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Background: Early detection of colorectal cancer (CRC) is crucial to the treatment and
prognosis of patients. Traditional screening methods have disadvantages.

Methods: 231 blood samples were collected from 86 CRC, 56 colorectal adenoma
(CRA), and 89 healthy individuals, from which extracellular vesicle long RNAs (exLRs) were
isolated and sequenced. An CRC diagnostic signature (d-signature) was established, and
prognosis-associated cell components were evaluated.

Results: The exLR d-signature for CRC was established based on 17 of the differentially
expressed exLRs. The d-signature showed high diagnostic efficiency of CRC and control
(CRA and healthy) samples with an area under the curve (AUC) of 0.938 in the training
cohort, 0.943 in the validation cohort, and 0.947 in an independent cohort. The d-
signature could effectively differentiate early-stage (stage I–II) CRC from healthy individuals
(AUC 0.990), as well as differentiating CEA-negative CRC from healthy individuals (AUC
0.988). A CRA d-signature was also generated and could differentiate CRA from healthy
individuals both in the training (AUC 0.993) and validation (AUC 0.978) cohorts. The
enrichment of class-switched memory B-cells, B-cells, naive B-cells, and mast cells
showed increasing trends between CRC, CRA, and healthy cohorts. Class-switched
memory B-cells, mast cells, and basophils were positively associated with CRC prognosis
while natural killer T-cells, naive B-cells, immature dendritic cells, and lymphatic endothelial
cells were negatively associated with prognosis.

Conclusions: Our study identified that the exLR d-signature could differentiate CRC from
CRA and healthy individuals with high efficiency and exLR profiling also has potential in
CRA screening and CRC prognosis prediction.
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INTRODUCTION

Colorectal cancer (CRC) ranks the third common cancer in men
and the second in women, as well as the second cause of cancer
death worldwide, which remains an enormous socioeconomic
burden on society (1, 2). Meanwhile, colorectal adenoma (CRA)
usually take years to develop to invasive or metastatic CRC,
which makes CRC one of the cancers most suitable for early
detection (3).

Early detection of CRC is the key to reducing invasive
treatment, morbidity, mortality, and treatment cost (3). CRC
screening methods include invasive and non-invasive tests.
Colonoscopy is widely known as the golden standard but
limited by invasiveness and low compliance rate (4). The
guaiac feca l occul t b lood tes t (gFOBT) and fecal
immunochemical test for hemoglobin (FIT) are most widely
used because they are convenient, cheap, and non-invasive.
However, these fecal tests have limitations of low sensitivity or
specificity (3). CT colonography, anther non-invasive test, is
costly and not sensitive to tumors less than 10 mm (3, 5). From
the above, blood tests tend to be more acceptable for CRC
screening, but no reliable detecting method or markers have
been widely acknowledged (6).

Extracellular vesicles (EVs) are extracellular membrane
vesicles originated and released from endocytosis and
exocytosis, containing proteins, DNA, RNA, and lipids (7).
Due to the protection of the lipid membrane, EV RNAs are
likely to be more stable than other free plasma RNA. Long RNAs
have been identified in human blood EVs, including messenger
RNA (mRNA), long non-coding RNA (lncRNA), and circular
RNA (circRNA), which have emerged as promising markers for
cancer diagnosis recently and have already been evaluated in
some cancers (8–10). However, difficulties in EV research lie on
the lack of efficient and stable methods for plasma EVs isolating
and purifying. Fortunately, an optimized strategy for plasma EV
long RNA (exLR) sequencing (exLR-seq) has been developed and
reliable positive data have been obtained in our recent studies
(11, 12).

In this study, a CRC diagnostic signature (d-signature) based
on plasma exLR profiling was identified and validated, which
could differentiate CRC from control (CRA and healthy)
individuals efficiently. We also evaluated cell components and
signaling pathways between CRC, CRA, and healthy groups, and
associated prognostic significance were revealed.
Abbreviations: CRC, colorectal cancer; exLR, extracellular vesicle long RNA;
CRA, colorectal adenoma; AUC, area under the curve; gFOBT, guaiac fecal occult
blood test; FIT, fecal immunochemical test for hemoglobin; CTC, CT
colonography; EV, extracellular vesicle; mRNA, messenger RNA; lncRNA, long
non-coding RNA; circRNA, circular RNA; exLR-seq, extracellular vesicle long
RNA sequencing; d-signature, diagnostic signature; TEM, transmission electron
microscopy; TPM, transcripts per million; DEG, differentially expressed gene; FC,
fold change; mRMR, minimum redundancy maximum relevance; IFS, incremental
feature selection; SVM, support vector machine; OS, overall survival; DFS, disease-
free survival; ssGSEA, single sample gene set enrichment analysis; ANOVA,
analysis of variance; NA, not available; PMBC, peripheral blood mononuclear
cell; ROC, receiver operating characteristic; CEA, carcinoembryonic antigen; NKT
cell, natural killer T-cell.
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PATIENTS AND METHODS

