
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Dana Kristjansson,
Norwegian Institute of Public
Health (NIPH), Norway

REVIEWED BY

Jie Wu,
Zhejiang University, China
Susanna Cramb,
Queensland University of Technology,
Australia
Guy Launoy,
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Small area disease mapping of
cancer incidence in British
Columbia using Bayesian
spatial models and the
smallareamapp R Package
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Introduction: There is an increasing interest in small area analyses in cancer

surveillance; however, technical capacity is limited and accessible analytical

approaches remain to be determined. This study demonstrates an accessible

approach for small area cancer risk estimation using Bayesian hierarchical

models and data visualization through the smallareamapp R package.

Materials and methods: Incident lung (N = 26,448), female breast (N = 28,466),

cervical (N = 1,478), and colorectal (N = 25,457) cancers diagnosed among British

Columbia (BC) residents between 2011 and 2018 were obtained from the BC

Cancer Registry. Indirect age-standardization was used to derive age-adjusted

expected counts and standardized incidence ratios (SIRs) relative to provincial

rates. Moran’s I was used to assess the strength and direction of spatial

autocorrelation. A modified Besag, York and Mollie model (BYM2) was used for

model incidence counts to calculate posterior median relative risks (RR) by

Community Health Service Areas (CHSA; N = 218), adjusting for spatial

dependencies. Integrated Nested Laplace Approximation (INLA) was used for

Bayesian model implementation. Areas with exceedance probabilities (above a

threshold RR = 1.1) greater or equal to 80% were considered to have an elevated

risk. The posterior median and 95% credible intervals (CrI) for the spatially

structured effect were reported. Predictive posterior checks were conducted

through predictive integral transformation values and observed versus fitted values.

Results: The proportion of variance in the RR explained by a spatial effect ranged

from 4.4% (male colorectal) to 19.2% (female breast). Lung cancer showed the

greatest number of CHSAs with elevated risk (Nwomen = 50/218, Nmen = 44/218),

representing 2357 total excess cases. The largest lung cancer RRs were 1.67 (95%

CrI = 1.06–2.50; exceedance probability = 96%; cases = 13) among women and
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.833265/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.833265/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.833265/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.833265/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.833265/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.833265&domain=pdf&date_stamp=2022-10-19
mailto:jonathan.simkin@bccancer.bc.ca
https://doi.org/10.3389/fonc.2022.833265
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.833265
https://www.frontiersin.org/journals/oncology


Abbreviations: BC, British Columbia; BCCR, Briti

Registry; BYM, Besag, York and Mollie; BYM2, Mod

Mollie; CHSA, Community Health Service Area; CrI,

Expected; HA, Health Authority; INLA, Integra

Approximation; KM, kilometer; O, Observed; PC, P

PIT, Predictive Integral Transformed; RR, Relative R

Incidence Ratio.

Simkin et al. 10.3389/fonc.2022.833265

Frontiers in Oncology
2.49 (95% CrI = 2.14–2.88; exceedance probability = 100%; cases = 174) among

men. Areas with small population sizes and extreme SIRs were generally smoothed

towards the null (RR = 1.0).

Discussion: We present a ready-to-use approach for small area cancer risk

estimation and disease mapping using BYM2 and exceedance probabilities. We

developed the smallareamapp R package, which provides a user-friendly

interface through an R-Shiny application, for epidemiologists and

surveillance experts to examine geographic variation in risk. These methods

and tools can be used to estimate risk, generate hypotheses, and examine

ecologic associations while adjusting for spatial dependency.
KEYWORDS

cancer surveillance, epidemiology, geospatial, disease mapping, spatial autoregressive
analysis, BYM, Shiny, INLA
Introduction

Spatial epidemiology is an integral part of cancer

surveillance and research. Disease mapping, a common spatial

methodology, provides a visual summary of geographic

information and has a long history in population oncology (1,

2). In the 1930s, Stocks et al. reported cancer mortality maps by

counties in England and Wales (3–5). Today, cancer atlases are

fundamental to international cancer surveillance, including the

Cancer in Five Continents monograph (6), and web-based

interactive platforms such as Global Cancer Observatory (7)

and the National Cancer Institute’s Cancer Atlas (8).

