancer (2007) 96:1504–13.
doi: 10.1038/sj.bjc.6603756

5. Healey MA, Hirko KA, Beck AH, Collins LC, Schnitt SJ, Eliassen AH, et al.
Assessment of Ki67 expression for breast cancer subtype classification and
prognosis in the nurses' health study. Breast Cancer Res Treat (2017) 166:613–
22. doi: 10.1007/s10549-017-4421-3

6. Urruticoechea A, Smith IE, Dowsett M. Proliferation marker ki-67 in early
breast cancer. J Clin Oncol (2005) 23:7212–20. doi: 10.1200/JCO.2005.07.501

7. Inwald EC, Klinkhammer-Schalke M, Hofstadter F, Zeman F, Koller M,
Gerstenhauer M, et al. Ki-67 is a prognostic parameter in breast cancer patients:
results of a large population-based cohort of a cancer registry. Breast Cancer Res
Treat (2013) 139:539–52. doi: 10.1007/s10549-013-2560-8

8. Stuart-Harris R, Caldas C, Pinder SE, Pharoah P. Proliferation markers and
survival in early breast cancer: A systematic review and meta-analysis of 85 studies
in 32,825 patients. Breast (2008) 17:323–34. doi: 10.1016/j.breast.2008.02.002

9. Carriero A, Di Credico A, Mansour M, Bonomo L. Maximum intensity
projection analysis in magnetic resonance of the breast. J Exp Clin Cancer Res
(2002) 21:77–81. doi: 10.1200/JCO.2002.99.145

10. Gillies RJ KP, Hricak H. Radiomics: Images are more than pictures, they are
data. Radiology (2016) 278:563–77. doi: 10.1148/radiol.2015151169

11. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van
Timmeren J, et al. Radiomics: The bridge between medical imaging and
personalized medicine. Nat Rev Clin Oncol (2017) 14:749–62. doi: 10.1038/
nrclinonc.2017.141

12. Choi BB. Dynamic contrast enhanced-MRI and diffusion-weighted image as
predictors of lymphovascular invasion in node-negative invasive breast cancer.
World J Surg Oncol (2021) 19:76. doi: 10.1186/s12957-021-02189-3

13. Bickelhaupt S, Paech D, Kickingereder P, Steudle F, Lederer W, Daniel H,
et al. Prediction of malignancy by a radiomic signature from contrast agent-free
diffusion MRI in suspicious breast lesions found on screening mammography. J
Magn Reson Imaging (2017) 46:604–16. doi: 10.1002/jmri.25606

14. Li C, Song L, Yin J. Intratumoral and peritumoral radiomics based on
functional parametric maps from breast DCE-MRI for prediction of HER-2 and ki-
67 status. J Magn Reson Imaging (2021) 54:703–14. doi: 10.1002/jmri.27651

15. Dong Y, Feng Q, Yang W, Lu Z, Deng C, Zhang L, et al. Preoperative
prediction of sentinel lymph node metastasis in breast cancer based on radiomics of
T2-weighted fat-suppression and diffusion-weighted MRI. Eur Radiol (2018)
28:582–91. doi: 10.1007/s00330-017-5005-7

16. Bickelhaupt S, Jaeger PF, Laun FB, Lederer W, Daniel H, Kuder TA, et al.
Radiomics based on adapted diffusion kurtosis imaging helps to clarify most
mammographic findings suspicious for cancer. Radiology (2018) 287:761–70.
doi: 10.1148/radiol.2017170273

17. Zhang Q, Peng Y, Liu W, Bai J, Zheng J, Yang X, et al. Radiomics based on
multimodal MRI for the differential diagnosis of benign and malignant breast
lesions. J Magn Reson Imaging (2020) 52:596–607. doi: 10.1002/jmri.27098

18. Jiang Z, Song L, Lu H, Yin J. The potential use of DCE-MRI texture analysis
to predict HER2 2+ status. Front Oncol (2019) 9:242. doi: 10.3389/fonc.2019.00242

19. Song L, Lu H, Yin J. Preliminary study on discriminating HER2 2+
amplification status of breast cancers based on texture features semi-
automatically derived from pre-, post-contrast, and subtraction images of DCE-
MRI. PloS One (2020) 15:e0234800. doi: 10.1371/journal.pone.0234800

20. Molinari C, Clauser P, Girometti R, Linda A, Cimino E, Puglisi F, et al. MR
mammography using diffusion-weighted imaging in evaluating breast cancer: A
correlation with proliferation index. Radiol Med (2015) 120:911–8. doi: 10.1007/
s11547-015-0527-z
Frontiers in Oncology 10
21. Zhang Y, Zhu Y, Zhang K, Liu Y, Cui J, Tao J, et al. Invasive ductal breast
cancer: preoperative predict ki-67 index based on radiomics of ADC maps. Radiol
Med (2020) 125:109–16. doi: 10.1007/s11547-019-01100-1

22. Liu C, Ding J, Spuhler K, Gao Y, Serrano Sosa M, Moriarty M, et al.
Preoperative prediction of sentinel lymph node metastasis in breast cancer by
radiomic signatures from dynamic contrast-enhanced MRI. J Magn Reson Imaging
(2019) 49:131–40. doi: 10.1002/jmri.26224

23. Shin JK, Kim JY. Dynamic contrast-enhanced and diffusion-weighted MRI
of estrogen receptor-positive invasive breast cancers: Associations between
quantitative MR parameters and ki-67 proliferation status. J Magn Reson
Imaging (2017) 45:94–102. doi: 10.1002/jmri.25348

24. Jiang T, Song J, Wang X, Niu S, Zhao N, Dong Y, et al. Intratumoral and
peritumoral analysis of mammography, tomosynthesis, and multiparametric MRI
for predicting ki-67 level in breast cancer: a radiomics-based study. Mol Imaging
Biol (2022) 24:550–9. doi: 10.1007/s11307-021-01695-w

25. Eun NL, Kang D, Son EJ, Park JS, Youk JH, Kim JA, et al. Texture analysis
with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast
cancer. Radiology (2020) 294:31–41. doi: 10.1148/radiol.2019182718

26. Lu H, Yin J. Texture analysis of breast DCE-MRI based on intratumoral
subregions for predicting HER2 2+ status. Front Oncol (2020) 10:543. doi: 10.3389/
fonc.2020.00543

27. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S,
et al. American Society of clinical Oncology/College of American pathologists
guideline recommendations for immunohistochemical testing of estrogen and
progesterone receptors in breast cancer. J Clin Oncol (2010) 28:2784–95.
doi: 10.1200/JCO.2009.25.6529

28. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ,
et al. Strategies for subtypes–dealing with the diversity of breast cancer: Highlights
of the st. gallen international expert consensus on the primary therapy of early
breast cancer 2011. Ann Oncol (2011) 22:1736–47. doi: 10.1093/annonc/mdr304

29. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison
KH, et al. Recommendations for human epidermal growth factor receptor 2 testing
in breast cancer: American society of clinical Oncology/College of American
pathologists clinical practice guideline update. J Clin Oncol (2013) 31:3997–4013.
doi: 10.1200/JCO.2013.50.9984

30. Fan M, Yuan W, Zhao W, Xu M, Wang S, Gao X, et al. Joint prediction of
breast cancer histological grade and ki-67 expression level based on DCE-MRI and
DWI radiomics. IEEE J BioMed Health Inform (2020) 24:1632–42. doi: 10.1109/
JBHI.2019.2956351

31. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan
V, et al. Computational radiomics system to decode the radiographic phenotype.
Cancer Res (2017) 77:e104–7. doi: 10.1158/0008-5472.CAN-17-0339

32. Liu Z, Zhang XY, Shi YJ, Wang L, Zhu HT, Tang Z, et al. Radiomics analysis
for evaluation of pathological complete response to neoadjuvant
chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res (2017)
23:7253–62. doi: 10.1158/1078-0432.CCR-17-1038

33. Jones RL, Salter J, A'Hern R, Nerurkar A, Parton M, Reis-Filho JS, et al. The
prognostic significance of Ki67 before and after neoadjuvant chemotherapy in
breast cancer. Breast Cancer Res Treat (2009) 116:53–68. doi: 10.1007/s10549-008-
0081-7

34. Warren RM, Pointon L, Thompson D, Hoff R, Gilbert FJ, Padhani A, et al.
Reading protocol for dynamic contrast-enhanced MR images of the breast:
Sensitivity and specificity analysis. Radiology (2005) 236:779–88. doi: 10.1148/
radiol.2363040735

35. Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M.
Gadolinium-based contrast agent accumulation and toxicity: An update. AJNR Am
J Neuroradiol (2016) 37:1192–8. doi: 10.3174/ajnr.A4615

36. Rotili A, Trimboli RM, Penco S, Pesapane F, Tantrige P, Cassano E, et al.
Double reading of diffusion-weighted magnetic resonance imaging for breast
cancer detection. Breast Cancer Res Treat (2020) 180:111–20. doi: 10.1007/
s10549-019-05519-y

37. Spick C, Bickel H, Pinker K, Bernathova M, Kapetas P, Woitek R, et al.
Diffusion-weighted MRI of breast lesions: A prospective clinical investigation of the
quantitative imaging biomarker characteristics of reproducibility, repeatability, and
diagnostic accuracy. NMR BioMed (2016) 29:1445–53. doi: 10.1002/nbm.3596

