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Autophagy is characterized as a cytoprotective process and inhibition of autophagy with
medicinally active agents, such as chloroquine (CQ) is proposed as a prospective adjuvant
therapy for cancer. Here, we examined the preclinical effects of CQ combined with the
MEK inhibitor trametinib (TRA) on melanoma. We found that cotreatment of CQ and TRA
markedly slowed melanoma growth induced in Tyr-CreER.BrafCa.Ptenfl/fl mice.
Immunostaining showed that trametinib decreased Ki-67+ proliferating cells, and
increased TUNEL+ apoptotic cells. The combo treatment induced a further decrease of
Ki-67+ proliferating cells. Consistent with the in vivo findings, CQ and TRA inhibited
melanoma cell proliferation in vitro, which was correlated by decreased cyclin D1
expression. In addition, we found that tissues treated with CQ and TRA had
significantly decreased numbers of CD4+ and CD8+ T-lymphocytes and F4/80+
macrophages. Together, these results indicate that cotreatment of CQ and TRA
decreases cancer cell proliferation, but also dampens immune cell infiltration. Further
study is warranted to understand whether CQ-induced immune suppression inadvertently
affects therapeutic benefits.

Keywords: melanoma, autophagy, chloroquine, MEK, tremetinib, immune cell infiltration
INTRODUCTION

Melanoma is one of the most aggressive forms of human cancer, accounting for over 85% of skin
cancer deaths. Once disseminated, it is poorly responsive to radiation therapy and conventional
chemotherapies (1). During the past decade, the RAS/RAF/MEK/ERK MAPK signaling pathway
has been a focus of therapeutic targeting owing to the ubiquitous activation of this pathway in
cancer. Specifically, NRASQ61R/K and BRAFV600E represent the most common driver oncogenes in
Abbreviations: TRA, Trametinib; CQ, Chloroquine; TME, tumor microenvironment.
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melanoma (2). Pharmacological inhibitors targeting BRAFV600E

(e.g. vemurafenib and daborafnib) and MEK (e.g. trametinib,
MK14, and cobimetinib) have expanded treatment options for
metastatic melanoma (3–9). However, the benefit is short-lived
ranging from several months to less than 2 years due to the rapid
development of resistance (10–14). Recently, PD1 (e.g.
nivolumab) and CTLA-4 (e.g. ipilimumab) immune checkpoint
inhibitors constitute a new branch of treatment options, and
these therapies when combined prolonged life expectancy from
6-12 months to over 4 years in nearly 50% of patients with
metastatic melanoma (15). Combination of BRAF/MEK
inhibitors and immune checkpoint inhibitors represents
another new line of treatment, but the outcome of the
treatment is far from adequate for the majority of patients (16,
17) (18, 19). Strategies to improve the outcome of the current
treatments is an area of active research.

Therapeutic resistance mechanisms comprise a multitude of
adaptive responses ranging from cancer cell-intrinsic molecular
changes acquired after an initial response to treatment, to drug
sequestration and suppression of anti-tumor immunity (13) (20,
21). Increased autophagy is a common consequence of adaptive
molecular changes and is linked to cancer cell survival and drug
sequestration (22–24). Autophagy involves the formation of
double-membrane vesicles referred to as autophagosomes.
After fusion with lysosome, autophagosomes undergo
catabolism of the encaged cellular debris and damaged protein
cargos for degradation (25, 26), producing amino acids,
triglycerides, and nucleotides necessary for energy production
and survival (26, 27). Autophagy is mediated by the autophagy-
related (ATG) family proteins and Sequestosome 1 (SQSTM1),
also known as the ubiquitin-binding protein p62 which links
other ubiquitinated cargo proteins to the ATG8 family protein
microtubule-associated proteins 1A/1B light chain 3B
(MAP1LC3B, referred to as LC3). LC3 is proteolytically
processed to a shorter form (referred to as LC3-I) which is
t h en con j u g a t e d t o th e membr ane bound l i p i d
phosphatidylethanolamine; the lipid modified form of LC3
(referred to as LC3-II), along with SQSTM1 and other cargo
proteins, is finally degraded in the autolysome (28, 29). High
level autophagy in melanoma results in sequestration of
chemotherapeutic agents (23). It is also correlated with
invasiveness, resistance to chemotherapeutic and BRAF and
AKT oncokinase inhibitors, and decreased patient survival (30)
(31) (32) (33). Hence, autophagy is recognized as a potential
cancer therapeutic target (33).