Traditional geographic analyses are often based on relatively

broad geographic areas (2, 9). While these are useful for high-level

surveillance and planning purposes, small area analyses present new

opportunities to understand local disease patterns (2, 10). Compared

to broad area studies, small area analyses are better approaches for

detecting environmental effects when exposures are highly localized

(2, 10). Risk factors and social and behavioral determinants of health

are often more similar within smaller geographic units (11). Small

area studies are also less susceptible to ecological bias (2, 10, 11). In

terms of surveillance, true excess disease risk may be overlooked

when using broad regional areas (2, 12). The desire for small area

analyses has been longstanding (2, 13); however, barriers to

widespread adoption remain, including technically sophisticated
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methodologies which are not easily implemented and the need to

protect personal privacy. Further, technical challenges to small area

analyses in general are unstable and unreliable risk estimates for

areas with small populations (2, 13–16).

Additionally, people and communities are often clustered

geographically, which may have important influences on disease

rates (2). When data are clustered, traditional statistical methods

relying on independent observations are not appropriate (17).

Recent advances in data availability, development of analytical

tools, methodological approaches, and technological capacity in

geographic information systems have enabled investigators to

examine variations in disease among small areas (2, 9, 14, 15, 18–

20). In particular, Bayesian hierarchical models are often used for

spatially smoothing risk estimates, increasing stability, accounting

for spatial dependence, and protecting confidentiality (2, 9, 21).

Population-based cancer registries are large georeferenced

datasets that allow for small area analyses. Small area analyses

present new opportunities in population oncology research and

surveillance; however, technical capacity is limited and accessible

analytical approaches and tools remain to be determined. Using

data from the British Columbia (BC) Cancer Registry (BCCR), the

purpose of this study was to examine geographic variation of cancer

incidence at a small area level using Bayesian hierarchical models,

and demonstrate how this can be done through an accessible

analytical approach based on our smallareamapp R package (22).
Materials and methods

Study setting

BC is Canada’s western-most province with a population of

roughly 5.1 million people (23). BC health services are
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provisioned according to various health administrative areas, the

largest consisting of five regional health authorities (HA). Nested

within HAs are 218 Community Health Service Areas (CHSA)

(24), the geographical unit of this study. The median CHSA area

was 83.1 km2 (range = 0.92–132,241 km2), and the median

CHSA population was 17,754 persons (range = 421–

81,414 persons).
Data sources and geocoding

New cases of lung (N = 26,448), female breast (N = 28,466),

cervical (N = 1,478), and colorectal (N=25,457) cancers

diagnosed among BC residents between 2011 and 2018 were

obtained from the BCCR. Cancer types were classified

following definitions from the Canadian Cancer Statistics

publication (25). The Statistics Canada Postal Code

Conversion File Plus (26) was used to assign spatial locations

(i.e. longitude-latitude) to cases from six-digit postal codes by

year of diagnosis. Records with non-valid, non-residential, or

missing postal codes were excluded (N = 1,792 or 2.2%). This

included postal codes that could not be matched, those that are

only linked to a post office location and for which census

location data were not available, and those that indicate a non-

residential address (e.g. a commercial or institutional

building). More information on these linkage errors are

described in the PCCF+ user guide (26).

Records were linked to CHSAs by mapping point locations

to the CHSA boundary map (24). After consultation with the

First Nations Health Authority (27), data for CHSAs with a

population greater than 25% of Indigenous people and/or with

an Indigenous name were suppressed.
Statistical analysis

Geographical variation in cancer risk by CHSA was

examined through the following approach:
Fron
1. Observed counts, age-adjusted expected counts, and

standardized incidence ratios (SIR);

2. Direction and strength of spatial autocorrelation in SIRs

through Moran’s I statistic;

3. Posterior median of relative risks (RR) derived from

Bayesian Poisson spatial modeling of observed counts

relative to age-adjusted expected counts, adjusting for

spatial dependence;

4. Uncertainty estimates through 95% credible intervals

(CrI) and exceedance probabilities from our Bayesian

model;

5. The posterior median of our model’s spatially structured

effect (the proportion of variance in the modeled RRs

explained by spatially structured correlations);
tiers in Oncology 03
6. Posterior predictive checks were provided in

supplementary materials. This model validation step

included plotting predictive integral transformed (PIT)

values (i.e. leave one out validation), plotting fitted and

observed values, and Pearson residuals.
The indirect method (28) was used to calculate age-adjusted

expected counts and SIRs by CHSA and sex relative to provincial

age-specific cancer incidence rates. To derive SIRs, 19 five-year

age groups (e.g. 0–4 years, 5–9 years … 90+ years) were used.

The modified Besag, York, and Mollie model (29) (BYM2)

was used to model incident count data and calculate RRs by

CHSA, adjusting for spatial correlations between neighboring

areas. A queen’s contiguity matrix was used to define adjacency

and spatial weights. Contiguity-based matrices define

neighboring units as those that share a common border. The

most basic contiguity matrix is a rook’s matrix, in which

neighbors are defined as spatial units that share a common

edge. The queen’s matrix is more encompassing and neighbors

include those that share a common edge or vertex. The BYM2

model is a re-parameterization of the original Besag, York and

Mollie model (BYM) (30) based on a generalized linear Poisson

model including a spatially structured random effect and an

unstructured random effect (independent and identically

distributed Gaussian random effect) (30). In BYM2, the

spatially structured and unstructured terms are scaled (i.e.

standardized to have variance equal to one). BYM2 has two

hyperparameters, a precision and mixing parameter. The

precision parameter controls the variability explained by a

spatial effect (29). The mixing parameter distributes existing

variability between unstructured and structured model

components (29). More detailed information on the BYM2

model is provided in the Supplementary Material (Appendix A).

We follow Riebler et al. (29) for prior specification and used

penalized complexity (PC) priors (29, 31). With PC priors, the

model shrinks towards a constant risk surface when disease risk

is spatially unstructured (29, 31) (i.e., no spatial dependence).

The mixing parameter prior was set to (U = 0.5,a = 2/3), which

assumes the unstructured random effect accounts for more of

the variability than the spatially structured effect (29, 31, 32).

The precision parameter was set to (U = 0.2/0.31, a = 0.01) (31).

Integrated Nested Laplace Approximation (INLA) was used for

Bayesian model implementation (33, 34). More programmatic

information on specifying the model, prior, and correlation

structure can be found on the smallareamapp GitHub

repository (22), Riebler et al. (Appendix B) (31), or the R-

INLA package website (33, 34).

Uncertainty estimates for posterior median RRs were

quantified with equal tail 95% credible intervals (CrI).

Exceedance probabilities were calculated using a default

threshold of 10% elevated risk (RR = 1.1). Following

Richardson et al., Saint-Jacques et al., and Holowaty et al., an

exceedance probability equal to or greater than 80% was
frontiersin.org
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considered to show elevated risk (10, 19, 35). Posterior

distributions of the spatial effect were right skewed and

uncertainty was reported with 95% highest posterior

density CrIs.

Posterior predictive checks included plotting PIT values for

each observation on a log scale. A uniform distribution is

expected; otherwise, a lack of model fit is indicated. The

observed (SIRs) and fitted values (RRs) were plotted, as well as

the observed and fitted counts.

Various posterior predictive checks were performed.

Conditional predictive ordinate (CPO) and PIT values were

checked for failure. Failed values were recomputed by removing

a given data point and re-fitting the model to predict that data

point. There were no failures among recomputed CPO/PIT

values. The R-INLA package modifies PIT values for discrete

responses with the following calculation: pit[i] – 0.5*cpo[i],

which is discussed further by Schrodle et al. (36). The

modified PIT was plotted for each observation on a logit scale

(Supplementary Figures 1B–4B) and also presented in a

histogram (Supplementary Figure 5). Deviations from

uniformity indicate that model deficiencies might be present

(36). Pearson residuals were also estimated following code

provided by the R-INLA team (37) (Supplementary Figure 6).

The observed SIRs and fitted values RRs were plotted to assess

spatial smoothing (Supplementary Figures 1A–4A). The

observed and fitted counts were plotted to assess posterior

predictive performance (Supplementary Figure 7).

Prior to small area risk estimation, global Moran’s I statistic

was calculated to understand whether risk estimates were

clustered or not. We tested the null hypothesis of no spatial

autocorrelation (SIRs are randomly distributed) with the Monte

Carlo simulation method (N = 999 simulations). Statistically

significant positive spatial autocorrelation (SIRs are clustered)

was determined using a p-value less than 0.05.

All analyses were performed using R version 4.1.0 (38) and

RStudio (39). Indirect age-standardization was performed using

the epitools R-package (28). In relation to the First Nations

OCAP® principles (40), the First Nations Health Authority of

BC recommended suppressing the modeled relative risks for 23

CHSAs with an Indigenous name or with a majority population

of Indigenous people. Data for suppressed areas were included in

all analyses to ensure neighboring regions could draw from the

corresponding information. Modeled relative risks from the 23

CHSAs were only suppressed from final tables and disease maps.

All spatial analyses presented were carried out using the R-

package smallareamapp (22) that we developed and includes

dependency R-packages sf (41), raster (42), tmap (43), and R-

INLA (33, 34). The smallareamapp package hosts an R Shiny

application that provides a user-friendly interface for model

fitting, implementation using INLA, and diagnostics, as well

tailoring of output metrics (e.g. relative risk, exceedance

probabilities). Maps, table summaries and model summaries

can be created and exported from the application directly. The
Frontiers in Oncology 04
maps presented here were generated in R using the tmap and

grid R packages based on data summaries exported from

smallareamapp. An overview and walkthrough of the

smallareamapp package can be found in Appendix B

(additional file) and the Github repository (22).
Results

Lung cancer

The Moran’s I statistic among female lung cancer SIRs was

0.259 (p = 0.001) and 0.347 (p = 0.001) among men, indicating

significant clustering. Among women, observed cases of lung cancer

by CHSA ranged from 0 to 254 cases. Women’s SIRs ranged from

0.35 to 3.63 among non-zero count areas. Women’s RRs ranged

from 0.53 to 1.63. Among men, observed cases by CHSA ranged

from 2 to 218 cases. Men’s SIRs ranged from 0.29 to 2.69 among

non-zero count areas. Men’s RRs ranged from 0.49 to 2.49.

Figure 1 shows the mapping of posterior median RRs. The

five largest RRs among areas at elevated risk are presented in

Table 1. The spatially structured effect (i.e. the proportion of

variance in the modeled RRs explained by spatial structured

correlations) was 12.2% (95% CrI = 0.6%–33.8%) and 5.5% (95%

CrI = 0.1%–19.9%) among women and men, respectively.

Overall, there were N = 50/218 and N = 44/218 CHSAs with

elevated risk among women and men, respectively. Among these

areas, there were 1245 and 1112 additional cases than expected

among women and men, respectively.

Observed and fitted values were generally similar for

moderate SIR values but showed deviations near extreme

values (Supplementary Figure 1A). The PIT plots show a

generally uniform pattern with some deviations in the tails

(Supplementary Figure 1B).
Female breast cancer

The Moran’s I statistic for female breast cancer SIRs was -

0.119 (p = 0.992), not supporting clustering in the data. Female

breast cancer cases by CHSA ranged from 0 to 534. Among areas

with non-zero counts, SIRs ranged from 0.34 to 3.45. RRs ranged

from 0.85 to 1.21. Choropleth maps of RRs are presented in

Figure 2 and areas with elevated risk were presented in Table 1.

The spatially structured effect was 19.3%. (95% CrI=1.2%-

50.7%) Overall, there were two CHSAs with elevated risk,

representing 77 excess cases.

Posterior predictive checks are presented in Supplementary

Figures 2A, B. Observed and fitted values showed large

deviations at extreme SIR values; RR’s generally hovered

around 1.0 (Supplementary Figure 2A). The PIT plots show a

generally uniform pattern with deviations at the tail ends

(Supplementary Figure 2B).
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Cervix cancer

The Moran’s I statistic for cervix cancer SIRs was 0.211 (p =

0.001), indicating significant clustering. Cervix cancer cases by

CHSA ranged from 0 to 25. Among areas with non-zero counts,

SIRs ranged from 0.17 to 6.4. RRs ranged from 0.80 to 1.27. A

choropleth map of RRs is Figure 3. Overall, there were no

CHSAs with elevated risk. The posterior median spatially

structured effect was 7.8% (95% CrI=0%-44.3%).

Posterior predictive checks are presented in Supplementary

Figures 3A, B. Observed and fitted values showed large

deviations for extreme SIRs; RR’s generally remained near 1.0

(Supplementary Figure 3A). The PIT plots show a generally

uniform pattern (Supplementary Figure 3B).
Colorectal cancer

The Moran’s I statistic among female colorectal cancer SIRs

was 0.017 (p = 0.28) and does not support clustering in the data.

Among men, the statistic was 0.139 (p = 0.006), indicating

significant clustering. Among women, observed colorectal

cancer cases by CHSA ranged from 0 to 211 cases. Women’s

SIRs ranged from 0.38 to 5.14 among non-zero count areas.
Frontiers in Oncology 05
Women’s RRs ranged from 0.82 to 1.22. Among men, observed

cases by CHSA ranged from 0 to 237 cases. Men’s SIRs ranged

from 0.36 to 4.52 among non-zero count areas. Men’s RRs

ranged from 0.76 to 1.18. Choropleth maps of RRs are

presented in Figure 4. CHSAs with elevated risk are presented

in Table 1. Overall, there were three and one CHSAs with

elevated risk among women and men, respectively. Among

these regions, there were 111 more female cases than expected

and 29 more male cases than expected. The spatially structured

effect was 4.6% (95% CrI = 0%-29.0%) and 4.4% (95% CrI = 0%–

24.8%) among women and men, respectively.

Observed and fitted values showed large deviations for

extreme SIRs (Supplementary Figure 4A). The PIT plots show

a generally uniform pattern with deviations at the tail ends

(Supplementary Figure 4B).
Discussion

Summary of findings

This study presents results from a technically accessible

approach for examining cancer risk at small geographic areas

using the R package smallareamapp that can be applied to
FIGURE 1

Lung cancer posterior median relative risks by CHSA and sex, 2011–2018. Areas with an exceedance probability of 80% or greater (threshold
RR = 1.1) are shown in black bolded borders. Areas shown in red bolded borders correspond to those listed in Table 1.
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TABLE 1 Community Health Service Areas with the largest posterior median relative risks by cancer type, 2011–2018.

Cancer Sex CHSA O E SIR RR 95% CrI Exceedance probability

Lung Women Chetwynd 13 4 3.40 1.67 1.06–2.50 96%

Vanderhoof Rural 12 3 3.63 1.63 1.02–2.48 95%

Prince George City – Central 173 106 1.64 1.58 1.36–1.82 100%

Hope 30 1.75 1.55 1.19–1.96 99%

Langford/Highlands 129 80 1.61 1.54 1.30–1.81 100%

Men Downtown Eastside 174 65 2.69 2.49 2.14–2.88 100%

Aldergrove/Otter 52 26 1.99 1.71 1.31–2.20 100%

Prince George City – Central 155 97 1.60 1.54 1.31–1.79 100%

Cedar Cottage 66 39 1.68 1.53 1.21–1.91 100%

Kamloops Centre North 202 129 1.57 1.53 1.33–1.75 100%

Breast Women South Cowichan 167 119 1.41 1.21 1.07–1.38 94%

Pitt Meadows 135 106 1.27 1.18 1.03–1.35 84%

Cervix Women – – – – – – –

Colorectal Women City of Langley 101 70 1.45 1.22 1.04–1.43 89%

Prince George City – Central 125 89 1.40 1.22 1.05–1.42 91%

Vernon Centre/Coldstream 211 166 1.27 1.17 1.04–1.32 86%

Men Haney 114 85 1.34 1.18 1.02–1.37 82%
Frontiers in Onc
ology
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CHSA, Community Health Service area; O, Observed; E, Expected; SIR, Standardized Incidence Ratio; RR, Relative Risk; CrI, Credible Interval. Expected counts were rounded to the nearest
whole value.
FIGURE 2

Female breast cancer posterior median relative risks by CHSA, 2011–2018. Areas with an exceedance probability of 80% or greater (threshold
RR = 1.1) are shown in black bolded borders.
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support cancer surveillance, health planning, and health

research. This approach includes Bayesian hierarchical models

to estimate spatially smoothed RRs, exceedance probabilities,

and the spatially structured effect, as well as options for

conducting posterior predictive checks and Global Moran’s I

test for spatial autocorrelation. Using cancer registry data for BC,

we present the cancer risk for small geographic areas relative to

provincial rates for lung, female breast, colorectal, and cervical

cancers. At the CHSA level, which comprises 218 regions across

BC, the proportion of variance in the modeled RRs explained by

a spatial effect ranged from 4.4% (male colorectal) to 19.2%

(female breast), that is, some percentage of the modeled risk have

an underlying spatial structure beyond randomness. Lung,

cervix, and male colorectal cancers showed significant spatial

clustering. Lung cancer showed the greatest number of regions

with elevated risk, representing 2357 excess cases during the

period 2011–2018.
Geographic variations of cancer
incidence in BC

Strong geographic patterns were identified for lung cancer,

consistent with previous reports in BC that primarily focused on
Frontiers in Oncology 07
large health regions (44, 45). At a small area scale, we found

areas that deviated from previously reported large area trends.