Patients
From February 2018 to January 2019, 194 blood samples were
collected from 72 CRC patients, 42 CRA patients, and 80 age-
and sex-matched healthy participants receiving routine medical
examination. The diagnoses of all CRC and CRA patients were
pathologically confirmed, and these participants did not have a
history of other malignant tumors. All enrolled CRC patients
underwent surgical treatment without preoperative
chemotherapy or radiotherapy at the Colorectal Surgery
Department of Fudan University Shanghai Cancer Center. 37
blood samples (14 CRC, 14 CRA, 9 healthy) were collected in an
independent center from Fujian Medical University
Union Hospital.

EVs Identification and exLR-seq Analysis
The optimized strategy for plasma exLR-seq included several
steps as follows: plasma sample collection, EV purification,
transmission electron microscopy (TEM), size distribution
measurement, RNA isolation, and RNA-seq library preparation
(11). To be brief, the blood samples of CRC and CRA patients
were collected before the excision of tumor and centrifuged twice
at 3,000 and 13,000 rpm, respectively. The EV RNAs were
isolated using the exoRNeasy Serum/Plasma Kit, and the EVs
were photographed using a TEM. The size distribution was
analyzed using Flow NanoAnalyzer. EV markers TSG101 and
CD63 were estimated by Western blots. The RNA-seq library
was prepared using SMART technology and sequenced by the
Illumina sequencing platform. Details of these steps are found in
Supplementary Materials.

ExLR-Seq Analysis for Quantifying
Gene Expression
The qualified FASTQ files generated from RNA-seq were aligned
to the human genome (hg38) using STAR v2.5.3 with default
parameters (13). The mapped sequencing reads in the resulting
BAM files were then assigned to genes by featureCounts v1.6.3
(14). Considering that the transcriptome library was reversely
stranded, “-s” was set as 2 for performing strand-specific read
counting. Genes were annotated with GENCODE v.29. The read
count of each gene was converted to transcripts per million
(TPM) as follows:

TPMi =
RCi

Li
∗

1

oLR
j=1

RCj

Lj

0
@

1
A ∗ 106

Where RCi stands for the count of reads mapped to the gene and
Li is the length of the gene. LR is the number of long RNA genes
including protein coding and long non-coding genes.

Differential Expression Analysis and
Pathway Enrichment Analysis
We calculated the correlation coefficient between each two samples
based on TPM expression profiles and filtered poor samples
with the median of correlation coefficients smaller than 0.9.
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The final dataset analyzed in our study contained 72 CRC
samples and 122 control (42 CRA and 80 healthy) samples. To
explore differentially expressed genes (DEGs) between these two
cohorts, we applied R package “limma” on TPM expression
profiles (15). The Benjamini–Hochberg approach was used to
adjust the p values for multiple testing. A gene with a fold change
(FC) bigger than 1.5 and adjusted p value smaller than 0.05 was
defined as a DEG. To investigate the differential pathways
between CRC and control samples, R package “clusterProfiler”
was used for KEGG pathway enrichment analysis based on the
DEGs (16).