Chloroquine (CQ) and its derivative hydroxychloroquine
(HCQ) are medicinally active agents that inhibit autophagy by
blocking autophagosome-lysosome fusion (22) (29). CQ and
HCQ are commonly used to prevent malaria and treat several
other immunological diseases, such as systemic sclerosis and
rheumatic arthritis (34). Their utility in melanoma is supported
by several preclinical and clinical studies. CQ delivered daily at
62 mg/kg/per day for 12 days or 31 mg/kg for 24 days was
previously shown to decrease B16 melanoma growth and
prolong animal survival by about 1-2 weeks (35). High
concentrations of CQ inhibit degradation of the proapoptotic
protein PUMA in a lysosomal protease activity-independent
Frontiers in Oncology | www.frontiersin.org 2
manner, and consequently induce melanoma cell apoptosis
(36). CQ or deletion of Atg5 enhances melanoma cell
apoptosis induced by the combination of AKT inhibitor MK-
2206 along with paclitaxel and carboplatin (32). Similarly, the
combination of HCQ and the mTOR inhibitor or the
chemotherapeutic agent temozolomide augments cell death,
resulting in stable disease (37) (38). Most recently, chloroquine
was found to sensitize GNAQ/11-mutated metastatic uveal
melanoma to MEK1/2 inhibition (39).

In this study, we examined the in vitro and in vivo effects of
CQ in combination with the MEK inhibitor trametinib (TRA) on
melanoma. For the in vivo studies, we used Tyr-Cre-ER
BrafCa.Ptenfl/fl mice that upon topical induction with 4-
hydroxytamoxifen (4-OHT) developed cutaneous melanoma
(40). This model provides a valuable system for preclinical
drug testing due to the high rate of tumor penetrance, the
rapid tumor growth kinetic, and the presence of an intact
immune system (41). We demonstrate that the combination of
CQ and TRA reduced tumor burden, and delayed melanoma
expansion, which was accompanied by reduced cell proliferation.
At the molecular level, the co-treatment reduced expression of
cyclin D1 cell cycle regulator. We also found that co-treatment of
CQ along with TRA induced a markedly decreased numbers of
lymphocytes and macrophages in the tumor microenvironment.
These results provide new insights for the management of
malignant melanoma.
MATERIAL AND METHODS

Animal Study
Animal studies were performed in accordance with the protocols
approved by the Institutional Animal Care and Use Committee
at Duke University. The Tyr-CreER.BrafCa.Ptenfl/fl mice were
provided by Martin McMahon of UCSF to Duke Cancer
Institute, and induced as previously described (40, 42). Briefly,
the back skins of 5-7 weeks old male and female animals were
shaved and the center of the shaved region was treated with 3
topical applications of 1.5 µl of 5 mM 4-hydroxy-tamoxifen (4-
OHT, dissolved in 99% ethanol, Sigma, St Louis, MO, USA)
spaced at 1-day intervals (43, 44). Pigmented lesions became
visible 9-13 days after the first 4-OHT application. At this point,
the animals (n=4-8/group) were treated every other day for 6
weeks via intraperitoneal injections of solvent control (5%
DMSO, 5% methylcellulose and 0.5% Tween-80 in water),
trametinib (TRA, 3 mg/Kg (45) alone, and TRA together with
chloroquine (CQ, 40 mg/kg) (35). Mice were weighted and
monitored every week for tumor development and health
conditions and euthanized at the end-point for necropsy and
tissue collection of the skin lesions.

Histology and Immunostaining
Tissue samples harvested at the end-point were embedded in
optimal cutting temperature compound or fixed in 10% formalin
and then embedded in paraffin blocks. The paraffin sections (6
µm thick) were de-waxed in 100% xylene for 5 minutes followed
by sequential treatments of 100%, 90% and 70% ethanol for 5
June 2022 | Volume 12 | Article 782877

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Degan et al. Chloroquine and MEKi Inhibit Melanoma
minutes each and antigen unmasking by boiling in 10 mM citrate
buffer (pH6.1) for 10 minutes. Endogenous peroxidase activity
was blocked using 3% hydrogen peroxide in water. Non-specific
binding was blocked using 10% serum. Sections were then
incubated with primary antibodies against the transcription
factor MITF (Abcam ab20663, Canada), pERK (Novus NBP1-
78017, Littleton, CO USA), Ki-67 (RM-9106-S, ThermoFisher
Scientific, Waltham, MA). Primary antibodies were used at 1:200
dilution and the secondary antibody reactions were obtained
using the Vectastain ABC Elite Kit (Vector Laboratories,
Burlingame, CA, USA). Slides were rinsed, stained with
Mayer’s hematoxylin (Sigma), dehydrated, and mounted with
Permount mounting medium (Fisher Scientific, New Haven, CT,
USA). