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Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that raises public health
concerns in endemic countries. Despite breakthroughs in therapeutic strategies, late
diagnosis and drug resistance often lead to unsatisfactory clinical outcomes in NPC
patients. The tumor microenvironment (TME) is a complex niche consisting of tumor-
associated cells, such as fibroblasts, endothelial cells, leukocytes, that influences tumor
initiation, progression, invasion, and metastasis. Cells in the TME communicate through
various mechanisms, of note, exosomes, ligand-receptor interactions, cytokines and
chemokines are active players in the construction of TME, characterized by an abundance
of immune infiltrates with suppressed immune activities. The NPC microenvironment
serves as a target-rich niche for the discovery of potential promising predictive or
diagnostic biomarkers and the development of therapeutic strategies. Thus, huge
efforts have been made to exploit the role of the NPC microenvironment. The whole
picture of the NPC microenvironment remains to be portrayed to understand the
mechanisms underlying tumor biology and implement research into clinical practice.
The current review discusses the recent insights into the role of TME in the development
and progression of NPC which results in different clinical outcomes of patients. Clinical
interventions with the use of TME components as potential biomarkers or therapeutic
targets, their challenges, and future perspectives will be introduced. This review
anticipates to provide insights to the researchers for future preclinical, translational and
clinical research on the NPC microenvironment.
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a squamous cell neoplasm that originated from the
nasopharyngeal mucosal lining, commonly found at the fossa of Rosenmüller (1, 2). In 2020, the
International Agency for Research on Cancer (IARC) reported 133,354 incidences of NPC globally,
which accounted for 0.7% of all cancers diagnosed (Figure 1A) (4). Intriguingly, NPC demonstrated
a remarkable geographical distribution, where over 77% of NPC incidences were found in Eastern
and South-Eastern Asia (Figure 1B). In South-Eastern Asia, NPC ranked the 10th most common
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cancer among the entire population (Figure 1C) (3). Brunei had
the highest age-standardized incidence rate of NPC (13.35 per
100,000 in males; 6.44 per 100,000 in females), followed by
Maldives (10.67 per 100,000 in males; 3.3 per 100,000 in
females), Indonesia (10.71 per 100,000 in males; 3.03 per
100,000 in females), Malaysia (9.53 per 100,000 in males; 3.05
per 100,000 in females) and Vietnam (8.12 per 100,000 in males;
2.79 per 100,000 in females) (5, 6). China had an age-
standardized rate of 3.0 per 100,000, whereby the incidences
are more prevalent among the Cantonese-speaking population
which resided in southern China, including Guangzhou province
(13.9 per 100,000 in males; 5.2 per 100,000 in females) and Hong
Kong (12.8 per 100,000 in males; 4.0 per 100,000 in females).

The incidence of NPC is higher in males (96,371) than in
females (36,983), with a ratio of about 2 to 3:1 (4). This
phenomenon can be explained by the inheritance of genetic
susceptibility associated with X chromosomes, leading to male
predominance in the incidence of NPC (7). Sex hormones, such as
Frontiers in Oncology | www.frontiersin.org 2
estrogen, may play a protective role against NPC in females (8).
Viral infection with Epstein-Barr virus (EBV) is the most
common aetiologic factor in NPC, 100% of non-keratinizing
NPCs are detected with EBV infection. Several environmental
factors, including dietary consumption of preserved food, and
social practice such as tobacco smoking and alcohol consumption,
are associated with increased risk of NPC (1, 2, 9). Taken together,
EBV infection, genetic and environmental factors contribute to
the pathogenesis of NPC.

The application of intensity-modulated radiotherapy (IMRT)
alone or with chemotherapy for treatment of NPC significantly
improves the clinical outcome of NPC patients. NPC patients
diagnosed with early-stage (stage I to II) have a 5-year overall
survival (OS) as high as 94% (10–12). Tragically, despite the
advances in medical treatment, over 60% of newly diagnosed
patients have poor clinical outcomes as they are often diagnosed
at late-stage, due to non-specific clinical presentation and lack of
biomarkers for early detection (12). Early manifestations of NPC,
A

B C

FIGURE 1 | Global distribution of nasopharyngeal carcinoma (A) Estimated age-standardized incidence rate (ASR; world) (B) Estimated number of new cases in
different world areas. (C) Estimated number of incident cases and deaths in South-Eastern Asia. Data source: GLOBOCAN 2020 (3).
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such as headache, cervical mass, nasal obstruction, and epistaxis,
are non-specific, leading to a misdiagnosis rate of approximately
43%, which ultimately results in delay in treatment and poor
prognosis (10). When patients are diagnosed with late-stage
(stage III-IV) NPC, the 5-year survival rate declines drastically,
which is lower than 80% (10). The mortality risk of patients who
were diagnosed with stage IV NPC is 3.41-fold higher in
comparison with those diagnosed at early-stage (13). Other
challenges include locoregional or distant recurrence, which
affects 20 to 30% of patients, and therapeutic resistance (1, 12).
Thus, it is imperative for the development of high specificity,
high sensitivity, and non-invasive laboratory tests for the
diagnosis and prognosis of NPC and the development of new
therapeutic strategies to reduce morbidity and mortality of
the disease.

The tumor microenvironment (TME) is a specialized niche
made up of resident malignant and infiltrated cells, metabolites,
and extracellular matrix, characterized by its heterogeneity and
complexity (Figure 2). Stephen Paget’s “seed and soil” theory
Frontiers in Oncology | www.frontiersin.org 3
suggested the preference of tumor cells (the “seed”) to grow in a
favourable microenvironment (the “soil”) (14). The Tissue
Organization Field Theory supported the above hypothesis by
suggesting that communication between the microenvironment
and cell through biophysical and biochemical cues drives
phenotypic transformation of cells, which eventually leads to
cancer (15). The heterogenous TME further contributes to the
progression of cancer by facilitating the acquisition of a series of
hallmark capabilities, including [1] sustained proliferative
signaling; [2] evasion of growth suppressors; [3] apoptotic
resistance; [4] immortal replication; [5] angiogenesis; [6]
invasion and metastasis; [7] reprogramming energy metabolism
and [8] evasion from immune surveillance, as enumerated by
Hanahan andWeinberg (16). These theories open a door towards
a new era of medical research targeting the TME. Since the last
few decades, several efforts have been made to explore the NPC
microenvironment by immunohistological analysis of NPC
biopsies. With the advancement of technologies, researchers can
delineate the complex TME and cellular crosstalk at single-cell
FIGURE 2 | The nasopharyngeal carcinoma tumor microenvironment. CAF, cancer-associated fibroblast; COX-2, cyclooxygenase-2; CTLA4, cytotoxic T-
lymphocyte associated protein 4; DC, dendritic cell; EC, endothelial cell; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; Exo-LMP, exosome-
packaged latent membrane protein; IL, interleukin; MDSCs, myeloid-derived suppressor cells; NF, normal fibroblast; NK, natural killer; PD-1, programmed cell death
protein 1; PD-L1, programmed death-ligand 1; PGE2, prostaglandin E2; TGF, tumor growth factor; TNF, tumor necrosis factor; Treg, regulatory T-cell.
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resolution, thereby facilitating the development of diagnostic,
prognostic, and therapeutic tools against NPC (17–21).

As a requisite in tumor initiation, progression, and metastasis,
the TME components and their interplay with cancer cells offer a
variety of promising targets for the development of anti-cancer
therapy against NPC. This review introduces the cellular and
acellular players, their roles in the NPC microenvironment,
current and potential biomarkers, and therapeutic strategies
targeting TME.
COMPONENTS IN TUMOR
MICROENVIRONMENT

The NPC microenvironment is complex and highly
heterogeneous, its components can be classified into cellular
and acellular components. Cellular components include [1]
tumor endothelial cells (TECs), which forms blood and
lymphatic vascular networks for transportation of nutrients
and oxygen, [2] cancer-associated fibroblasts (CAFs), which
support tumor growth, survival, invasion, and migration, and
[3] immune cells, which are involved in immune reactions in the
TME (22–25). On the other hand, acellular components include
the extracellular matrix (ECM), which facilitates tumor
development, progression, and metastasis (26, 27).

Tumor-Infiltrating Immune Cells
The NPC microenvironment is characterized by the intense
filtration of tumor-infiltrating immune cells (TIICs), which
constitute 40 – 50% of the tumor mass in NPC, with EBV-
negative CD3+ T-lymphocytes as the commonest infiltrate (28–
30). Despite its abundance, lack of effective immune response,
and the presence of immunosuppressive infiltrates such as
regulatory T-cells (Tregs), M2 macrophages, and myeloid-
derived suppressor cells (MDSCs) leads to immunotolerance,
promoting tumor progression. TIICs can be further classified
based on lymphoid and myeloid lineage. Tumor-infiltrating
lymphocytes (TILs), including T-cells and B-cells, are
abundant in the NPC microenvironment as a result of an
immune response against EBV. On the other hand, tumor-
infiltrating myeloid cells (TIMs) consist of various cell types,
including mature mast cells, monocytes and macrophages,
dendritic cells (DCs), and pathologically activated immature
MDSCs (17, 31, 32).

