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A novel approach for dose
painting radiotherapy of brain
metastases guided by mr
perfusion images

Chuanke Hou1†, Hanjing Yin2†, Guanzhong Gong2,
Lizhen Wang2, Ya Su2, Jie Lu2 and Yong Yin2*

1Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China,
2Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical
University and Shandong Academy of Medical Sciences, Ji'nan, China
Purpose: To investigate the feasibility and dosimetric index features of dose

painting guided by perfusion heterogeneity for brain metastasis (BMs) patients.

Methods: A total of 50 patients with single BMs were selected for this study. CT

and MR simulation images were obtained, including contrast-enhanced T1-

weighted images (T1WI+C) and cerebral blood flow (CBF) maps from 3D-

arterial spin labeling (ASL). The gross tumor volume (GTV) was determined by

fusion of CT and T1WI+C images. Hypoperfused subvolumes (GTVH) with less

than 25% of the maximum CBF value were defined as the dose escalation

region. The planning target volume (PTV) and PTVH were calculated from GTV

and GTVH respectively. The PTVN was obtained by subtracting PTVH from PTV,

and conventional dose was given. Three kinds of radiotherapy plans were

designed based on the CBF values. Plan 1 was defined as the conventional plan

with an arbitrary prescription dose of 60 Gy for PTV. For dose painting, Plan 2

and Plan 3 escalated the prescription dose for PTVH to 72 Gy based on Plan 1,

but Plan 3 removed the maximum dose constraint. Dosimetric indices were

compared among the three plans.

Results: The mean GTV volume was 34.5 (8.4-118.0) cm3, and mean GTVH

volume was 17.0 (4.5-58.3) cm3, accounting for 49.3% of GTV. Both

conventional plan and dose painting plans achieved 98% target coverage.

The conformity index of PTVH were 0.44 (Plan1), 0.64 and 0.72 (Plan 2 and

Plan 3, P<0.05). Compared to Plan 1, the D2%, D98% and Dmean values of the

PTVH escalated by 20.50%, 19.32%, and 19.60% in Plan 2 and by 24.88%, 17.22%

and 19.22% in Plan 3 respectively (P<0.05). In the three plans, the index of
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achievement value for PTVH was between 1.01 and 1.03 (P<0.05). The dose

increment rates of Plan 2 and Plan 3 for each organs at risk (OARs) was

controlled at 2.19% - 5.61% compared with Plan 1. The doses received by

OARs did not significantly differ among the three plans (P >0.05).

Conclusions: BMs are associated with significant heterogeneity, and effective

escalation of the dose delivered to target subvolumes can be achieved with

dose painting guided by 3D-ASL without extra doses to OARs.
KEYWORDS

brain metastases, radiotherapy, dose painting, 3D-arterial spin labeling, subvolume
Introduction

Brain metastases (BMs) are the most common intracranial

malignant tumors, and approximately 8-10% of tumor patients

will develop BMs during their disease course (1). Approximately

30-50% of BMs patients die of uncontrolled and recurrent

intracranial lesions (2). And large-volume BMs are highly

heterogeneous due to their long growth cycle and complex

blood supply (3, 4). Subvolumes with low cerebral blood flow

(CBF) are hypoxic or potentially hypoxic areas, which are

associated with radiation resistance (3). Ling et al. has proved

that the tumor volume must be considered heterogeneous when

assessing function and treatment response (5).

At present, radiotherapy (RT) is considered a curative-intent

treatment for BMs patients primarily consisting of whole-brain

radiotherapy (WBRT) and stereotactic radiosurgery (SRS) (6, 7).

WBRT is suitable for multiple BMs and high-dose SRS plays an

important role in treatment of small-volume BMs while it is

limited for large-volume BMs (8). RT failure is usually

manifested by insufficient local radiation doses and radiation-

induced brain injury.

3D-arterial spin labeling (3D-ASL) perfusion imaging

analyzes CBF parameters noninvasively and quantitatively and

is independent of blood-brain barrier (BBB) damage (9). In

addition, 3D-ASL has been widely used in clinical diagnosis,

differential diagnosis and efficacy evaluation of brain tumors (9–

11). Due to the tumor-specific characteristics of large-volume

BMs, 3D-ASL is potentially promising for image-guided RT

treatment planning with dose painting (12). Dose painting refers

to the distribution of nonuniform radiation doses to target

volumes according to functional or molecular images (13).