Selecting Effective Feature Genes and
Building CRC/CRA-Identification Model
The whole dataset was randomly divided into training cohort (48
CRC and 82 control) and validation cohort (24 CRC and 40
control). With respect to the training cohort, we firstly
conducted DEG analysis. To elect informative and functional
signature genes for effectively distinguishing CRC samples from
control samples, we focused on these upregulated protein coding
or long non-coding genes in CRC samples. Then, we employed
the minimum redundancy maximum relevance (mRMR)
algorithm to rank these candidate genes. This was
implemented using the mRMR package with the “MIQ”
feature selection scheme (http://home.penglab.com/proj/
mRMR/) (17). Next, we applied the incremental feature
selection (IFS) strategy to determine the optimal subset of
feature genes based on the support vector machine (SVM)
(18). The first feature set was constructed with the top one
gene. The remaining ranked feature genes were added one by one
incrementally for producing new feature sets. Each new feature
set was composed of the previous set adding with a new feature
gene. Each feature gene set was evaluated with the area under the
curve (AUC) value derived from the SVM model using leave one
out cross-validation (LOOCV). Finally, the optimal CRC-
identification model was built using the feature gene set with
the highest AUC value. This model was then applied to classify
the validation cohort for further assessing the prediction
performance of these feature genes. SVM models were
Frontiers in Oncology | www.frontiersin.org 3
constructed using the LibSVM software package downloaded
from https://www.csie.ntu.edu.tw/~cjlin/libsvm/ (19). The CRA-
identification model was built in the same way.

Cell Type and Pathway Estimation
To infer the cell types of EV origins, we performed xCell analysis
on TPM expression profiles using R package “xCell,” a gene
signature-based method that integrates the advantages of gene
set enrichment with deconvolution approaches (20). We
obtained the enrichment scores of 64 immune and stromal cell
types and further investigated the influence of each cell type on
the overall survival (OS) and disease-free survival (DFS) of CRC
samples. The survival analysis and Kaplan–Meier plotting were
implemented by R package “survminer.” The single sample gene
set enrichment analysis (ssGSEA) algorithm was used to
calculate the enrichment scores of the canonical MSigDB
pathways (C2, KEGG) (21). This was carried out on R package
“GSVA” with the method of “ssGSEA” (22). To explore the
significant different cell types and pathways among CRC, CRA,
and normal cohorts, the Wilcoxon-rank sum test was used for
comparison between any two cohorts and the one-way analysis
of variance (ANOVA) test was used for comparisons among the
three cohorts.
RESULTS

Patient Characteristics
In general, 194 participants were involved in our center,
consisting of 72 CRC patients, 42 CRA patients, and 80
healthy individuals. The clinicopathological information is
listed in Table 1. No obvious difference was seen in age,
gender, or tumor site between the three groups. We included
more early-stage CRC (stage I–II, 53 cases) than advanced CRC
(stage III–IV, 19 cases) because this study was designed to mainly
focus on the early detection of CRC. All the CRC patients were
followed up for at least 24 months. Death events were observed
in 13 stage IV CRC patients, and tumor recurrence or metastasis
events were observed in 8 stage II/III CRC patients.
TABLE 1 | Clinicopathological information of 194 participants.

CRC (N = 72) CRA (N = 42) Healthy (N = 80)

Age 60.8 ± 10.9 56.2 ± 10.7 59.9 ± 13.0
Gender
Male 48 24 54
Female 24 18 26

Tumor site
Right colon 15 11 NA
Left colon 23 13 NA
Rectum 34 18 NA

TNM stage
I 22 NA NA
II 31 NA NA
III 3 NA NA
IV 16 NA NA
April 2022 | Volume 12
NA, not available.
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EVs Isolation and exLR-seq
The isolated EVs observed by TEM were round capsule bubbles.
The scanning electron microscope images of EVs are shown in
Figure 1A. Since types of EVs (exosomes, microvesicles, and
apoptotic bodies) should be distinguished by diameter, we
analyzed the size distribution by flow cytometry (10). The size
distribution result revealed abundant peaks ranging from 50 to
200 nm and a mean diameter of 103.9 ± 38.6 nm (Figure 1B),
indicating that morphologically most of the isolated EVs were
exosomes with definition of 40–200 nm in diameter (10).
Western blot analysis confirmed that the EV markers CD63
and TSG101 were enriched in EVs but not peripheral blood
mononuclear cells (PMBCs), while the negative-control protein
marker calnexin was enriched in PMBCs but not EVs
(Figure 1C). Afterward, exLR-seq was conducted and no
obvious difference of detected mRNA, lncRNA, and
pseudogene amount was observed between the three groups
(Figure 1D). Unsupervised hierarchical clustering revealed
clear separations of CRC and control (CRA and healthy)
samples, as well as CRC, CRA, and healthy samples
(Figure 1E). The differentially expressed exLRs were enriched
for some cancer-associated pathways, such as transcriptional
misregulation in cancer and NF-kappa B signaling pathway
(Figure 1F). Therefore, we hypothesized that exLRs have
potential as diagnostic biomarkers of CRC.