Tumor-Infiltrating Lymphocytes
TILs, including T-cells and B-cells, are most predominant in the
NPC microenvironment. Tumor-associated T-cells consisted of
several subpopulations, namely naïve T-cells, cytotoxic T-cells
(CTLs), exhausted T-cells, and Tregs (17–21). CD3+ T-
lymphocytes, which are comprised of CD4+ T-helper cells and
CD8+ T-suppressor cells, is the predominant lymphocytes
infiltrating the NPC microenvironment. The majority of these
lymphocytes express the activation marker OKT10, however,
restriction on human leukocyte antigen (HLA) and T-cell
receptor gene expression might contribute to tumor evasion
from immune surveillance (29, 30, 33, 34). Consistent with
Frontiers in Oncology | www.frontiersin.org 4
these findings, transcriptomic studies reported that CD4+ and
CD8+ T-cells clusters in NPC are highly activated and exhausted,
as they co-express exhaustion markers (LAG3, TIGIT, PDCD1,
HAVCR2, CTLA4, TOX) and effector molecules (GZMB, GZMK,
INFG, NKG7, GNLY, and IL2) (17–21). Exhausted T-cell clusters
display intermediate-to-high cytotoxic activity, implying a
dynamic transitional process from activated T-cells to
exhausted T-cells (17). Both intrinsic and extrinsic
mechanisms are involved in the exhaustion or dysfunction of
T-cells. The intrinsic mechanisms include [1] expression of
inhibitory receptors, including programmed cell death protein
1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-
4), T-cell immunoglobulin and mucin-domain containing-3
(TIM-3), lymphocyte activation gene (LAG-3), B and T
lymphocyte attenuator (BTLA) and T-cell immunoglobulin
and ITIM domain (TIGIT), [2] decreased cytokine signaling
pathways which suppresses the production of interleukin (IL)-2,
tumor necrosis factor (TNF)-a, interferon (IFN)-g and granzyme
B (GzmB) in a hierarchical manner, and [3] transcription factors
such as the nuclear factor of activated T-cells 1 (NFATC1) (20,
35). Extrinsic mechanisms, on the other hand, include [1]
inhibitory effects exerted by regulatory cells including Treg
cells, DCs, tumor-associated macrophages (TAMs), MDSCs,
[2] immunosuppressive cytokines, such as transforming
growth factor (TGF)-b and IL-10, and [3] interaction with
major histocompatibility complex (MHC) class II-expressing
NPC cells (18, 35).

Tregs are immunosuppressive cells expressing CD4+CD25high

Foxp3+ markers (18, 36). Tregs mediate tumor escape from
immune surveillance by [1] involvement of immune checkpoint
molecules, such as PD-1 and CTLA-4, [2] secretion of cytokines,
for instance, IL-10 and TGF-b, which elicits inhibitory effects on
immunoreactive cell proliferation, [3] induction of T-cells
apoptosis through secretion of cytotoxic perforin and GzmB or
ligand-receptor interaction through Fas/FasL, [4] cell contact-
dependent suppression of naïve T-cells proliferation, [5]
metabolic modulation through enhancing immunosuppressive
metabolites, such as indoleamine 2,3-dioxygenase (IDO), in the
TME (37–39). Studies revealed enhanced expression level of
LGALS1 in NPC-derived Tregs, which was reported to mediate
immunosuppression by upregulation of cell-surface programmed
death-ligand 1 (PD-L1) and galectin-9 (Gal-9) in head and neck
cancer (18, 40). Physical or pharmacologic depletion of Tregs
targeting drugs removes their suppression effect and restores
EBV-specific CD8+ T-cells (41).

NK cells are the first line of defense against viral infections
and neoplasms. Studies reported diminished expression of
inhibitory surface receptors of NK cells, including NK group 2,
member D (NKG2D), NKp30, and NKp46 as a mechanism for
immune evasion. Expression of metastasis-associated in colon
cancer-1 (MACC1) gene on NPC cells and enhanced level of
soluble MHC class I chain-related molecular A (MICA) is
correlated with the downregulation of NKG2D surface
expression on NK cells, contributing to tumor progression
(42–44). Moreover, the expression of inhibitory receptors such
as IL-18-induced PD-1 also mitigates the anti-tumor effect of NK
cells (45). Paradoxically, in a recent transcriptomic study of
March 2022 | Volume 12 | Article 840467
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NPC-infiltrating cells, Gong et al. reported expression of
cytotoxic genes and chemokine encoding genes in NK cells of
the NPC microenvironment, indicating their role as a positive
regulator of the immune response against the malignancy (17).

B-cells represent the second largest and most diverse cells in
the NPC microenvironment. In particular, EBV positivity is
correlated with an increase in B-cell abundance and diversity.
The various phenotypes of tumor-infiltrating B-cells include
memory B-cells, germinal center B-cells, plasmablast-like cells
and plasma cells. B-cells are recruited into tertiary lymphoid
structures by tumor-derived PD-1+ exhausted CD4+ T- cells
through the CXCL13/CXCR5 axis (20, 46, 47). CD19+ B-cells
positively correlated with better prognosis in EBV-positive NPC
patients (48). Consistent with this finding, higher expression of
B-cell-associated gene signatures such as CD79A, MS4A1, IGHD
and FCRL4 favored the survival in NPC patients, suggesting
potential anti-NPC immunity by NPC-infiltrating B-cells (17). In
contrast, IL-10+ B-cells are immunosuppressive B-cells induced
by NPC-derived miRNA-21 (49).

Tumor-Infiltrating Myeloid Cells
MDSCs, macrophages and DCs are the three major myeloid-
lineage subtypes in the NPC microenvironment. Under the
influence of tumors, alteration of myelopoiesis and impairment
of progenitor cells differentiation leads to accumulation of
MDSCs. Metabolic alteration by EBV-encoded latent
membrane protein (LMP)1 enhances the secretion of IL-1b,
IL-16 and GM-CSF through NLRP3 inflammasome,
cyclooxygenase-2 (COX-2) and P-p65, which subsequently
activates signal transducer and activator of transcription
(STAT)-3 signaling pathway to induce MDSCs accumulation
(50, 51). Many signature genes of MDSCs are associated with
exhaustion and cell cycle arrest of immune cells, implying their
role in the induction of immunosuppression through inhibition
of T-cell proliferation, promotion of T-cell anergy, and induction
of T-cell apoptosis (17, 51). Other than that, MDSCs directly
promote NPC cell migration, invasion, and metastasis via
contact-dependent induction of epithelial-mesenchymal
transition (EMT) in NPC cells in vitro through upregulation of
COX-2 expression and activation of b-catenin/TCF4 pathway.
Clinically, HLA-DR-CD33+ MDSCs and COX-2 predict poor
disease-free survival (DFS) in NPC patients (32).

Monocytes and macrophages are the most predominant cell
types in TIMs, which account for around 50% of TIMs in NPC
(52). Macrophages may replace T-lymphocytes in anti-tumor
immune response and preventing lymphatic spread (53).
Macrophages demonstrate a high degree of plasticity when
exposed to signals from the TME (52). They can be classically
polarized into inflammatory M1 macrophages or activated into
immunosuppressive M2 macrophages (54). NPC cells induce
polarization of CD163+ M2 macrophages via TGF-b1 and IL-10,
which subsequently recruits Foxp3+ Tregs through induction of
conversion from naïve T-cells, via TGF-b and IL-2, and
chemotaxis, leading to immune escape. Tregs, in return, secrete
TGF-b1 and IL-10 to promote M2 macrophage differentiation,
forming a positive feedback loop that favors immune escape in
NPC (55). Single-cell transcriptomic analysis via RNA
Frontiers in Oncology | www.frontiersin.org 5
sequencing reported co-expression of M1 and M2 gene
signatures in NPC-derived TAMs, suggesting an M1-M2
coupled activation pattern in TMEs which gives rise to a
unique phenotype that exhibits both pro-inflammatory and
pro-tumoral functions (18). The potential anti-tumor capacity
of NPC-derived macrophage is exhibited by its high expression
of CXC chemokine ligands CXCL9 and CXCL10 which recruit
CXCR3+ NK cells and CD8+ T-cells into the TME (20). In
contrast, pro-tumorigenic TAMs display expression of
angiogenic signature SPP1, which is typically associated with
poor prognosis (31). Furthermore, exosomal miR-18a derived
from M2 macrophages promote NPC progression, invasion, and
tumor growth in in vitro and in vivo animal models via TGF-b
signaling pathway by repression of transforming growth factor-
beta III receptor (TGFBR3) (56).

DCs initiate antigen-specific immune responses by recognition
and presentation of antigen to T-cells. Early studies reported the
presence of T-zone histiocytes such as DCs in about half of NPC
tissues, their densities significantly correlates with favorable
prognosis in NPC patients, implying their role in anti-tumor
immunity (57, 58). Tumor-infiltrating DCs can be immunogenic
or regulatory, depending on the environmental signals. Different
subtypes of DCs are present in the TME, for instance, classical
dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs).
The proportion of pDCs is high in NPC compared to other
malignancies. pDCs are associated with favorable prognostic
value, which implies their potential roles in the induction of
anti-tumor immune response. Consistent with this finding,
GZMB, a gene that encodes pro-apoptotic enzyme GzmB, is
highly expressed in pDCs (20). On the other hand, cDCs can be
further divided into three distinct subsets, including classical
CLEC9A+ cDC1s and CDC1C+ cDC2s and a mature phenotype
LAMP3+ cDCs. LAMP3+ cDCs can be derived from both
cDC1s and cDC2s, resulting in LAMP3+ cDCs with different
transcriptomic properties and might exhibit diverse functions.
LAMP3+ cDCs represent a group of regulatory DCs
demonstrating a high level of differentiation and apoptosis but
low antigen presentation, with elevated expression of immune-
suppressive related genes, such as CD274 (PD-L1), PDCD1LG2
(PD-L2), IDO1, and CD200. These cells potentially exert
regulatory activities via recruitment of Tregs, secretion of
immunosuppressive molecules, and ligand-receptor inhibition
of T-cell activities (21, 31).

Intercellular interactions among LAMP3+ DCs, Treg cells,
exhausted CD8+ T-cells, and malignant cells nurture an
immunosuppressive NPC microenvironment. LAMP3+ DCs
potentially recruit peripheral Tregs through C-C motif
chemokine ligand (CCL)/C-C motif chemokine receptor (CCR)
interactions such as the CCL17/CCR4 and CCL22/CCR4
signalling pathways. Furthermore, LAMP3+ DCs elicit
suppressive activities on CD8+ T-cells via CD200/CD200R
signalling and PD-L1/PD-1, leading to the exhaustion of CD8+

T-cells. On the other hand, Treg cells expressing CTLA-4
interacts with CD80/CD86 on LAMP3+ DCs, whereby the
interaction might restrain the antigen presentation of DCs and
promote their secretion of IDO1 to induce the proliferation of
Treg cells (21).
March 2022 | Volume 12 | Article 840467
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The proportion of mast cells is relatively higher in NPC when
compared to other malignancies. NPC-derived mast cells have a
high anti-tumor TNF to angiogenic VEGFA ratio, implying high
anti-tumor capacity, whereas mast cells in other malignancies are
generally pro-tumorigenic. Hence, mast cells are correlated with
a survival advantage in NPC. The anti-tumor phenotype of mast
cells is possibly driven by the presence of IL1B+ macrophages via
IL1B/ADRB2 ligand-receptor interaction (31, 59).

Cancer-Associated Fibroblasts
CAFs, also termed tumor-associated fibroblasts, are found
abundantly in the cancer stroma. CAFs have elongated spindle
morphology, displayed mesenchymal biomarkers, such as alpha-
smooth muscle actin (a-SMA), platelet-derived growth factor
receptors (PDGFRs), vimentin and fibroblast activation protein
(FAP), and lack of genetic mutations (60, 61). The CAFs
predecessors are recruited from diverse origins, which include
resident tissue fibroblasts, peri-tumoral adipocytes, endothelial
cells through endothelial-mesenchymal transition (EndMT),
epithelial cells through EMT, bone-marrow-derived
mesenchymal stem cells and haematopoietic stem cells (25, 60,
62). In NPC, extracellular vesicle-packaged EBV-encoded LMP1
can promote the activation of normal fibroblasts into CAFs via
the nuclear factor-kappa B (NF-kB) p65 pathway (63). a-SMA
expression in CAFs predicted an adverse prognosis in patients
with NPC. A high density of CAFs is correlated with shorter OS
and lower 5-year survival rates, suggesting CAF density as an
independent prognostic factor for NPC patients, suggesting their
role in tumorigenesis (64). Consistent with this finding, several
studies reported that CAFs promote neoangiogenesis, metastasis,
and therapeutic resistance in NPC (65–67).

CAFs stimulate neoangiogenesis in NPC. Genes correlated
with endothelial cells abundance were highly expressed by
fibroblasts, implying their potential roles in endothelial cell
recruitment and angiogenesis (18). The immunohistochemical
method revealed high expression of a-SMA fibroblasts in NPC
stroma, together with increased intensities of the chemokine
stroma-derived factor-1 (SDF-1, also known as CXCL12), a
mediator of the recruitment of endothelial progenitor cells, and
its receptor CXCR4 in NPC cells. Vascular endothelial growth
factor (VEGF) was detected in both cancer and stromal cells,
indicating secretion of a significant amount of VEGF in these
cells. Prominin 1 (PROM 1, or CD133) and VEGF receptor
(VEGFR)-2 double-positive endothelial progenitor cells or CD34
positive cells were observed in the stroma, suggesting tumor-
associated neoangiogenesis. Statistical analyses revealed a
positive correlation between a-SMA and endothelial antigens
CD34, suggesting that CAFs and NPC tumor cells may enhance
neoangiogenesis in a VEGF- and SDF-1-dependent manner by
the recruitment endothelial progenitor cells from the bone
marrow into the tumor stroma (65).

CAFs support tumor metastasis in NPC. Increased density of
a-SMA-expressing CAFs at metastatic sites of NPC compared
with primary sites, along with upregulation of COX-2 or
prostaglandin-endoperoxide synthase (PTGS2) in CAFs,
indicated the involvement of fibroblasts and COX-2 in NPC
metastasis. High expression of COX-2 catalysed CAF-secreted
Frontiers in Oncology | www.frontiersin.org 6
prostaglandin E2 (PGE2), which induces EMT, thereby
promoting NPC cell migration and invasiveness in vitro.
Furthermore, COX-2 in host fibroblasts promotes lung
metastasis and correlated with the expression of TNF-a
expression in mouse models, suggesting that high expression of
COX-2 in fibroblasts promotes NPC metastasis through the
COX-2-PGE2-TNF-a axis. Consistent with this finding, the
expression of COX-2 in CAF was positively correlated with N
stage, relapse, and poor survival in patients with NPC (66).

CAFs promote therapeutic resistance and immune evasion.
CAFs induced the formation of radioresistance and promoted
NPC cell survival following irradiation via the IL-8/NF-kB
pathway to reduce irradiation-induced DNA damage.
Moreover, CAFs express immunosuppressive factor IDO1,
which encodes the enzyme IDO. IDO catalyses the production
of L-kynurenine (Kyn), which subsequently promote the
generation or differentiation of tolerogenic immune cells by
interacting with aryl hydrocarbon receptors on immune cells.
High expression of IDO is inversely correlated with the density of
CD3+ T-cells and predicted poor survival outcomes in NPC
patients. Hence, CAFs may promote immune suppression in
NPC by the expression of IDO (18, 68).

CAFs exhibit a supportive role in tumor progression through
the remodeling of the ECM (25). NPC-derived fibroblasts
express genes that encode ECM components, including
COL1A1, COL1A2, LUM, FN1. This suggests the complexity of
ECM in the NPC microenvironment and the possible interaction
with tumors and stromal cells via integrin signaling, indicating
integrin receptors on tumor and immune cells as potential
therapeutic targets for disruption of ECM-dependent tumor
progression and suppressive immunomodulation (17).
Increased production and crosslinking of collagen, such as
COL1A1, increase the stiffness of ECM, leading to the
promotion of tumor progression through increased integrin
signaling (25, 27). On the other hand, fibronectin 1 (FN1) is
shown to increase migration and invasion of NPC cells by
upregulation of matrix metalloproteinase 9 (MMP9) and
MMP2, which are ECM-digesting enzymes mainly produced
by CAFs. FN1 also suppresses NPC cell apoptosis via the NF-kB
pathway by upregulation of the expression of BCL2 and P65 (25,
69). CAFs mediated directional migration of cancer cells by
assembling a fibronectin-rich ECM with anisotropic fiber
orientation through increased non-muscle myosin II- and
PDGFRa-mediated contractility and traction forces (62, 70).

Angiogenesis, Tumor Endothelial Cells
and Hypoxia
Angiogenesis, the formation of blood vessels from existing
vasculature in response to a hypoxic condition, is one of the
hallmarks of cancer that contributes to tumor growth,
development and metastases (71). The vascular niche is
associated with stem cell-like NPC at the invasive front (72).
The tumor vasculature is lined internally by TECs and
surrounded externally by perivascular cells. TECs are
characterized by their genetic instability, which contributes to
the development of distinct phenotypes that promote therapeutic
resistance, tumor progression and metastasis. TECs also interact
March 2022 | Volume 12 | Article 840467
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with tumor cells by secretion of angiocrine factors, contributing
to tumor migration and metastasis (73, 74). Drug-resistant
human microvasculature endothelial cells (HMECs) are
reported to promote progression, EMT and chemoresistance in
NPC through secretion of exosomes (75). In NPC, TECs
demonstrated enhanced capacity to recruit CTLs and Tregs via
CXCL9–CXCR3 and CXCL10–CXCR3 while simultaneously
inhibiting CTLs through PDL2–PD1 interaction, suggesting
their role in the mediation of an immunosuppressive niche in
the NPC microenvironment (18).

Hypoxia was detected in over 80% of NPC tumors as a result
of the high requirement of oxygen due to increased proliferation
and metabolism. It was reported to play an important role in
NPC by regulating its apoptotic activity, metastasis, angiogenesis,
metabolic adaptation, and therapeutic resistance, thereby
representing a potential target for the treatment of NPC.
Hypoxic stress prevents cell survival by inducing the
upregulation of anti-apoptotic proteins such as growth arrest
and DNA-damage-inducible beta (Gadd45b) and immediate
early response 3 (IER3) (76). Hypoxia promotes tumor cell
migration by EMT stimulation and ECM remodeling through
Notch signaling (27). Lysyl oxidase (LOX), an extracellular
matrix-remodeling enzyme, was significantly upregulated in
hypoxic conditions and predicted poor prognosis in patients
with NPC (76, 77). In addition, hypoxia induces the upregulation
of VEGF, which is responsible for neoangiogenesis. Furthermore,
hypoxia mediates metabolic adaptation and acidosis in NPC
(76). A metabolic shift in NPC infiltrating lymphocytes was
reported to induce the exhausted phenotype of T-cells through
overexpression of miR-24. miR-24 overexpression suppresses the
expression of MYC and FG11 in TILs and disrupts MFN1-
mediated mitochondrial fusion, thereby inducing T-cell
exhaustion (78).

Various molecular signals and tumor-derived factors are
involved in angiogenesis. VEGF is a pro-angiogenic factor that
activates and stimulates proliferation and migration in VEGFR
expressing endothelial cells. VEGF also alters vascular
permeability by loosening the junctions between endothelial
cells, favouring tumor intravasation (79). Besides hypoxia,
increased VEGF production can be induced by EBV-encoded
LMP1 through COX-2 expression in NPC cells (80). High
expression of tissue VEGF is associated with reduced OS and
DFS in NPC patients (81).
INTERCELLULAR COMMUNICATIONS IN
NASOPHARYNGEAL CARCINOMA
MICROENVIRONMENT

Intercellular communication between malignant and stromal
cells in the NPC microenvironment is established via paracrine
mechanisms involving cytokines and chemokines, extracellular
vesicles including exosomes and ligand-receptor interactions.
The NPC microenvironment is primarily comprised of heavy
immune infiltrates, with CD3+ T-lymphocytes as the most
abundant lymphocyte infiltrates in NPC biopsies (37, 82).
Frontiers in Oncology | www.frontiersin.org 7
EBV-encoded proteins, such as LMP1, initiate immune cell
recruitment by the regulation of multiple signalling pathways
associated with cytokine and chemokine secretion from tumor
and immune cells. Immunosuppression, mediated by cytokines
and regulatory cells, facilitates malignant cells to escape from
anti-tumor immune response and promotes tumor growth and
progression. Tumor-derived exosomes, carrying viral proteins
and immunosuppressive substances, and ligand-receptor
interactions, such as PD-1/PD-L1 signalling pathway, also
contribute to the construction of an immunosuppressive TME
(28, 83).

Chemokines and Cytokines
EBV-infected nasopharyngeal epithelial cells construct the NPC
microenvironment, which is characterized by heavy infiltration
of immune cells with suppressed immune activities, by secretion
of EBV-encoded products that activate several inflammatory-
associated signalling pathways. A variety of cytokines, such as IL-
6, IL-8, interferon-inducible protein 10 (IP-10), TNF-a, VEGF,
and macrophage inflammatory protein (MIP)-3a are elevated in
NPC patients (84). LMP1 recruit immune cells into the tumor
site by upregulating several cytokines through NF-kB and
STAT3 signaling pathways (82, 85). These include regulatory
cells with immunosuppressive influence in the TME. NPC cells
induce polarization of macrophage into immunosuppressive
M2-like phenotype through secretion of interferon-stimulated
gene 15 (ISG15) (18). EBV nuclear antigen 1 (EBNA1) induce
the production of CCL20, or MIP-3a to promote chemotaxis of
Tregs to the tumor site (86, 87). In addition, EBV-encoded small
RNAs (EBERs) activates the toll-like receptor 3 (TLR3) pathway
to produce inflammatory cytokines such as CXCL8 which recruit
and activate TAMs. The inflammatory responses in NPC cells are
amplified by a positive feedback loop consisting of EBER, LMP1
and NF-kB (88). Metabolic reprogramming by LMP1 leads to
alteration in Nod-like receptor family protein 3 (NLRP3)
inflammasome, COX-2 and P-p65 signaling pathways, which
results in the release of cytokines, including IL-1b, IL-6 and
granulocyte-macrophage colony-stimulating factor (GM-CSF),
contributing to the expansion of MDSCs (50). Stromal cells,
including TECs, can attract CTLs and Tregs via chemokine-
receptor interactions such as CXCL9/CXCR3 and CXCL10/
CXCR3, however, cytotoxic activities of CTLs are inhibited by
PD-L2/PD1 interaction (18).

Chemokines and cytokines facilitate tumor elusion from
immune surveillance. EBER, LMP1 and EBV lytic transactivator,
Zta, are positively correlated with the production of IL-10. BCRF1,
or viral IL-10, share immunosuppressive properties with human
IL-10. IL-10 induces immunosuppressive activities by inhibition of
antigen-specific T-cell proliferation, induction of T-cell apoptosis
and inhibition of IFN-g secretion from NK cells. LMP1
upregulates IL-18 and IP-10 (CXCL10), which take part in the
recruitment and immunosuppression of CXCR3+ NK cells and T-
cells (45, 82, 85, 89). IL-6 and TNF-a mediate the expression of
IDO, which demonstrates an immunosuppressive role by
suppression of T-cell proliferation and impairment of CD8+ T-
cells cytotoxic activities. Pre-treatment serum levels of IL-6 and
TNF-a are negatively correlated with the 2-year survival rate in
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NPC patients (90, 91). Increased levels of IL-18 in NPC induces
NK cells exhaustion via upregulation of expression of PD-1 on NK
cells (45).

Furthermore, chemokines induce metastasis and promote
tumor progression. IL-8 induce EMT by activating AKT
signalling, enhancing migration and invasion of NPC cells.
Enhanced level of IL-8 predicts adverse OS, DFS, and DMFS of
NPC patients (92).

Exosomes
Exosomes are small (30-100 nm) extracellular vesicles that
originated from the plasma membrane. They are often
involved in the intercellular interactions in the TME,
influencing various cellular processes, including cell growth,
angiogenesis, EMT, metastasis, immune tolerance, and
therapeutic resistance (93). Exosomes may play a significant
role in the formation of a premetastatic milieu by acting as a
vehicle for tumor-derived factors that modulate pre-metastatic
sites (15). Exosome contents include transcription factors,
enzymes, ECM proteins, lipids, and nucleic acids, such as
DNA, mRNA, and non-coding RNA. Based on their parental
cells, exosomes in NPC can be classified into nasopharyngeal
carcinoma-derived exosomes (NPC-Exo) and EBV-related
exosomes (94–96).

NPC-Derived Exosomes
NPC-derived exosomes (NPC-Exos) [1] mediate the tumor
immune microenvironment, [2] enhance angiogenesis, [3]
induce EMT and [4] promotes res is tance towards
chemoradiotherapy as summarized in Tables 1 and 2. NPC-
Exo facilitates tumor progression by promoting tumor evasion
from immune surveillance. NPC-Exo carries clusters of
microRNAs (miRNAs) associated with the downregulation of
the MARK1 signaling pathway, including miR-24-3p, miR-891a,
miR-106a-5p, miR-20a-5p, and miR-1908, leading to altered T-
cell proliferation and differentiation. Hypoxia-induced exosomal
miR-24-3p modulates the phosphorylation of ERK and STAT
protein by repression of FG11 expression, leading to impeded
Frontiers in Oncology | www.frontiersin.org 8
T-cell proliferation, induction of Foxp3+ Tregs differentiation
and inhibition of Th1 and Th17 differentiation. Low levels of
exosomal serum miR-24-3p and high FGF11 expression predicts
favorable DFS in NPC patients and may serve as potential
prognostic biomarkers in NPC. Furthermore, NPC-Exo
enhances the levels of pro-inflammatory cytokines IL-1b, IL-6
and IL-10 and reduce the levels of IFN-g, IL-2 and IL-17 in CD4+

and CD8+ T-cells (113, 114, 125). Exosome-packaged CCL20
expands the Tregs population by promoting Tregs recruitment
and conversion of conventional T-cells into inhibitory Tregs in
the TME. CCL20 also enhances the suppressive effect of Tregs by
inducing the overexpression of TNFRSF4, SELL, ICAM1, TBX21,
CCR6, TNF, GZMB, TGFB1, IL10, IL2 and IL15, which are
associated with Treg phenotype, properties, and recruitment
capacity (107, 113). Moreover, exosomes also transport Gal-9,
which is associated with myeloid lineage-mediated
immunosuppression through regulation of the expression of
pro-inflammatory cytokines for the expansion of MDSCs by
attenuating STING signaling (100).

Exosomes mediate angiogenesis by the transportation of pro-
angiogenic and angiogenic-suppressive proteins and miRNAs,
which mediate multiple angiogenesis-associated pathways (99).
miR-17-5p and miR-23a are angiogenesis promoters, targeting
BAMBI and testis-specific gene antigen (TSGA10) respectively
(108, 109). In contrast, miR-9 inhibits angiogenesis by
downregulating MDK and regulating PDK/Akt pathway.

Exosomes are also involved in the promotion of tumor
invasion and metastasis. For instance, miR-301a-3p, which
targets B-cell translocation gene 1 (BTG1) mRNA, promotes
proliferation, migration, invasion and EMT of NPC (115). Under
hypoxic condition, exosomes containing MMP13promotes
metastasis by inducing EMT of malignant cells or mediating
the TME by interacting with stromal fibroblasts and endothelial
cells, hence promoting tumor invasion (105, 106).

Exosomes contributed to the development of resistance
towards chemotherapy and radiotherapy. Taxol-resistant NPC
cells can transfer dead-box helicase 53 (DDX53) into normal
NPC cells to promote resistance to Taxol through upregulation
TABLE 1 | Exosomal content and their functions.

Class Exosomal content Function Ref

Protein HAX-1 Tumor growth, angiogenesis (97)
HMGB3 Angiogenesis, metastasis (98)
ICAM-1, CD44v5 Angiogenesis (99)
Gal-9 Immunosuppression (100)
HIF-1a Metastasis (101)
DDX53 Chemoresistance

lncRNA CCAT2 Angiogenesis (102)
circRNA circMYC Radio-resistance, cell proliferation (103)
Enzyme PFKFB3 Angiogenesis, tumor proliferation and metastasis (104)

MMP13 Invasion and metastasis (105, 106)
Chemokine CCL20 Immunosuppression (107)
miRNA miR-17-5p, miR-23a, miR-BART-10-5p, miR-18a, miR-144 Pro-angiogenesis (108–111)

miR-9 Anti-angiogenesis (112)
miR-24-3p, miR-891a, miR-106a-5p, miR-20a-5p, miR-1908 Immune regulation (113, 114)
miR-301a-3p Metastasis (115)
miR-34c, miR-433-3p (116, 117)
March 2022 | Volume 12 | Art
icle 840467

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Su et al. Nasopharyngeal Carcinoma and Its Microenvironment
of multidrug resistance 1 (MDR1) (126). circMYC is a circulating
exosomal circular RNA (circRNA) associated with cell survival
from radiotherapy. circMYC could sponge tumor suppressing
miR-20b-5p and let-7e-5p, hence influencing their downstream
targets, argonaute RISC component 1 (AGO1) and
cryptochrome circadian regulator 2 (CRY2), affecting tumor
progression (103).

EBV-Related Exosomes
EBV-infected NPC cells promote tumor growth by transferring
viral oncoprotein such as LMP1, signal transduction molecules,
and virus-encoded miRNA through exosomes (127). It is reported
that recipient cells internalized exosomes derived from EBV-
infected cells via caveola-dependent endocytosis (128).

LMP1 is an EBV-encoded gene product that is detected in
almost all primary NPC specimens. A small amount of LMP1
facilitates tumor progression, whereas high LMP1 expression
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induced growth inhibition and cell apoptosis. LMP1 exerts its
oncogenic activity by activating several signaling cascades
including NF-kB, PI3K-AKT, ERK-MAPK, JNK, JAK-STAT and
p38/MAPK signaling pathways. Activation of NF-kB and STAT3
pathway results in increase secretion of immunomodulatory
molecules, for instance, IL-18 and IP-10, which recruit and
suppress CXCR3+ T-cells and macrophages. LMP1 and IFN-g
upregulate immune checkpoint PD-1/PD-L1 synergistically,
leading to suppression of anti-tumor activities. Furthermore,
LMP1 induce the Warburg effect in NPC through upregulation
of hypoxia-inducible factor (HIF)-1a and hexokinase 2, leading to
enhance malignant transformation, tumor progression and
resistance to radiotherapy. In addition, LMP1 facilitates
metastasis by inducing EMT, through upregulation of Twist,
Snail and SatB1 pathways, and remodeling of ECM, by
induction of MMP9. LMP1 also promote angiogenesis, cell
growth and cell survival through induction of pro-angiogenic
TABLE 2 | Clinical studies targeting NPC microenvironment.

Target Ref Study Conditions Phases

Immunotherapy
CTLA-4 & PD-1 NCT04220307 AK104 Metastatic NPC II

NCT04945421 IBI310 & Siltilimab Anti-PD-1/PD-L1 Resistance R/M NPC I/II
NCT02834013
NCT03097939

Ipilimumab & nivolumab Rare tumors, including NPC II

EBV NCT03648697 EBV-TCR-T (YT-E001) cells EBV-positive R/M NPC II
NCT02287311 LMP, BARF1 & EBNA1 Specific CTL R/M NPC I
NCT02578641 (118) EBV-specific CTL & Chemotherapy Advanced NPC III

LMP2 NCT03925896 LMP2 Antigen-specific TCR T-cell Therapy R/M NPC I
PD-1 NCT03707509 Camrelizumab & Chemotherapy R/M NPC III

NCT04944914 Camrelizumab & Stereotactic Body RT R/M NPC III
NCT04978012 Camrelizumab & Fluzoparib NPC II
NCT04833257 Chemotherapy & Tislelizumab LA-NPC II
NCT04447612 Durvalumab & chemoradiation R/M, platinum-resistant NPC II
NCT02339558 (119) Nivolumab R/M NPC II
NCT03267498 Nivolumab & Chemoradiation Stage II - IVB NPC II
NCT03544099 Pembrolizumab NPC II
NCT03734809 Pembrolizumab & Chemoradiation NPC II
NCT04736810 Penpulimab Combination Therapy NPC II
NCT03558191 SHR-1210 R/M NPC II
NCT04917770 Sintilimab & Multimodal RT NPC II
NCT04376866 Toripalimab Recurrent NPC III
NCT03925090 Toripalimab & CCRT NPC II
NCT04534855 Treprilimab Recurrent NPC II
NCT04421469 Triprilimab (JS001) & Chemotherapy NPC II

PD-1 & EBV NCT03044743 PD-1 knockout EBV-CTLs Advanced EBV-associated malignancies I/II
PD-L1 NCT04282070 SHR-1701 R/M NPC I
PD-L1 & VEGFR-2 NCT05020925 SHR-1701 & Famitinib NPC I/II
TGF-b NCT02065362 TGF-b Resistant CTLs EBV-positive NPC I
TIM-3 NCT02817633 TSR-022 (combolimab) Advanced solid tumors I
T-cells NCT04476641 DC-CIK Immunotherapy Solid tumors, including NPC II
Anti-angiogenic therapy
VEGF NCT00408694 (120) Bevacizumab & Chemoradiation LA NPC II
VEGF/VEGFR signaling NCT02636231 Endostar Recurrent NPC II

NCT04447326 (121) Endostar & Chemotherapy LA-NPC II
NCT03932266 NPC II

VEGFR NCT03639467 Anlotinib & Gemcitabine/Cisplatin R/M NPC Ib/II
NCT01462474 (122) Famitinib & chemoradiation LA NPC I
NCT00454142 (123) Pazopanib R/M NPC II
NCT00747799 (124) Sorafenib & chemotherapy R/M NPC II

VEGFR & PD-L1 NCT04562441 Axitinib & Avelumab R/M NPC II
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factors, growth factors and anti-apoptotic proteins (85, 129). LMP-
1 activated NF-kB induces cellular proliferation, EMT and
metastasis by inhibition of tumor suppressing miR-203 (130).