Among men, the Downtown Eastside CHSA was significantly

elevated despite being located in the Vancouver Coastal Health

region, where lung cancer incidence rates are the lowest (44). In

BC’s North, where lung cancer incidence rates are the highest

(44), a number of regions showed lower risk. Similar differences

in lung cancer incidence between broad and local scales have

been reported elsewhere in Canada (46). Bayesian hierarchical

modeling has enabled more accurate assessment of risk among

small areas and more detailed information for regional cancer

control and prevention (46). Geographic variations in lung

cancer, as well as sex-specific trends, are likely related to

regional and historical differences in tobacco smoking rates

(47, 48), radon exposure (49), and socioeconomic status (50).

Compared to lung cancer, female breast, colorectal, and

cervix cancers showed less pronounced regional differences.

The conservative nature of the BYM2 model may impact

estimates of spatial variation (10), particularly for cancers with

low incidence like cervix. Geographic variations may also be

related to variations in screening participation, socioeconomic

and sociodemographic characteristics, and risk factors (51, 52).

To our knowledge, there are no small area studies of cancer

screening in BC. Elsewhere in Canada, significant spatial
FIGURE 3

Cervix cancer posterior median relative risks by CHSA, 2011–2018. Areas with an exceedance probability of 80% or greater (threshold RR = 1.1)
are shown in black bolded borders.
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variations of cancer screening for breast, cervix, and colorectal

cancers were reported among small areas (53). Among large

health regions in BC, breast cancer screening shows differences

by geography (51, 52) and material deprivation (51). Significant

variations in cervix cancer incidence in BC have been reported

by rural-urban classifications, ethnicity/race, smoking, and

marital status (54).

Compared to other provinces, age-standardized incidence

rates (ASIR) for various cancer types are generally lower in BC

(all-cancer ASIR, both sexes, 501.8 per 100,000) compared to the

rest of Canada (all-cancer ASIR, both sexes, 556.3 per 100,000),

which includes 13 provinces and territories (48). Among the four

cancer types examined in this paper, BC has the lowest male and

female lung cancer ASIR (Men: 55.2 per 100,000; Women: 54.3

per 100,00) in Canada (48). In respect to colorectal cancer, the BC

male ASIR (61.1 per 100,000) is the second lowest in Canada and

the BC female ASIR (46.7 per 100,00) is on par with the Canadian

ASIR (48). Female breast cancer ASIR (116.4 per 100,000) is the

third lowest in Canada and the cervix ASIR (6.5 per 100,000) is the

second lowest in Canada (48). Geographic differences in cancer

incidence across provinces and territories in Canada are

attributable to variations in modifiable risk factors,

environmental influences, access and availability of cancer

services, and the social determinants of health. Diagnostic
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practices can also influence geographic variation in cancer

incidence, as has been shown with geographic variations in

prostate-specific antigen testing and prostate cancer incidence.
Small area risk estimation using BYM2

A common challenge in population oncology has been

unstable risk estimates for areas with sparse event data (14, 18,

21). However, recent work has improved estimation and

measures of uncertainty for small areas (9, 21, 55, 56). Spatial

smoothing through Bayesian hierarchical models is one

approach that increases risk estimate stability by borrowing

information from neighboring areas (9, 20, 21). Duncan et al.,

used the Bayesian Leroux model (57) and Markov Chain Monte

Carlo methods to examine cancer incidence and survival across

2148 small areas in the Australian Cancer Atlas (9). The BYM

model and INLA were used by Moraga in the SpatialEpiApp (20)

and by Saint-Jacques for modeling the risk of bladder and kidney

cancer (19, 55). Brown et al. calculated the spatial intensity

surface of lung and thyroid cancer using a log-Gaussian Cox

Process and INLA (56, 58). Even in the absence of spatial

autocorrelation, Bayesian hierarchical models are valuable for

reducing noise in small area analysis (35).
FIGURE 4

Colorectal cancer posterior median relative risks by CHSA and sex, 2011–2018. Areas with an exceedance probability of 80% or greater
(threshold RR = 1.1) are shown in black bolded borders.
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We used the BYM2 model (29, 31), a re-parameterization of

the BYM model proposed by Simpson et al that addresses two

issues: (1) the spatially structured and unstructured effect terms

are not identifiable, and (2) the spatially structured term is not

scaled (29, 31). A simulation study by Riebler et al. found that

BYM2 performed at least as well as other models, including

BYM, Leroux, and Dean’s model (29). Others have reported

preference for BYM2 over BYM to separately identify the spatial

and unstructured effects (59) and when using zero-inflated

data (60).