Increasing the doses to BMs can significantly improve the

curative effect. Therefore, safe dose escalation for target

subvolumes of BMs is crucial. This study therefore explored

the feasibility of 3D-ASL-guided subvolume segmentation of

BMs based on CBF map variation. In addition, we further
02
studied the dosimetric indices of dose painting plans to

provide additional reference for the formulation and

modification of individualized RT to BMs patients.
Materials and methods

Patients

Fifty patients, namely, 29 males and 21 females (aged 33 - 74

years, with a median age of 57 years), with a single BMs who

received RT were selected from July 2018 to September 2020.

There were 33 cases of lung cancer, 9 of breast cancer, 4 of renal

carcinoma, 2 of esophageal cancer and 2 of colon cancer. All

patients were diagnosed with BMs with imaging and the

maximum tumor cross-sectional diameter was more than 2

cm. The retrospective analysis of the medical records was

approved by the Institutional Review Board of Shandong

Cancer Hospital.
Computed Tomography and MR
Simulation

CT simulation images (slice thickness = 3 mm; slice gap = 3

mm) were obtained by Brilliance Big Bore CT scanner (Philips,

Netherlands). MR imaging was performed on 3.0 T Discovery

750 W MR scanner (GE Healthcare, USA) with the same head

position as CT simulation. 3D-ASL and contrast-enhanced T1-

weighted (T1WI+C) images were acquired using 3D volume

scanning (field of view, FOV= 26 cm; matrix size = 256×256;

slice thickness = 3 mm). For 3D-ASL images, the special

acquisition conditions were as follows: repetition time (TR) =

5160ms; echo time (TE) = 11.5 ms; and postlabeling delay (PLD)

= 2025 ms. David et al. pointed out that it is more reasonable to

set the PLD of healthy people older than 70 years old and adult
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clinical patients to around 2000ms (14). For T1WI+C images,

TR = 8.5 ms; and TE = 3.2 ms. Gadopentetate dimeglumine was

power-injected applying doses standardized by 0.2 mL/kg at 2

mL/s, and scan started 3 - 5 min after injection.
Target volume definition

CT and T1WI+C images were fused in MIM Maestro

software (6.8.8, USA), and gross tumor volume (GTV) was

defined as the region with high signal. The GTV was divided

into hypoperfused (GTVH), hyperperfused and nonperfused

subvolumes based on CBF values (15). One-quarter of

maximum CBF value was the junction of hypoperfused and

hyperperfused subvolumes (16). Planning target volume (PTV)

was designated as GTV plus a 5 mm margin, and 3 mm margins

were added to the GTVH to obtain PTVH. Then, the PTVN was

obtained by subtracting the PTVH from the PTV, which was

given normal prescription dose. Schematic diagrams are shown

in Figures 1, 2.
Treatment plans

Conventional and dose painting plans were implemented by

intensity-modulated radiotherapy (IMRT) and simultaneous

integrated boost (SIB) IMRT. These plans were designed using

Eclipse (Version 15.6, Varian, USA). For larger tumors, with the
Frontiers in Oncology 03
most common doses being 27 Gy in 3 fractions and 30 Gy in 5

fractions applying with SRS based on NCCN (17). Preliminary

results from a randomized phase II trial comparing dose-

intensification with standard-dose IMRT for newly diagnosed

glioblastoma demonstrate that a higher radiation dose improves

overall survival (18). The tolerance dose for brain to a single

course of RT is 60 Gy in 2 Gy daily fractions (19). And both the

hypoxic areas of BMs have the same characteristics of RT

resistance with glioblastoma, so we refer to the treatment plan

of glioblastoma (20). Here, we set the prescription dose at 60 Gy

and the elevated dose at 72 Gy (20). Boosting tumor subvolume

may increase tumor control probability (TCP), and a moderate

boost dose (120% -150%) to hypoxic areas is also beneficial to

increase TCP (21, 22). The conventional plan (60 Gy) and the

dose painting plan (72 Gy) were both set at 2 Gy/d in this study.

The conventional plan, designated Plan 1, prescribed 60 Gy to

PTV with a maximum dose (Dmax) constraint of 66 Gy (110% of

prescription dose). For dose painting, Plan 2 escalated the PTVH

to 72 Gy with a Dmax constraint of 79 Gy (110% of prescription

dose) based on Plan 1. Moreover, Plan 3 was designed depending

on Plan 2 without Dmax constraint.

The optimized parameters and dose constraints for organs at

risk (OARs) among three plans were unified. OARs were

restricted to the following doses: Dmax<50 Gy for eye, Dmax<54

Gy for optic nerve, Dmax< 8 Gy for lens, and Dmax<54 Gy

for brainstem.