EBNA1 promotes immunosuppression by converting naïve
T-cells into Treg cells and promotes chemotactic migration of
Treg cells by upregulating TGF-b1. Upregulation of the TGF-b1-
SMAD3-PI3K-AKT-c-JUN axis induces the production of
CXCL12 which recruit Treg cells by binding to CXCR4. On
the other hand, TGF-b1 downregulates miR-200a, a negative
regulator of CXCL12 by enhancing the SMAD3/c-Jun complex.
CXCL12 also exerts an inhibitory effect on miR-200a via the c-
Jun-miR-200a-CXCL12-c-JUN feedback loop (36). Enhanced
CCL20 production in EBNA1-expressed tumor cells increased
Tregs migration. Polarized-M2 macrophages by EBNA1
expression cells converted naïve T-cells into Tregs (86).

EBV non-coding RNAs (ncRNAs) include EBERs and
miRNAs. EBERs mediate inflammatory response through
interferon regulatory factor 3 (IRF3) and NF-kB signaling
pathways by targeting RIG-I, leading to tumor progression.
EBERs trigger MCP-1 and M-CSF which recruit macrophages
into the TME and promote their differentiation into pro-
tumorigenic TAMs (131, 132). EBER-1 expression was
upregulated in NPC tissues, a high level of EBER-1 correlated
with better prognosis in NPC patients (133). The EBV miRNA
precursors are clustered in two main regions, which are Bam HI
fragment H rightward open reading frame 1 (BHRF1) and Bam
HI-A region rightward transcript (BART). EBV-miRNAs assist
NPC progression by promotion of immune evasion, cell
proliferation, inhibition of apoptosis and promotion of
invasion and metastasis (134, 135).
TARGETING TUMOR MICROENVIRONMENT
IN NASOPHARYNGEAL CARCINOMA:
CURRENT AND FUTURE PERSPECTIVES

Immunotherapy: Boosting T-Cell Immunity
NPC is a promising candidate for immunotherapy owing to its
immunosuppressive property and expression of immunogenic
EBV antigen. Several approaches which include immune
checkpoint inhibitors and cellular-based immunotherapy have
been employed to reinvigorate the exhausted immune cells in the
NPC microenvironment (83) (Table 2). PD-1/PD-L1 axis has
been exploited as a potential therapeutic target for reversing T-
cells exhaustion and restoration of their anti-tumor function
(136, 137). PD-1 is an immune checkpoint encoded by the
PDCD1 gene and expressed on the T-cell surface, whereas PD-
L1 is expressed on tumor cells and immune cells. Studies
reported expression of PD-L1 in approximately 70 - 90% of
NPC tissues and its prognostic significance. The difference in
interpretational methods leads to inconsistency of results,
suggesting the need for further large-scale study (138–141).

PD-1/PD-L1 blockade therapies with anti-PD-1 antibodies,
such as nivolumab, pembrolizumab, cemiplimab and anti-PD-L1
antibodies, including atezolizumab, avelumab and duravulumab
Frontiers in Oncology | www.frontiersin.org 10
have been implicated in immunotherapy against various
neoplasms (136, 137). Anti-PD-1 and anti-PD-L1 therapies are
generally safer than chemotherapy, with a lower incidence of
treatment-related adverse events (142, 143). Single-agent studies
involving PD-L1 antibodies showed lower overall response rate
(ORR), OS and progression-free survival (PFS) when compared
with studies with PD-1 antibodies, likely due to alternative
binding of PD-1 to PD-L2 following blockade of PD-L1.
Combination therapy of chemoradiation and PD-1/PD-L1
promote a synergistic anti-tumor immunity by enhancing host
recognition, elimination of tumor cells and preventing T-cell
apoptosis. For instance, a phase I trial investigating anti-PD1
antibody camrelizumab achieved an ORR of 34%, whereas a
combination trial of camrelizumab with gemcitabine and
cisplatin achieved an ORR of 91%. In spite of that,
combination therapy exhibited a higher incidence of
treatment-related adverse events when compared with anti-
PD-1 monotherapy, suggesting synergistic toxicity (142, 143).
There is also limited anti-tumor response rate towards PD-1/PD-
L1 blockade therapy. Resistance to PD-1/PD-L1 therapy involves
multiple mechanisms, including low tumor immunogenicity, T-
cell dysfunction by other immune checkpoint receptors and
modulation by noncoding RNAs.

Strategies to overcome the challenge include the
incorporation of PD-L1/PD-1 inhibitors with other anti-tumor
therapy. Ongoing clinical trials propose the combination of PD-
1/PD-L1 blockade with other immune checkpoint inhibitors
such as anti-CTLA-4 or anti-angiogenic agents such as anti-
VEGFR inhibitors as potential therapeutic strategies for NPC
(144, 145). Besides that, the identification of predictive
biomarkers of PD-1 inhibitors will allow the selection of
appropriate patients for PD-1/PD-L1 targeted treatment (136).
Other immune regulatory checkpoints, for instance, the Gal-9/
TIM-3 (HAVCR2) interaction represents a promising alternative
as they are prominently expressed in recurrent NPC (20, 146).

Two approaches of cellular-based immunotherapy include
adoptive immunotherapy, which is the infusion of ex vivo
generated activated effector cells, such as EBV-specific CTLs,
chimeric antigen receptor (CAR) engineered T-cells and
cytokine-induced killer cells (CIKs) (147–150). An increase in
the frequency of MDSCs, and immunosuppressive cytokines,
such as CCL2 and CXCL10, underlie the development of resistance
towards adoptive immunotherapy. Chemotherapeutic agents, such
as gemcitabine and carboplatin may alleviate the resistance by
limiting the expansion of MDSCs, secretion of pro-inflammatory
cytokines and depletion of immune checkpoint molecules (151). A
phase II study combining chemotherapy with adoptive
immunotherapy using engineered EBV-specific CTLs as first-line
treatment for metastatic or recurrent NPC patients yield a
satisfactory result, with a 2-year OS of 62.9% (118). On the other
hand, active immunotherapy or tumor vaccines aim to enhance
recognition by the immune system by the delivery of tumor-specific
antigens through antigen-presenting cells or viral vectors. These
include LMP2 expressing DCs and recombinant modified vaccinia
Ankara vaccine (MVA-EL), which has been proved to be safe and
well-tolerated (152, 153). Besides targeting EBV-encoded
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oncoproteins, a peptide vaccine targeting non-EBV associated
tumor specific antigen, four-jointed box 1 (FJX1), was also
designed in a preclinical setting (154).

Further research should consider [1] large-scale studies for
the evaluation of clinical efficacy and the optimization of dosage
for the above therapy; [2] combination of therapies to augment
the clinical responses, for example, combining immune
checkpoint blockade with adoptive T-cell therapy (155–157);
[3] development of personalized immunotherapy targeting
neoantigens (158); and [4] localization of NPC-specific CTLs
at the malignant site, for example, via chemokine-receptor
interactions (159). Other alternatives, for example, CAR-NK,
an emerging cellular immunotherapy strategy for cancer, should
be evaluated in NPC, given its promising clinical efficacy in other
settings (160).

Tumor Infiltrating Immune Cells as
Prognostic Markers
Immune score, established based upon the density of lymphocyte
populations, is predictive of disease progression and distant
metastases. High immune scores predict better OS, DFS and
distant-metastasis free survival (DMFS) of NPC patients (37).
Among TILs, CD3+, CD4+, and CD8+ T-cells as well as CD56+

NK cells are good prognostic factors for NPC patients (161–163).
Despite its immunosuppressive role, high Foxp3+ T-cells to
CD8+ T-cells ratio was associated with favorable PFS in early-
stage NPC patients (164). Similarly, Ooft et al. reported Foxp3 as
an independent predictor for better OS in NPC patients (165).
On the other hand, CD68+ TAM density predicted favorable
DFS, whereas stromal CD163+ M2-like TAMs correlated with
poor OS and PFS in NPC patients (20, 166, 167).

Nonetheless, there are discrepancies among studies
investigating the prognostic significance for different TIICs,
due to different methodologies used. Thus, further studies
should consider the development of a standardized method for
the evaluation of TIICs as an indicator or predictor for the
progression and therapeutic response of NPC patients.