38. Partridge SC, Nissan N, Rahbar H, Kitsch AE, Sigmund EE. Diffusion-
weighted breast MRI: Clinical applications and emerging techniques. J Magn Reson
Imaging (2017) 45:337–55. doi: 10.1002/jmri.25479
frontiersin.org

https://doi.org/10.3322/caac.21492
https://doi.org/10.1093/jnci/djp082
https://doi.org/10.1016/S1470-2045(09)70262-1
https://doi.org/10.1038/sj.bjc.6603756
https://doi.org/10.1007/s10549-017-4421-3
https://doi.org/10.1200/JCO.2005.07.501
https://doi.org/10.1007/s10549-013-2560-8
https://doi.org/10.1016/j.breast.2008.02.002
https://doi.org/10.1200/JCO.2002.99.145
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1186/s12957-021-02189-3
https://doi.org/10.1002/jmri.25606
https://doi.org/10.1002/jmri.27651
https://doi.org/10.1007/s00330-017-5005-7
https://doi.org/10.1148/radiol.2017170273
https://doi.org/10.1002/jmri.27098
https://doi.org/10.3389/fonc.2019.00242
https://doi.org/10.1371/journal.pone.0234800
https://doi.org/10.1007/s11547-015-0527-z
https://doi.org/10.1007/s11547-015-0527-z
https://doi.org/10.1007/s11547-019-01100-1
https://doi.org/10.1002/jmri.26224
https://doi.org/10.1002/jmri.25348
https://doi.org/10.1007/s11307-021-01695-w
https://doi.org/10.1148/radiol.2019182718
https://doi.org/10.3389/fonc.2020.00543
https://doi.org/10.3389/fonc.2020.00543
https://doi.org/10.1200/JCO.2009.25.6529
https://doi.org/10.1093/annonc/mdr304
https://doi.org/10.1200/JCO.2013.50.9984
https://doi.org/10.1109/JBHI.2019.2956351
https://doi.org/10.1109/JBHI.2019.2956351
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/1078-0432.CCR-17-1038
https://doi.org/10.1007/s10549-008-0081-7
https://doi.org/10.1007/s10549-008-0081-7
https://doi.org/10.1148/radiol.2363040735
https://doi.org/10.1148/radiol.2363040735
https://doi.org/10.3174/ajnr.A4615
https://doi.org/10.1007/s10549-019-05519-y
https://doi.org/10.1007/s10549-019-05519-y
https://doi.org/10.1002/nbm.3596
https://doi.org/10.1002/jmri.25479
https://doi.org/10.3389/fonc.2022.847880
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


39. Zhang L, Tang M, Min Z, Lu J, Lei X, Zhang X. Accuracy of combined
dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted
imaging for breast cancer detection: a meta-analysis. Acta Radiol (2016) 57:651–60.
doi: 10.1177/0284185115597265

40. Mendez CA, Pizzorni Ferrarese F, Summers P, Petralia G, Menegaz G. DCE-
MRI and DWI integration for breast lesions assessment and heterogeneity
quantification. Int J BioMed Imaging (2012) 2012:676808. doi: 10.1155/2012/676808

41. Joseph C, Papadaki A, Althobiti M, Alsaleem M, Aleskandarany MA,
Rakha EA. Breast cancer intratumour heterogeneity: current status and
clinical implications. Histopathology (2018) 73:717–31. doi: 10.1111/
his.13642

42. Liang C, Cheng Z, Huang Y, He L, Chen X, Ma Z, et al. An MRI-based
radiomics classifier for preoperative prediction of ki-67 status in breast cancer.
Acad Radiol (2018) 25:1111–7. doi: 10.1016/j.acra.2018.01.006

43. Chen PC, Lin DJ, Jao JC, Hsiao CC, Lin LM, Pan HB. The impact of flip
angle and TR on the enhancement ratio of dynamic gadobutrol-enhanced MR
imaging: In vivo VX2 tumor model and computer simulation.Magn Reson Med Sci
(2015) 14:193–202. doi: 10.2463/mrms.2014-0048

https://doi.org/10.1177/0284185115597265
https://doi.org/10.1155/2012/676808
https://doi.org/10.1111/his.13642
https://doi.org/10.1111/his.13642
https://doi.org/10.1016/j.acra.2018.01.006
https://doi.org/10.2463/mrms.2014-0048

	Radiomics of dynamic contrast-enhanced magnetic resonance imaging parametric maps and apparent diffusion coefficient maps to predict Ki-67 status in breast cancer
	Introduction
	Materials and methods
	Study population
	Pathological assessment
	MR image acquisition
	Tumor segmentation
	Parametric map generation
	Radiomics feature extraction
	Feature selection and radiomics model construction
	Statistical analysis

	Results
	Patient characteristics
	Radiomics model construction and assessment of performance

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