Our approach builds off prior examples of small area risk

estimation in population oncology. Richardson et al. reported that

BYM was a conservative approach to risk estimation (10). A

simulation study found high specificity even when data were

sparse, but sensitivity was low when the elevated risk was

moderate (RR <2.0) or based on expected counts less than 50

(10). Others have proposed using the whole posterior distribution

to improve sensitivity (10) and interpretation (61). Richardson et

al. recommended exceedance probabilities of 70–80% (10). These

recommendations were applied to various neighborhood and

community level analyses of cancer incidence (19, 35, 55).

Holowaty et al. suggested using Bayesian smoothing together

with other spatial statistics such as Moran’s I to assess global

clustering, which we implemented (35). As suggested by Holowaty

et al., we used Moran’s I as an initial assessment of the entire study

area for clustering in the data (35).
As an accessible analytic approach and
tool for cancer surveillance and research

Dawe et al. recommended that Bayesian spatial modeling be

more widely used to inform the planning of cancer screening

and prevention strategies (46). Despite advances in

methodologic approaches that enable small area risk

estimation, technical capacity and expertise to carry out

analyses vary regionally (14, 18, 35). In both Canada and the

United States, the majority of geospatial studies in population

oncology were concentrated among a few cancer registries (14)

and NCI-designated Cancer Centers (18), respectively.

Holowaty et al. suggested data access and analytical capacity as

important limitations for many public health units (35). To

address existing gaps in analytic capacity, we packaged the

methods presented in this study into the smallareamapp R

package (22) for public use. The package can be implemented

as an R Shiny (62) app, which can be easily used by

epidemiologists and analysts for small area risk estimation and

data visualization. Our app builds off of similar functionality in

the SpatialEpiApp (20), a Shiny app and R package for general

spatial and spatio-temporal analysis (20). Our package enables

the use of BYM2 and INLA following the approach and purposes

described in this study and contains posterior predictive checks

and formal tests for spatial autocorrelation.
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While we do not incorporate covariate risk factor data, such

information can be readily added to the BYM2 model and

assessed in light of spatial dependencies. Morales-Otero et al.

applied BYM2 to study infant mortality in Colombia and

examined associations with sociodemographic factors (59).

Morris et al. used BYM2 to model school-age pedestrian

injuries from motor vehicle crashes in New York City and

explored associations with sociodemographic factors (63). In

Canada, socioeconomic and demographic Census data are

available at the neighborhood level through the Canadian

Index of Multiple Deprivation (64) and Material and Social

Deprivation Index (65). The smallareamapp R package,

however, does not currently have the ability to include fixed

effects. This functionality will be considered for future iterations.

Model extensions to account for temporal correlations and

spatio-temporal interactions are also possible (32), as

demonstrated by Moraga in the SpatialEpiApp (20) with the

Bernardinelli model (66).
Strengths

The present study examines 8 years of data obtained from

the BCCR, a population-based cancer registry gold-certified by

the North American Association Central Cancer Registries.

Nearly 98% of tumor records were geocoded. To our

knowledge, this is the first small area study of cancer risk in

BC in peer-reviewed literature. We used the CHSA unit, which is

the smallest health administrative area in BC. Compared to

traditional non-spatial analyses in cancer surveillance, the

present study makes full use of available health data in a

BYM2 model framework (29, 31). Analyses conducted at

larger administrative levels (e.g. the 89 Local Health Areas

versus 218 CHSAs) typically lack sufficient resolution to be

used for localized surveillance and planning. We also

implemented models using INLA, which provides a rapid and

robust estimation within a Bayesian framework without the need

for time-consuming MCMC sampling. The smallareamapp R

package is freely available and open source, and may be readily

used by others for investigating spatial variation in risk (22).
Limitations

Despite CHSAs being the smallest health administrative area

level in BC, more work is required to determine the optimal

geographic scale and spatial weighting for modeling cancer risk

(67). In this study, a complete six-digit postal code was assigned

to a geocoordinate using the Statistics Canada PCCF+ program.