Dose calculation was performed in anisotropic analytical

algorithm optimization mode (version 15.512) using 6 MV X-
FIGURE 1

Target volume determination flow chart.
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rays. The calculated grid was 2.5 mm×2.5 mm, and the prescription

dose was acquired to cover 95% of the target volume.
Evaluation of plan dosimetric indices

For PTVs, the D2%, D98% and Dmean (doses to 2%, 98% and

50% volume of the PTV, respectively) were the maximum,

minimum and mean dose, respectively. The Dmax values of

eyeballs, optic nerves, lenses and brainstem were compared.

Furthermore, the target coverage, conformity index (CI) and

index of achievement (IOA) were calculated. The proposed IOA

is formulated as the volume-weighted average of the deviation

between prescription dose and planned dose (23).

The formulas for calculating CI and IOA are as follows:

CI =
Vt,ref

Vt
� Vt,ref

Vref
; 

IOA = 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
K

K=1
o
j

j=1

Dj − DK,RX

DK,RX

� �2

� dDVHPTV Kð Þ Dj

� �
VPTV Kð Þ

" #vuut
where Vt represents the PTVs, Vt,ref represents the target

volume covered by prescription dose, and Vref represents the

volume covered by prescription dose. where K is the total

number of PTVs, DK,RX is the prescription dose for the Kth

PTV, and VPTV(K) is the volume of the kth PTV, where j is the

total number of volumes, Dj is the jth volumes dose value, and

dDVHPTV(K)(Dj) is the absolute volume (cc) of the jth dose

volume in the kth PTV.

CI near 1 indicates that region receiving the reference dose

closely matches the shape of the target region (24). IOA have

values equal to or greater than 1 and value farther from 1

indicates greater dissimilarity (23).
Frontiers in Oncology 04
Data statistics

Statistical analysis was performed using SPSS Statistics

Version 22.0 (IBMs, USA). Analysis of variance was used to

evaluate the differences among the three plans. F value is used to

evaluate the difference between groups. The larger the F is, the

more significant the equation is, and the better the fitting degree

is. The least significant difference was used in pairwise

comparisons. All data are expressed as mean ± standard

deviation (�x ± SÞ, and P<0.05 indicates a significant difference.
Results

Target volume and subvolume
comparison

GTV had a volume range of 8.4-118.0 cm3, with an average

volume of 34.5 cm3. And mean GTVH was 17.0 (4.5-58.3) cm3,

accounting for 49.3% of the GTV. The PTV, PTVH and PTVN

were 72.0 cm3, 41.5 cm3 and 30.5 cm3, respectively. The ratios of

PTVH to PTV and PTVN to PTV were 57.6% and 42.4%,

respectively, as shown in Table 1 and Figure 3.
TABLE 1 Volume and volume ratio comparison.

Target volume Volume (cm3) Volume ratio (%)

GTV 34.5 ± 21.7 —

GTVH 17.0 ± 11.9 49.3

PTV 72.0 ± 34.7 —

PTVH 41.5 ± 22.0 57.6

PTVN 30.5 ± 18.6 42.4
FIGURE 2

Illustration of the target volumes.
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Target coverage, CI and IOA
comparisons among three plans

As shown in Table 2, both conventional and dose painting

plans achieved 98% target coverage, even though Plan 2 achieved

coverage of PTVH up to 99.90%. Compared with Plan 2, Plan 3

significantly increased the CI levels of PTVH by 12.50% (P<

0.05). Owing to the use of targeted gradient doses instead of a

group-based uniform dose, CI values of the PTV and PTVN were

lower in the dose painting plans than in the conventional plans.

For PTVH, the IOA values of the three plans were between 1.01
Frontiers in Oncology 05
and 1.03 (P< 0.05). Meanwhile, the IOA values of PTV and

PTVN were between 1.01 and 1.10 (P< 0.05).
Comparison of the dosimetric indices
among the three plans

The differences in all dosimetric indices of PTVs except D2%

were statistically significant (P< 0.05). Compared to those of

Plan 1, the D2%, D98% and Dmean of the PTV were increased by

20.18%, 8.34% and 18.38% in Plan2 and by 24.05%, 6.77% and
TABLE 2 Comparison of target coverage, CI and IOA among three plans.