Establishment of an exLR d-Signature
for CRC
To identify the diagnostic potential of exLRs, we developed an
exLR-based d-signature for CRC. The flowchart of the
establishment of the d-signature is presented in Figure 2A. By
random sampling, the cohort was divided into a training cohort
Frontiers in Oncology | www.frontiersin.org 4
(48 CRC, 82 control) and a validation cohort (24 CRC, 40
control). Next, we selected 66 long RNA genes upregulated in
CRC samples compared with control samples by DEG analysis
(expression frequency >0.5, log2(FC) >0.59 and adjusted p value
< 0.05). MRMR and SVM were used to select the optimal feature
gene set among the training cohort. The top 17 genes of the
ranked 66 genes were selected to build the SVM prediction
model (Table 2). Unsupervised hierarchical clustering of the 17
genes showed relatively high consistency between predicting
CRC and true CRC individuals in both training and validation
cohorts (Figures 2B, C). The d-signature was applied in the
training cohort and validation cohort to assess the diagnostic
efficiency. We generated receiver operating characteristic (ROC)
plots, displaying the performance of the d-signature in the
training cohort, the validation cohort, and the independent
cohort (Figures 2D–F). The training sensitivity, specificity, and
accuracy were 82.93%, 93.75%, and 86.15%, respectively
(Figure 2D and Table 3). The validation sensitivity, specificity,
and accuracy were 87.50%, 91.67%, and 87.50%, respectively
(Figure 2E and Table 3). The sensitivity, specificity, and
accuracy of the independent cohort were 71.43%, 95.65%, and
86.49% (Figure 2F and Table 3). The CRC d-signature showed
high diagnostic efficiency both in the training cohort and the
validation cohort, as well as the independent cohort.

The exLR d-Signature for Early Detection
of CRC
We further evaluated the performance of the exLR d-signature
in subgroups. The d-signature could differentiate between
healthy, CRA, and CRC cohorts, and an increasing trend of
the diagnostic probability was shown among the three cohorts,
which is consistent with the process of CRC carcinogenesis
A B

D
E F

C

FIGURE 1 | Plasma EVs and exLR-seq. (A) Photograph of EVs using a TEM. (B) Size distribution of EVs. (C) Western blot analysis of EV markers TSG101 and CD63
in PMBC and EVs. (D) Amount of exLRs for each sample among CRC, CRA, and healthy individuals. (E) Unsupervised hierarchical clustering of the exLRs differentially
expressed between CRC and control (class I); CRC, healthy, and CRA (class II). (F) KEGG pathway enrichment analysis for differentially expressed exLRs.
April 2022 | Volume 12 | Article 829230
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(Figure 3A). Performance of the d-signature was then assessed
among different stages of the CRC and control cohorts. As
shown in Figure 3B, the d-signature had diagnostic ability for
CRC of stages I, II, III, and IV. The sensitivity, specificity, and
accuracy of the d-signature to differentiate CRC from CRA were
76.19%, 84.72%, and 79.83% (Figure 3C and Table 3). The
diagnostic efficiency was higher for the d-signature to
differentiate between CRC and healthy cohorts (sensitivity
92.50%, specificity 94.44%, accuracy 89.47%, Figure 3D and
Table 3). As for the early-stage (stage I–II) CRC versus CRA
Frontiers in Oncology | www.frontiersin.org 5
subgroup, the sensitivity, specificity, and accuracy were 85.71%,
81.13%, and 82.11% (Figure 3E and Table 3). The sensitivity,
specificity, and accuracy for the d-signature to differentiate
between early-stage (stage I–II) CRC and healthy cohorts were
95.00%, 96.23%, and 92.48%, respectively (Figure 3F
and Table 3).

Carcinoembryonic antigen (CEA) is one of the most common
cancer markers but limited by low diagnostic efficiency when
used along for CRC diagnosis (23). The performance of the d-
signature in distinguishing CEA-negative CRC from CRA
TABLE 2 | Basic information and expression of the 17 feature genes.

Gene ID Gene name Gene type Expression frequency log2(FC) Mean CRC Mean control

ENSG00000272196.2 HIST2H2AA4 Protein coding 0.77 1.92 21.79 5.17
ENSG00000234289.5 H2BFS Protein coding 0.67 1.65 13.91 5.45
ENSG00000233954.6 UQCRHL Protein coding 0.97 1.49 17.41 8.23
ENSG00000143185.3 XCL2 Protein coding 0.73 1.32 32.43 18.73
ENSG00000229321.1 AC008269.1 lncRNA 0.53 1.01 15.96 9.4
ENSG00000100206.9 DMC1 Protein coding 0.86 0.98 17.2 9.75
ENSG00000233087.7 RAB6D Protein coding 0.90 0.87 3.68 1.82
ENSG00000185909.14 KLHDC8B Protein coding 0.82 0.84 15.09 9.76
ENSG00000164879.6 CA3 Protein coding 0.63 0.82 7.54 4.44
ENSG00000100336.17 APOL4 Protein coding 0.81 0.76 7.69 4.45
ENSG00000196747.4 HIST1H2AI Protein coding 0.97 0.76 235.37 165.53
ENSG00000151687.14 ANKAR Protein coding 0.95 0.74 16.07 9.88
ENSG00000198964.13 SGMS1 Protein coding 0.99 0.71 76.67 45.6
ENSG00000119004.15 CYP20A1 Protein coding 0.93 0.68 19.07 13.9
ENSG00000276410.3 HIST1H2BB Protein coding 0.99 0.66 497.04 293.11
ENSG00000104375.16 STK3 Protein coding 0.99 0.63 19.03 12.62
ENSG00000274559.3 CBWD1 Protein coding 0.97 0.61 10.65 7.42
April
 2022 | Volume 12 |
FC, fold change.
A
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FIGURE 2 | Establishment of the exLR d-signature. (A) Flowchart of establishment of the d-signature. (B, C) Unsupervised hierarchical clustering of the 17 genes in
training cohort (B) and validation cohort (C). (D–F) ROC curve for the exLR d-signature in the training (D), validation (E), and independent (F) cohorts. aSelection of
lncRNA or protein-coding genes with (1) expression frequency >0.5; (2) log2(FC) >0.59, adjusted p value < 0.05.
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cohorts is presented in Figure 3G and Table 3 (sensitivity
76.19%, specificity 87.81%, accuracy 80.72%). High
performance was observed of the d-signature to differentiate
CEA-negative CRC from healthy cohorts (sensitivity 92.50%,
Frontiers in Oncology | www.frontiersin.org 6
specificity 97.56%, accuracy 92.56%, Figure 3H and Table 3).
The diagnostic ability of the d-signature to differentiate between
CRA and CRC, especially early-stage (stage I–II) and CEA-
negative CRC, was of great significance to determine whether
A B

D

E

F

G

H

C

FIGURE 3 | Prediction performance of the exLR d-signature in subgroups. (A) The d-signature in distinguishing healthy, CRA, and CRC individuals. (B) The d-
signature in control and stage I–IV CRC participants. The ROC curve for the d-signature in CRC and CRA (C), CRC and healthy (D), early-stage (stage I–II) CRC and
CRA (E), early-stage (stage I–II) CRC and healthy (F), CEA-negative CRC and CRA (G), and CEA-negative CRC and healthy (H) cohorts.
TABLE 3 | The exLR d-signature in diagnosis of CRC, CRA, and healthy participants.

Groups AUC 95% CI Sensitivity (%) Specificity (%) Accuracy (%)

Training 0.938 0.897–0.978 77.08 91.46 86.15
Validation 0.943 0.867–0.995 91.67 85.00 87.50
Independent cohort 0.947 0.801–1.000 71.43 95.65 86.49
CRC vs. CRA 0.853 0.776–0.930 76.19 84.72 79.83
CRC vs. healthy 0.983 0.969–0.997 92.50 94.44 89.47
Stage I/II CRC vs. CRA 0.882 0.809–0.955 85.71 81.13 82.11
Stage I/II CRC vs. healthy 0.990 0.979–1.000 95.00 96.23 92.48
CEA-negative CRC vs. CRA 0.870 0.790–0.950 76.19 87.81 80.72
CEA-negative CRC vs. healthy 0.988 0.974–1.000 92.50 97.56 92.56
CRA vs. healthy training 0.993 0.981–1.000 89.29 98.15 95.12
CRA vs. healthy validation 0.978 0.940–1.000 71.43 96.15 87.50
April 2022 | Volume 12 |
AUC, area under the curve; CI, confidence interval; CEA, carcinoembryonic antigen.
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the tumor should be resected endoscopically or surgically in
clinical practice. Meanwhile, the high efficiency of the d-
signature to differentiate between healthy and CRC individuals,
including early-stage and CEA-negative CRC individuals, was
supposed to have an important potential role in CRC screening.

Potential of the exLR d-Signature in
Detecting CRA
In addition to the diagnosis of CRC, detection of CRA is also a
very important link in the management of CRC, considering
CRA as precancerous lesions of CRC. In this part, we developed
another exLR-based d-signature for CRA in the same way as
building the CRC d-signature. Unsupervised hierarchical
clustering revealed a clear separation of CRA and healthy
samples (Figure 4A). KEGG analysis showed that the
differentially expressed exLRs were enriched for some tumor-
associated pathways (Figure 4B). Unsupervised hierarchical
clustering of the top 7 genes selected to build the CRA-
identification model showed high consistency between
predicting CRA and true CRA individuals in both the training
and validation cohorts (Figures 4C, D). Encouraging results of
the CRA d-signature were observed both in the training
(sensitivity 89.29%, specificity 98.15%, accuracy 95.12%) and
validation (sensitivity 71.43%, specificity 96.15%, accuracy
87.50%) cohorts (Figures 4E, F and Table 3).
Frontiers in Oncology | www.frontiersin.org 7
Estimation of Cell Populations and
Prognostic Prediction
EVs are produced by many cell types including immune cells,
serving as communicators of immune-modulatory activities that
affect the tumor microenvironment and antitumor immune
responses (24). We used xCell to infer cell populations
represented in EVs. Abundances of 64 immune and stromal
cell types based on gene expression profile were estimated, and
21 of them showed statistical differences, including epithelial,
lymphoid, myeloid, stem, and stroma cells (Figure 5A). Low
enrichment of class-switched memory B-cells, B-cells, naive B-
cells, and mast cells was observed in the CRC group compared
with CRA and healthy groups, and there was a slight increasing
trend among CRC, CRA, and healthy cohorts, implying that the
tumor-immune microenvironment had been affected in the CRC
group (Figure 5B). In the analysis of prognostic significance, a
positive correlation was observed between longer OS and the
abundance of class-switched memory B-cells and mast cells,
while a negative correlation was observed between OS and the
abundance of natural killer T-cells (NKT cells) and naive B-cells
(Figure 5C). A high basophil level was associated with longer
DFS, while a high level of immature dendritic cells and lymphatic
endothelial cells predicted shorter DFS (Figure 5D). These
prognosis-associated cell populations were supposed to play a
role in CRC prognostic prediction. Besides, we assessed the
A B

D

E F

C

FIGURE 4 | Potential of the exLR d-signature in differentiating CRA and healthy participants. (A) Unsupervised hierarchical clustering of the differentially expressed
exLRs between CRA and healthy cohorts. (B) KEGG pathway enrichment analysis for the differentially expressed exLRs between CRA and healthy cohorts.
(C, D) Unsupervised hierarchical clustering of the 7 genes selected for d-signature establishment in the training cohort (C) and validation cohort (D). (E, F) ROC
curve for the exLR d-signature in the training (D) and validation (E) cohorts.
April 2022 | Volume 12 | Article 829230
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pathway enrichment of differentially expressed transcriptomes
between the CRC, CRA, and healthy groups by performing gene
set enrichment via KEGG analysis, showing that the differentially
expressed exLRs were enriched in the intestinal immune network
for the IgA production pathway and the circadian rhythm
mammal pathway with a gradual rising trend between the
three groups (Figure 5E). These results presented the potential
applications of the exLR profiling.
DISCUSSION

In this study, exLR-seq expression profiles were gained from 231
CRC, CRA, and healthy blood samples. To our knowledge, this is
the first study focusing on the early detection potential of exLRs
between CRC, CRA, and healthy individuals. The preliminary
findings seem to be inspiring as certain diagnostic and prognosis
prediction efficiency was achieved.