The PCCF+ uses population weighting and random allocation to

inform the geocoordinate of postal codes, specifically when

postal codes match to multiple potential reference points (a

geocoordinate that links to a small Census geographical unit,
frontiersin.org

https://doi.org/10.3389/fonc.2022.833265
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Simkin et al. 10.3389/fonc.2022.833265
such as a blockface or a dissemination area) (26). Positional

accuracy is better among urban versus rural areas. However, the

magnitude of positional error (distance error between PCCF+

geocoordinates and true reference point) is typically small and

more serious for highly localized exposure assessment. The

positional error in this study is not expected to impact the

assignment of CHSA to cases from a complete six-digit postal

code because the CHSA is a relatively large area compared to

postal codes and the magnitude of PCCF+ positional errors

reported in prior literature (26, 68, 69).

While this study focused on identifying areas with an

elevated risk, this approach can be also used to examine areas

of low incidence. This may be relevant in the context of cancer

screening to evaluate prevention and early detection.

Sensitivity analyses to assess the effect of different hyperprior

specifications on posterior risk estimates and the spatial effect

were not conducted in this study. The primary purpose of this

study was to demonstrate the utility of the smallareamapp R

package, and in doing so, we followed specifications chosen by

Riebler et al. (29). The ability to add custom hyperprior

specifications for the PC prior, as well as alternate prior

choices, are not yet available in the smallareamapp R package

but will be considered for future updates. In this study, the

spatial effect appeared low in some cases, despite a relatively

strong Moran’s I value (e.g. male lung cancer). This observation

is not clear and to our knowledge, the relationship between the

Moran’s I statistic and the modeled spatial effect has not been

explored. Further work is required to interpret the spatial effect

in relation to Moran’s I.

The modeled relative risks and model’s spatial effect are

influenced by the spatial weights matrix, which is user-defined.

A queen’s contiguity weights matrix was chosen. While these

weights are often considered a standard choice in many spatial

analytical tools, this approach does not account for islands in

spatial autocorrelation because islands do not share any

common borders or vertices (i.e. they have zero neighbors). In

this study, 3 of 218 areas were considered islands. The modeled

relative risks among these areas were not adjusted for spatial

effects, as they do not have neighbors, but they are still adjusted

for unstructured random effects. Compared to the SIR values,

the modeled RRs for these areas generally moved closer towards

the null risk (RR = 1.0). Another option to consider when islands

are present is the k-nearest neighbor weights (KNN). The KNN

weights consider the first k-neighbors, irrespective of their

distance to a given area. These are not yet available in the

smallareamapp R package but can be introduced and will be

considered for future updates.

Even though risk can be estimated for areas with sparse

data (including zero counts), Bayesian disease-mapping

models like BYM and BYM2 are considered conservative

(10). Following recommendations by various studies (10, 19,

35, 55, 61), we leveraged information from the whole posterior

distribution through exceedance probabilities to improve
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sensitivity in detecting areas with a high probability of

having an elevated risk, although posterior predictive

performance highlighted some model deficiencies, in

particular for cervical cancer where case counts were

relatively small. Bayesian hierarchical models are only one

approach to disease mapping and risk estimation. While we

implemented Bayesian smoothing together with Moran’s I,

other methods could be considered, such as the spatial scan

statistic (35).
Conclusions

Small area analyses in cancer surveillance are increasingly

warranted; however, analytic capacity remains limited. In this

study, we draw on methodological advances to present a

technically accessible approach and tool for small area risk

estimation and disease mapping using the BYM2 model. Our

smallareamapp R package can be used by epidemiologists and

surveillance analysts, as well as health planners, to make full use

of georeferenced health data for examining geographic variation

in cancer risk. These methods can also be extended to generate

hypotheses and examine ecological associations while adjusting

for spatial dependencies.
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Posterior predictive checks: (A) scatterplot of observed lung cancer SIRs

and fitted values (RR); (B) PIT value distribution.
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Posterior predictive checks: (A) scatterplot of observed female breast

cancer SIRs and fitted values (RR) and (B) PIT value distribution.
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Posterior predictive checks: (A) scatterplot of observed cervical cancer
SIRs and fitted values (RR) and (B) PIT value distribution.
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Posterior predictive checks through a (A) scatterplot of observed
colorectal cancer SIRs and fitted values (RR) and (B) PIT value distribution.
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Posterior predictive checks through a histogram of PIT values.
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Posterior predictive checks through histogram and density plots of
Pearson residuals.
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Posterior predictive checks through observed and fitted counts.
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