Program Plan1 Plan2 Plan3 F P P1-2 P1-3 P2-3

Target coverage PTV 99.60 ± 0.60 99.95 ± 0.13 99.86 ± 0.26 10.995 ≤0.05 ≤0.05 ≤0.05 >0.05

PTVH 99.10 ± 5.19 99.90 ± 0.18 98.40 ± 1.47 2.895 >0.05 >0.05 >0.05 ≤0.05

PTVN 99.15 ± 1.41 99.88 ± 0.34 99.76 ± 0.40 10.346 ≤0.05 ≤0.05 ≤0.05 >0.05

CI PTV 0.75 ± 0.07 0.54 ± 0.07 0.55 ± 0.07 144.791 ≤0.05 ≤0.05 ≤0.05 >0.05

PTVH 0.44 ± 0.10 0.64 ± 0.14 0.72 ± 0.11 78.818 ≤0.05 ≤0.05 ≤0.05 ≤0.05

PTVN 0.28 ± 0.09 0.21 ± 0.07 0.21 ± 0.07 12.457 ≤0.05 ≤0.05 ≤0.05 >0.05

IOA PTV 1.02 ± 0.01 1.10 ± 0.03 1.09 ± 0.04 112.623 ≤0.05 ≤0.05 ≤0.05 ≤0.05

PTVH 1.03 ± 0.01 1.02 ± 0.01 1.01 ± 0.02 95.152 ≤0.05 ≤0.05 ≤0.05 ≤0.05

PTVN 1.01 ± 0.02 1.08 ± 0.03 1.06 ± 0.03 66.247 ≤0.05 ≤0.05 ≤0.05 ≤0.05
frontiers
F and P were the results of analysis of variance; P1-2, Plan 1 vs Plan 2; P1-3, Plan 1 vs Plan 3; P2-3, Plan 2 vs Plan 3.
FIGURE 3

Tumor information is expressed T1WI+C and 3D-ASL images. A 61 year old BMs patient with primary colon carcinoma. According to the
enhanced area shown in the T1WI+C images, 3D-ASL showed the uneven distribution of CBF in tumor. The hyperperfused subvolumes are
mainly located on the left side of the enhanced edge, while the GTVH and the enhanced area overlap in a large region. Moreover, the fusion
image c shows this result better. (A) T1WI+C images; (B) 3D-ASL images; (C) 3D-ASL images fuse with T1WI+C images.
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17.00%, respectively, in Plan 3. The dosimetric indices above for

PTVH were increased by 20.50%, 19.32% and 19.60% in Plan 2,

while those of Plan 3 were increased by 24.88%, 17.22% and

19.22%. Similarly, the dosimetric indices of PTVN were

increased in Plan 2 and Plan 3 (18.81%, 7.17%, 14.31%;

19.69%, 5.15%, 11.80%). Additionally, the D2% values of PTVs

showed increasing trends among three plans, while the

increment rates of D98% and Dmean for Plan 2 were higher

than those for Plan 3, as shown in Table 3 and Figure 4.

There was no signifificant difference in Dmax received by

OARs between conventional and dose painting plans (P > 0.05).

Nevertheless, the dose painting plans slightly increased the Dmax

of all OARs compared to Plan 1, while right eye increased by
Frontiers in Oncology 06
5.61% to 0.50 Gy in Plan 3. The other OARs increased by less

than 5.40% (2.19% - 5.30%), as shown in Table 4.
Discussion

This study demonstrated that BMs can be divided into high

and low perfusion subvolumes based on 3D-ASL. We therefore

presented a new method for assessing the clinical feasibility of dose

painting plans directed by 3D-ASL for BMs. The results showed

that the technique above can be completed feasibly without

increasing the dose delivered to OARs which holds the potential

to achieve better control of BMs than traditional RT treatment.
FIGURE 4

The difference among three plans is shown in this example (A:Plan1; B:Plan2; C:Plan3);. Display on axial slices for dose painting plan showing
prescribed 72 Gy around PTVH (green). The dosimetric indices D2%, D98%, Dmean and the dose received by OARs are also revealed in (D, E).
TABLE 3 Comparison of D2%、D98% and Dmean among three plans.