Anti-angiogenic Therapy
Angiogenesis is important to meet the huge demand for oxygen
and nutrients by tumor cells, thus, anti-angiogenic therapy using
angiogenic inhibitors is a promising anti-cancer therapeutic
strategy. Conventional chemotherapeutic agents, for instance,
epirubicin, elicits inhibitory activity on angiogenesis by inducing
non-specific vascular toxicity (168). On the other hand,
hypericin-mediated photodynamic therapy exerts its antitumor
activity by targeting the tumor vasculature (169). Several small-
molecule inhibitors of VEGFR such as apatinib are employed in
angiogenesis-targeting therapy for NPC patients (170, 171). The
inhibition of angiogenesis could enhance the effectiveness of
standard chemoradiotherapy against NPC. Combination of
VEGF inhibitor bevacizumab with chemotherapy promoted
microvasculature maturation, enhanced immune infiltration
and exhibited promising tumor response (172). Combination
therapy of apatinib with cisplatin showed a synergistic effect in
inhibition of tumor growth, repression of VEGFR-2 expression
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and reduction in microvascular density in preclinical models
(173). On the other hand, combining apatinib and radiation
enhances the anti-angiogenic effect and increases hypoxia in
tumor tissues, leading to an anti-tumor effect (174). Endostatin,
an endogenous angiogenesis inhibitor is another anti-tumor
agent tested in clinical trials. Endostar, a recombinant
endostatin, sensitized NPC towards radiation therapy by
induction of endothelial cell and tumor cell apoptosis and
repression of radiation-induced pro-angiogenic factors (175).
Phase II multicentre randomized controlled combining
Endostar therapy with standard chemoradiation reported an
improved remission rate of cervical lymph node metastasis,
with a slight improvement in objective response rate (121). To
sum, anti-angiogenic agents targeting VEGF and VEGFR can
enhance the effectiveness of chemoradiotherapy through
inhibition of blood vessels formation, normalization of blood
vessels, which restore vascular function, improve tumor
perfusion, and drug delivery, and activation of immune
response (176).

Currently, anti-angiogenic therapy faces the challenge of the
development of resistance, which leads to limited survival
benefits. The resistance is likely due to hypoxic events as a
consequence of vascular depletion, resulting in the promotion
of cancer invasion and metastasis, activation of alternative pro-
angiogenic signalling pathways, VEGF-independent vascular
mimicry, and increased recruitment of pro-angiogenic cells
(176, 177). Studies unveiled upregulation of several
proangiogenic factors, including VEGF, TNF-a, IFN-a, and
basic fibroblast growth factor (bFGF), following hypericin-
mediated photodynamic therapy. This indicates the need of
combination therapies such as photodynamic therapies with
angiogenesis inhibitors to enhance the efficacy of treatment
(169, 178). Other challenges include toxicity effects, which
include haemorrhage, hypertension, and thrombosis (79).
Several strategies direct targeting the tumor vessels are
introduced to increase the effectiveness of the therapy and
minimise the side effects. Nanoparticles might serve as vectors
for the delivery of anti-angiogenic drugs to the target site (79).
Given the high effectivity for DNA enzyme (DNAzyme) to cleave
targeted sequence with high specificity, DNAzyme also serves as
a potential therapeutic agent for anti-angiogenic therapy.
DNAzyme target ing VEGFR-1 mRNA significant ly
downregulated VEGFR-1, inhibited angiogenesis and altered
the vascular permeability. No toxicity effect was observed in
vivo, indicating anti-VEGFR-1 DNAzyme as potential drug
candidates for further clinical evaluation (179).

Targeting Hypoxic Condition in
Nasopharyngeal Carcinoma
The increased oxygen demand by the highly proliferative and
metabolically active tumor cells with inadequate oxygen supply
from the impaired vasculature leads to hypoxia, a condition that
mediates tumor progression, metastasis, and therapeutic
resistance. This tumor-specific event has been studied
extensively for the development of anti-tumor therapy. Several
strategies targeting hypoxia are employed, which include a
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cytotoxic approach with hypoxic selectivity. In the hypoxic TME,
hypoxia-activated prodrugs such as tirapazamine are
preferentially activated into cytotoxic drugs and eliminate
hypoxic tumor cells with high selectivity. The second approach
direct inhibits hypoxia-inducible proteins. HIF-1a siRNA and
PX-478 directly target HIF-1a and elicit anti-tumor activity.
Hypoxia-modifying therapy improves the hypoxic condition in
tumors by increasing the blood oxygen level through blood
transfusion, carbogen, and nicotinamide treatment (76).

The combination of hypoxia-targeting therapy and
radiotherapy exhibited a synergistic effect. Topotecan is
reported to enhance the radiosensitivity of tumors by inhibiting
topoisomerase I and subsequently downregulating the expression
of HIF-1a target genes (180, 181). Nanotechnology is also
employed to enhance the therapeutic efficacy of hypoxia-
targeting therapy. In a preclinical study, nanoparticle delivering
siRNA targeting HIF-1a significantly suppressed tumor growth
in in vivo animal models of NPC (182). In recent studies, hypoxia-
responsive nanoparticles have been designed for the selective
release of drugs in the hypoxic tumor environment, thereby
prolonging the bioavailability and improving the effectiveness of
the drug (183). These nanomedicines are still in the early phase,
their mechanism, delivery efficacy and safety in human bodies
remain to be studied.

Targeting Chemokines and Cytokines
Chemokines and cytokines are potential targets for the
development of diagnostic biomarkers or therapeutic strategies.
CCL5, also known as RANTES (regulated upon activation,
normal T-cell expressed and presumably secreted), is a pro-
angiogenic chemokine that can be detected in NPC patients’
plasma with 90.07% sensitivity and 56.34% specificity. Increased
screening efficacy was observed when combining CCL5 with
EBV viral capsid antigen (VCA-IgA) or EBV DNA assay.
Inhibition of the CCL5 receptor, CCR5 with its antagonist
maraviroc could suppress CCL5-associated migration of NPC
cells (184, 185). Leukaemia inhibitory factor (LIF), a member of
the IL-6 type cytokine family, is remarkably increased in the
TME and NPC patients’ serum. Secreted by tumor cells and
inflammatory infiltrates, LIF mediates the mTOR pathway in
NPC, which leads to tumor growth and enhanced
radioresistance. Elevated serum LIF in NPC patients is
predictive of local recurrence and radiosensitivity. The
blockade of the LIF signalling pathway through a LIF
antagonist, soluble LIF receptor, or mTOR inhibitor,
rapamycin, could sensitize NPC towards irradiation (186, 187).

The development of anti-tumor therapeutics targeting
chemokines or their receptors need to consider [1] the optimal
dosage of drugs with concern on their safety and efficacy; [2]
evaluation of synergism effect when combined with conventional
therapy and immunotherapy; [3] development of drugs with high
affinity and high specificity; and [4] identification of tumor-specific
targets, with minimal effects on non-tumor-associated cells.

Clinical Applications of Exosomes
Tumor-derived exosomes are involved in a wide range of
biological and pathological processes as well as intercellular
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crosstalk and thus are promising targets for the development
of biomarkers and anti-cancer therapies. Exosomes are highly
stable and can be detected in patients’ body fluids, such as urine,
saliva, cerebrospinal fluid, and serum, and hence can be used in
liquid biopsies as non-invasive biomarkers (96). Sera exosome
concentrations have clinical significance and prognostic value in
NPC patients, whereby a positive correlation between tumor
lymph node metastasis and shorter disease-free survival was
observed in NPC patients.

Nasopharyngeal brush or swab is a less invasive alternative for
the collection of tumor tissue samples when compared to the
conventional biopsy method. Elevation of EBV miRNAs,
including mir-BART1-5p, mir-BART5, mir-BART6-5p, mir-
BART17-5p, were reported in nasopharyngeal brush samples
from NPC patients. miR-BART1-5p shows potential as a
diagnostic indicator of NPC, with 93.5% sensitivity and 100%
specificity, its expression level positively correlated with tumor
progression (188).

In addition, miR-BART7 and miR-BART13 are significantly
elevated in plasma specimens from NPC patients, the
combination of both markers offers a 90% prediction of NPC.
Furthermore, the level of miR-BART7 is associated with
metastatic progression. Diminished levels of miR-BART7 and
miR-BART13 were reported after radiotherapy, suggesting their
potential as biomarkers for the monitoring of therapeutic efficacy
(189). Post-treatment detection of circulating miR-BART17-5p
is a potential biomarker of a poor prognosis (190). Plasma EBV-
miR-BART7-3p showed 96.1% sensitivity and 96.7% specificity,
whereas miR-BART13-3p has a sensitivity of 97.9% and
specificity of 96.7% for the detection of NPC. miR-BART7-3p
is a potential prognostic biomarker, whereby prominent levels of
pre-treatment miR-BART7-3p in plasma indicated a higher risk
of distant metastasis whereas post-treatment miR-BART7-3p is
associated with short DMFS and OS (191, 192). Significant
upregulation of miR-1301-3p was detected in the exosomes
from early-stage NPC patients’ plasma, indicating their
potential application as diagnostic biomarkers in early-stage
NPC (193).