Extracellular vesicles, known as small membranous vesicles
released by cells, have recently been identified to contain long
RNAs, which may serve as biomarkers in the diagnosis,
therapeutic sensitivity prediction, and prognostic prediction of
tumors (8, 9, 12, 25). Although the clinical application of EVs is
still in its infancy, EVs are increasingly recognized as promising
biomarkers for tumor diagnosis and prognosis (10). However,
previous studies are mainly focused on protein and miRNAs in
Frontiers in Oncology | www.frontiersin.org 8
EVs. In reviewing the literature, no published study was found to
in-depth analyze the diagnostic or prognostic value of exLRs in
CRC due to the limitation of methodology and size of samples.

Nowadays, the incidence and mortality of colorectal cancer
remain high in both developed and developing countries. Early
detection is a key to reducing morbidity and the socioeconomic
burden. Traditional detection methods, including colonoscopy,
gFOBT, FIT, and CT colonography, all have some limitations of
invasiveness, high expense, or low efficiency (2, 3). Emerging
screening strategies, such as ctDNA, circulating tumor cells, and
septin-9, have been studied widely. Nonetheless, results in relevant
studies have shown much lower diagnostic efficiency of CRA and
early-stage CRC than that of advanced-stage CRC (6, 26).

A diagnostic signature based on plasma exLR profiling was
developed in this study. We first verified EVs from TEM
morphology, size distribution analysis, and Western blot
analysis. These all corresponded to the characteristics of EVs
(7). ExLR profiling of plasma samples from 194 participants was
successfully performed using an optimized exLR-seq strategy we
recently developed (11). We established a d-signature of 17 exLRs
for CRC detection, which could efficiently differentiate CRC from
control (CRA and healthy) cohorts (training AUC = 0.938,
validation AUC = 0.943, independent cohort AUC = 0.947). In
clinical practice, people with positive testing results are supposed
to take colonoscopy examination to identify the results. The d-
signature makes it possible to screen high-risk patients efficiently
A B

D E

C

FIGURE 5 | Analyses of cell components, survival, and signaling pathways. (A) Heatmap of unsupervised hierarchical clustering of the 21 cell types in different
groups. (B) Box plots of selected cell-type abundance between CRC, CRA, and healthy groups. Prognostic significance of selected cell types by (C) OS and (D)
DFS. (E) ssGSEA score and statistical significance for selected KEGG pathways differing between CRC, CRA, and healthy groups. ***p < 0.001; **p < 0.01;
*p < 0.05; NS, not significant.
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and reliably, standing a good chance of easing the suffering of the
screened people and improving screening compliance.

High sensitivity and specificity were identified for the d-
signature to differentiate CRC from CRA, which was of great
significance in clinical practice, especially when it comes to early-
stage (stage I–II) CRC or CEA-negative CRC. In clinical practice,
CRA patients need no additional surgery if the polyp has been
completely endoscopically resected with favorable histologic
features, while radical surgery plays a vital role in the
treatment of most early-stage CRC patients (27, 28). Different
diagnoses of CRC or CRA lead to different treatment strategies,
and this d-signature is supposed to provide reference for
clinicians and patients to make decisions. Compared with
differentiating between CRA and CRC cohorts, the d-signature
had higher diagnostic efficiency to differentiate between healthy
and CRC cohorts, including early-stage (stage I–II) CRC and
CEA-negative CRC. This is of great significance for improving
the efficiency of CRC screening, considering the limitations of
traditional non-invasive CRC screening methods (3, 5).

The 17 genes used to establish the d-signature comprised 16
protein-coding genes and one lncRNA gene, all of which were
upregulated in CRC samples. The H2BFS expression level in lung
cancer tissue has been reported to be higher than that in normal
lung tissue (29). However, its expression in CRC remains
unknown. In a previous study, a high expression level of XCL2
was revealed to be associated with NK cells in tumor-immune
activities (30). DMC1, short for “downregulated in multiple
cancers-1,” plays an important role in DNA binding and
repairing, with loss expression identified in multiple human
cancers (31). The different expression levels in this study might
be explained by using peripheral blood samples but not tumor
tissue samples. KLHDC8B is suggested to have a role in the
formation of Hodgkin/Reed–Sternberg cells in familial Hodgkin
lymphoma (32). CA3 expression is reported to promote the
transformation and invasive ability of hepatocellular carcinoma
cells (33). Overexpressed CYP20A1 is observed in some
pathological types of lung cancer and associated with prognosis
according to a previous study (34). The expression of
HIST1H2BB is reduced in ovarian cancer cells and might have
growth-suppressing roles (35). STK3 is a critical molecule of the
Hippo pathway that controls cell development, proliferation, and
apoptosis (36). The expression level of CBWD1 has been
reported to be associated with melanoma (37). The tumor-
associated significance of the other seven genes (HIST2H2AA4,
UQCRHL, AC008269.1, RAB6D, APOL4, HIST1H2AI,
ANKAR, SGMS1) remains unclear.

This study was mainly designed to build a d-signature for
CRC screening, and we were surprised to find that a similar
model might be very efficient in CRA diagnosis. However, due to
the limitation of CRA cohort size, we believe that the
encouraging initial results need to be reconfirmed in further
study with larger cohorts.

In this study, statistical differences of 21 immune cell types
estimated based on the gene expression profile were observed
between CRC, CRA, and healthy cohorts. Actually, the relationship
between systemic immune cells and CRC still remains poorly
understood, even though some studies with a small sample size
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have yielded some preliminary conclusions (38, 39). In this study,
differences in immune cell subset distribution were observed
between CRC, CRA, and healthy cohorts, such as reduced
percentage of class-switched memory B-cells, B-cells, naive B-
cells, and mast cells in the CRC cohort. This study also showed
correlations between survival and these cells. A decreased
percentage of peripheral blood B-cells and naive-B cells in the
CRC cohort compared with the healthy cohort has been reported
previously, whereas the percentage of peripheral blood memory B
cells was increased in the CRC cohort in that study (39). Contrary
prognostic implications of class-switched memory B-cells and
naive B-cells were revealed in this study, and both the tumor
progression-enhancing and -suppressing effects of B-cells have
been reported in previous literature (40, 41). Activation or
suppression of B cells may play an important role in CRC
carcinogenesis, which needs to be identified in further studies.
The difference of peripheral blood mast cell count between CRC
and healthy cohorts has not been reported, and its relationship
with survival remains controversial (42, 43). High levels of NKT
cells were related to poor prognosis in this study; a similar result
has been reported previously (38). In a recent study, a decreased
level of circulating basophils was found linked to aggressive biology
and poor survival, which is similar to the result of this study (44).
In this study, a high level of immature dendritic cells predicted
poor survival. Actually, a dendritic cell-infiltrating level has been
reported to be positively correlated with layilin and a high layilin
level was linked to poor survival in colorectal cancer patients (45).
A lymphatic endothelial cell level was associated with poor survival
in this study. Lymphatic vessel invasion has been identified as an
independent prognostic factor for poor survival in colorectal
cancer, and CRC-associated intestinal lymphatic endothelial cells
were revealed to be able to regulate tumor progression (46).
Further studies are needed to evaluate the role of peripheral
blood immune cells in CRC progression and the potential of
EVs estimating peripheral blood immune cells.

Furthermore, differentially expressed exLRs between CRC,
CRA, and healthy cohorts were enriched in two pathways, the
intestinal immune network for the IgA production pathway and
the pathway of circadian rhythm of mammal. IgA deficiency is
associated with a number of immune-mediated diseases, and it
has also been proved to be associated with increased risk of
gastrointestinal cancer in a nationwide population-based cohort
study (47). Circadian rhythms of cell cycle–related molecule
expression have been extensively reported (48). In a recently
published study, circadian disruption was revealed to be
associated with tumor-associated immune cell remodeling,
resulting in facilitation of tumor growth (49).

Limitations and prospects of this study are listed as follows.
First, the independent cohort size was limited and the diagnostic
performance of the CRC d-signature needs to be validated in
more independent centers. Second, we are continuing to recruit
participants to identify the efficiency of the CRA d-signature.
Third, the potential of EVs in predicting chemotherapy
resistance is under study.

In summary, our study evaluated the value of exLRs serving as
markers in the detection of CRC. The d-signature we have
established can differentiate CRC from control (CRA and
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healthy) cohorts efficiently, which is supposed to improve CRC
early detection efficiency in clinical practice. The exLR profiling
can also indicate immune cell distribution and associated
prognostic significance. We believe that this d-signature can
contribute to the early detection of CRC and improve CRC
prognosis in the near future.
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