Program Plan1 Plan2 Plan3 F P P1-2 P1-3 P2-3

PTV D2%(Gy) 64.42 ± 0.37 77.42 ± 0.62 79.91 ± 2.28 1818.024 ≤0.05 ≤0.05 ≤0.05 ≤0.05

D98%(Gy) 61.17 ± 0.66 66.27 ± 2.07 65.31 ± 2.25 112.920 ≤0.05 ≤0.05 ≤0.05 ≤0.05

Dmean(Gy) 63.29 ± 0.19 74.92 ± 0.68 74.05 ± 0.84 5178.923 ≤0.05 ≤0.05 ≤0.05 ≤0.05

PTVH D2%(Gy) 64.38 ± 0.61 77.58 ± 0.52 80.40 ± 2.39 1727.402 ≤0.05 ≤0.05 ≤0.05 ≤0.05

D98%(Gy) 61.74 ± 0.69 73.67 ± 0.34 72.37 ± 0.61 6660.500 ≤0.05 ≤0.05 ≤0.05 ≤0.05

Dmean(Gy) 63.43 ± 0.19 75.86 ± 0.08 75.62 ± 0.29 58745.045 ≤0.05 ≤0.05 ≤0.05 ≤0.05

PTVN D2%(Gy) 64.39 ± 0.50 76.50 ± 1.19 77.07 ± 2.61 904.842 ≤0.05 ≤0.05 ≤0.05 >0.05

D98%(Gy) 60.55 ± 1.54 64.89 ± 1.83 63.67 ± 1.94 79.330 ≤0.05 ≤0.05 ≤0.05 ≤0.05

Dmean(Gy) 63.05 ± 0.27 72.07 ± 0.71 70.49 ± 0.88 2551.806 ≤0.05 ≤0.05 ≤0.05 ≤0.05
frontiers
F and P were the results of analysis of variance; P1-2, Plan1 vs Plan2; P1-3, Plan 1 vs Plan 3; P2-3, Plan 2 vs Plan 3.
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BMs are significant health problems whose incidence is

increasing, and the median survival time is only 1-2 months

without treatment (1, 25). Numerous studies have indicated that

increasing the radiation dose significantly improves the local

control of BMs, and some patients have achieved long-term

survival (26, 27). Therefore, RT is an irreplaceable treatment for

BMs. However, increasing radiation dose, particularly to

vascular endothelial cells and glial cells, is associated with

elevated toxicity and reduced tolerance to treatment (28).

Thus, dose escalation without guidance is relevant to high risk

of radiation induced brain injury.

Some studies have shown that BMs are highly heterogeneous

according to their pathological sources or even sites of

pathological origin (29). Brown et al. proposed that the blood

flow in hypoxic tissue is slower than that in normal tissue and

cannot satisfy the oxygen requirement of rapidly proliferating

tumor cells because of highly irregular tumor vessels,

arteriovenous shunts, blind ends, an incomplete basement

membrane of vascular epithelial cells and other factors (30).

Due to the uneven distribution of blood flow and cancer cells,

BMs appear as radiation-sensitive regions with high perfusion,

hypoxic radiation-resistant regions with low perfusion, and

necrotic regions. Furthermore, the isoeffective dose can be up

to three times higher under hypoxic conditions than under

normoxic conditions (31). However, the group-based uniform

dose given under a conventional plan cannot guarantee a

sufficient dose for radiation-resistant regions, which eventually

leads to further tumor progression and recurrence; local control

failures are not uncommon under conventional treatment.

Dose escalation according to heterogeneity is essential, and

primary task is to determine the tumor target subvolume with

biological images. Perfusion-weighted MR can be used for
Frontiers in Oncology 07
quantitative analysis of blood flow parameters (9, 11, 16, 32).

The noninvasive technology 3D-ASL reflects angiogenesis and

other functional features of tumor microvascular system, rather

than reflecting only morphology as CT and conventional MR

(9). The amount of blood in one slice was evaluated by

measuring the signal reduction after arterial blood saturation

with radio frequency pulse. Therfore, ASL observe cerebral

perfusion without using contrast agent, and has good safety

and repeatability. Yukie et al. demonstrated that the area under

the curve value of ASL for the recognition of hypoxic areas

reached 0.83 based on the hypoxic tracer 18F-fluoromisonidazole

(10). Our previous studies also demonstrated that the CBF

variations in brain tissue and BMs following radiation dose

gradients could be quantified by 3D-ASL. In this paper, 49.3% of

the GTV was within a region of low CBF which showed that

subvolume segmentation based on CBF map using 3D-ASL is

feasible (33).

A major concern regarding the implementation of dose

escalation for specific subvolumes can be solved by dose

painting which aims to improve tumor control without adding

doses to OARs (34). Dose painting guided by positron emission

computed tomography (PET) has been widely studied in head and

neck tumors, but the application of PET is indisputably limited at

present because of its invasiveness and high price (35, 36).

