AUTHOR=Li Chunxiang , Qiao Ge , Li Jinghan , Qi Lisha , Wei Xueqing , Zhang Tan , Li Xing , Deng Shu , Wei Xi , Ma Wenjuan
TITLE=An Ultrasonic-Based Radiomics Nomogram for Distinguishing Between Benign and Malignant Solid Renal Masses
JOURNAL=Frontiers in Oncology
VOLUME=12
YEAR=2022
URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.847805
DOI=10.3389/fonc.2022.847805
ISSN=2234-943X
ABSTRACT=ObjectivesThis study was conducted in order to develop and validate an ultrasonic-based radiomics nomogram for diagnosing solid renal masses.
MethodsSix hundred renal solid masses with benign renal lesions (n = 204) and malignant renal tumors (n = 396) were divided into a training set (n = 480) and a validation set (n = 120). Radiomics features were extracted from ultrasound (US) images preoperatively and then a radiomics score (RadScore) was calculated. By integrating the RadScore and independent clinical factors, a radiomics nomogram was constructed. The diagnostic performance of junior physician, senior physician, RadScore, and radiomics nomogram in identifying benign from malignant solid renal masses was evaluated based on the area under the receiver operating characteristic curve (ROC) in both the training and validation sets. The clinical usefulness of the nomogram was assessed using decision curve analysis (DCA).
ResultsThe radiomics signature model showed satisfactory discrimination in the training set [area under the ROC (AUC), 0.887; 95% confidence interval (CI), 0.860–0.915] and the validation set (AUC, 0.874; 95% CI, 0.816–0.932). The radiomics nomogram also demonstrated good calibration and discrimination in the training set (AUC, 0.911; 95% CI, 0.886–0.936) and the validation set (AUC, 0.861; 95% CI, 0.802–0.921). In addition, the radiomics nomogram model showed higher accuracy in discriminating benign and malignant renal masses compared with the evaluations by junior physician (DeLong p = 0.004), and the model also showed significantly higher specificity than the senior and junior physicians (0.93 vs. 0.57 vs. 0.46).
ConclusionsThe ultrasonic-based radiomics nomogram shows favorable predictive efficacy in differentiating solid renal masses.