Upregulation of circulating exosomal circRNA circMYC is
correlated with increase cell proliferation and resistance to
radiotherapy in NPC patients. Circulating circMYC is a
potential biomarker for the differentiation of radiosensitive and
radioresistant patients with 90.24% sensitivity and 94.51%
specificity (103). The detection of exosomal cyclophilin A
(CYPA) combined with EBV VCA-IgA could increase the
accuracy of diagnosis, indicating the utility of exosomal CYPA
as a potential non-invasive biomarker for the diagnosis of
NPC (194).

Besides serving as biomarkers, exosomes are potential
vehicles for the delivery of cancer drugs to the target
molecules. iRGD-tagged exosomes targeting avb3 integrin-
positive NPC cells containing antagomir-BART10-5p and
antagomir-18a showed remarkable anti-angiogenic efficacy in
in vitro and in vivo NPC models (110). Exosomes are also
employed as vehicles for tumor antigen in cancer vaccines,
however, to our knowledge, exosome vaccines have not been
tested specifically in NPC yet (195).
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While exploiting exosomes as therapeutic and diagnostic
tools, there are some challenges that need to be addressed.
These include [1] t ime and cost consumption; [2]
unsatisfactory yield, purity, and quality, which could affect [3]
the sensitivity and specificity of assays, [4] absence of
endogenous control for miRNA quantification, and [5] limited
sample size in current studies, which affect the reliability of these
studies (196, 197). On the other hand, several problems need to
be considered when using exosomes as therapeutic vehicles or
targets: [1] enhancing the specificity of therapy to prevent
undesirable adverse events; [2] prolonging the half-life of
exosomes after administration into the body; [3] effective and
safe therapeutic dose of exosomes; [4] effective drug loading into
the exosomes; [5] cost and time effectiveness in the production of
bioengineered exosomes (93, 196).

Overall, exosomes play a pivotal role in the interplay
communication between EBV-infected NPC cells and stromal
cells, which contribute to the construction of the TME that
favours tumor progression, development, invasion, and
metastasis. Further investigations should consider [1]
understanding the mechanisms underlying cellular crosstalk
via exosomes, including the biogenesis and internalization of
exosomes; [2] development of standard methods for scalable
isolation and purification of exosomes; [3] large-scale clinical
s tudies for the evaluat ion of exosome as re l iable
cancer biomarkers.

Cancer-Associated Fibroblasts
The vast influence of CAFs on tumor development and
progression made them promising therapeutic targets. Several
strategies for CAF-directed anti-cancer therapies have been
tested in preclinical settings, but only a few studies are
focusing on CAFs in NPC (198). Disulfiram/copper exhibited
anti-tumor activity by targeting both cancer cells and CAFs. It
could induce apoptosis and inactivate CAFs by inhibiting the
expression of a-SMA (199). Treatment with CAF inhibitor, for
instance, Tranilast, inhibits CAFs from activating the NF-kB
pathway, thus sensitizing NPC cells to irradiation (67). The
targeting of CAFs is challenging as they demonstrate
complexity in intercellular signaling, phenotype and source
and lack of specific surface marker (198). Thus, further
understanding of CAFs, with regards to their different
phenotype and respective protumorigenic or tumor suppressive
properties in TME is required for CAF-targeting therapies.

NF-kB Signaling Pathway
The NF-kB signaling pathway is constitutively activated in 90%
of EBV-associated NPC by EBV oncoproteins and genetic
mutations. This pathway plays a pivotal role in the
intercellular communication and regulation of immune cells in
the TME, which renders it a promising target for anti-cancer
therapy against NPC (200–202). Strategies targeting the NF-kB
signaling pathway include anti-inflammatory compounds such
as aspirin, inhibition of IkB kinase (IKK) and proteasome
inhibition (130, 203, 204). Acting as an NF-kB inhibitor,
aspirin reverses LMP1-induced EMT by suppressing NF-kB-
exosomal secretion of LMP1 and promoting miR-203 expression
Frontiers in Oncology | www.frontiersin.org 13
(130). Inhibition of lung metastasis by aspirin is also observed in
mouse models. PS1145, an inhibitor of IKK, could abrogate the
NF-kB signaling pathway and subsequently inhibit the
product ion of pro-inflammatory cytokine and cel l
proliferation. PS1145 significantly inhibits the tumor growth of
NPC in in vitro cell lines and in vivo xenograft models (203).
Bortezomib, a proteasome inhibitor, targeting STAT1 and NF-
kB, could relieve the immune tolerance in NPC (204). Vitexin, a
natural flavonoid glycoside targeting NF-kB, displayed
promising anti-tumor activity against NPC in preclinical
studies (205). Restoration of Ras-like estrogen-regulated
growth inhibitor (RERG), an NF-kB inhibitor, by 5-Aza-2’-
deoxycytidine and trichostatin A attenuated ERK/NF-kB
signaling pathway, resulting in the inhibition of tumor growth
and angiogenesis in vivo. Therefore, RERGmight be employed as
a target molecule in cancer therapy (206).

Whilst translating these bench findings into bedside
application, several issues need to be addressed. As the NF-kB
signaling pathway regulates multiple physiological processes, the
development of therapeutic tools should consider developing
drug delivery strategies with high specificity to prevent
undesirable adverse events. It is reported that the NF-kB
complex p50/p50/Bcl3 is prevalent in NPC but seldom found
in a normal cell. Thus, Bcl3 inhibitors may represent promising
therapeutic agents against NPC (202, 207). Other than that, the
route of administration and dosage of NF-kB inhibitors should
consider their bioavailability and safety.
CONCLUDING THOUGHTS

The advances in multi-omics technology allow researchers to
unravel the complex intercellular communication in the NPC
microenvironment, which contributes to the growth,
development, progression, and metastasis of this malignancy.
Nevertheless, there is a lack of thorough studies on the players in
the NPC microenvironment, particularly, B-cells, NK cells,
cancer stem cells and the ECM. Of note, spindle-shaped NPC
cells predominantly located at the invasive margin of the tumor
site display stem cell-like properties and are significantly
associated with EMT. Further studies targeting these neoplastic
spindle cells might shed light on the understanding of the
mechanism underlying tumor cell dissemination, and thus
facilitating future development of predictive biomarker and
preventive medicine for NPC metastasis (72, 208, 209). Other
than that, it is suggested that future studies look into the spatial
heterogeneity of the NPC microenvironment to gain further
insights into tumor heterogeneity and discover new
opportunities for the development of theragnostic tools (210).

Several anti-cancer drugs targeting TME have been tested in
clinical trials, however, several pre-clinical and clinical barriers
remain to be overcome. Preclinically, models for cancer drugs are
inadequate to visualize the complexity of TME. Cell and tissue-
engineered models with 3-dimensional co-culture systems could
be utilized to recapitulate the cellular organization, growth
kinetics, cellular heterogeneity, intra- and intercellular
interactions in vitro to improve translation and reduce animal
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testing (211). Clinically, given the inter-patient heterogeneity in
genetic and epigenetic factors, responses towards drugs are
highly variable among individuals. Thus, an optimal
combination of therapeutic strategies should be designed based
on the integration of individual information on TME landscape,
genomic and molecular profile to ensure precision, safety, and
effectiveness of cancer therapies, which ensure better health
outcomes of NPC patients. Moreover, to reduce the adverse
events of therapeutic and enhance therapeutic efficacy, strategies
to improve specificity in targeting, delivery, and release of drugs
against TME should be considered. These include the
engineering of nanoparticles or exosomes with specific ligands
as vehicles for the delivery of drugs into the target cells. Several
delivery systems which could enhance the effectiveness of
delivery have been developed, which include arginine-modified
hydroxyapatite nanoparticles and fusion-based NPC-specific
lipid nanoparticles (212, 213).

On the other hand, there is a need for the discovery of tumor-
specific molecules as targets for the specific delivery of
therapeutic agents or disease diagnosis via liquid biopsy. The
biomarker should have high specificity, sensitivity, accuracy,
precision, and reliability, inexpensive and timely. While
diagnostic biomarkers allow the early detection of NPC,
prognostic biomarkers will predict the disease progression of
patients and facilitate the development of prophylactic drugs.
Advancement in molecular technologies, together with
enormous databases integrating molecular and clinical data
Frontiers in Oncology | www.frontiersin.org 14
sets, will accelerate the research findings and their translation
into clinical use.

In conclusion, the NPCmicroenvironment consists of cellular
and acellular players which serve as targets for the development
of therapeutic, diagnostic, and prognostic tools. Despite that,
most of them are only tested in preclinical or early phases of
clinical studies. Hence, large-scale clinical studies should be
considered to evaluate the reliability of TME components as
diagnostic tools, and guidelines or standards should be developed
to ensure safe clinical use of therapeutic tools.
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