Perfusion technique has been proved to be used to improve

radiotherapy regimens and provide more biological information

(37).Thus, in the present study, dose painting was used to achieve

dose escalation in hypoperfused subvolumes that were recognized

and segmented by 3D-ASL. The results demonstrated that

compered those of Plan 1, the D2%, D98% and Dmean of the

PTVH were increased by 20.50%, 19.32% and 19.60% in Plan 2,

while those of Plan 3 were increased by 24.88%, 17.22% and
frontiersin.org
TABLE 4 Comparison of organs at risk among three plans.

Program Eye-L
(Dmax-Gy)

Eye-R
(Dmax-Gy)

Optic nerve-L
(Dmax-Gy)

Optic nerve-R
(Dmax-Gy)

Lens-L
(Dmax-Gy)

Lens-R
(Dmax-Gy)

Brainstem
(Dmax-Gy)

Plan1 8.74 ± 9.06 8.92 ± 9.99 8.36 ± 12.02 7.36 ± 9.39 2.31 ± 1.54 2.07 ± 1.54 18.68 ± 12.97

Plan2 8.97 ± 8.97 9.39 ± 10.19 8.62 ± 12.21 7.66 ± 9.77 2.37 ± 1.59 2.14 ± 1.55 19.09 ± 13.23

Plan3 8.98 ± 8.75 9.42 ± 10.15 8.67 ± 12.29 7.75 ± 9.83 2.40 ± 1.68 2.15 ± 1.53 19.14 ± 13.30

F 0.012 0.039 0.009 0.023 0.038 0.049 0.018

P >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

%(1-2) 2.63 5.27 3.11 4.08 2.60 3.38 2.19

%(1-3) 2.75 5.61 3.71 5.30 3.90 3.86 2.46

%(2-3) 0.11 0.32 0.58 1.17 1.27 0.47 0.26

P1-2 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

P1-3 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

P2-3 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
F and P were the results of analysis of variance; %(1-2), % increment between Plan 1 and Plan 2; %(1-3), % increment between Plan 1 and Plan 3; %(2-3), % increment between Plan 2 and Plan
3; P1-2, Plan 1 vs Plan 2; P1-3, Plan 1 vs Plan 3; P2-3, Plan 2 vs Plan 3.
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19.22%. Compared to the conventional plans of 60 Gy, the dose

painting plans significantly increased the dosimetric indices.

However, there were two trends. On the one hand, the

maximum dose of PTVs all showed increasing trends among

three plans. On the other hand, the constrained dose painting

plans had better average and minimum doses than the other two

plans, and this was the case for all PTVs. Thorwarth et al. noted

that dose of up to 82 Gy may be applied to head and neck tumors

without increasing toxicity, but constraints for normal tissue were

not stated in their work (38). Our results indicated that the dose

delivered to OARs was increased less than 4.10% (2.19%-4.08%)

except for the right eye (5.27%; 0.47 Gy) when the prescription

dose of PTVH was increased by 20% in Plan2. Undoubtedly, the

absolute dose was still far below the dose constraint. In addition,

the constrained dose painting plans outperformed the

unconstrained plans in terms of OARs protection.

Both conventional and dose painting plans achieved target

coverage of more than 98%. Likewise, the constrained dose painting

plans had better target coverage than unconstrained and

conventional plans. Chang et al. pointed out that reducing the

uniformity of radiation dose is beneficial for dose escalation and

OAR protection (35). The IOA values of different PTVs in three

plans are less than or equal to 1.10, which indicates that good

targeted dose distribution can be achieved. Meanwhile, it is

necessary to confirm CI because the shape of subvolumes defined

by perfusion is often irregular. In this work, CI of the PTVH was

effectively guaranteed through the dose painting plans, which

further proved the feasibility of our experimental method.

There are still some limitations in this study. First, PLD is

one of the important parameters for accurate evaluation of CBF.

However, in practice, it is difficult to ensure that PLD is set

according to the specific conditions of patients to adapt to the

arrival time of labeled arterial blood. Second, the effect of dose

painting plans for BMs still needs to be confirmed in clinical

practice. Relevant research is under way.
Conclusions

In summary, CBF maps based on 3D-ASL could be used for

guiding subvolumes segmentation. Dose painting guided by

different CBF variations offeres a novel approach for BMs RT.

Safe dose escalation without additional radiation doses to OARs

provides an effective individualized dose painting strategy for

BMs patients.
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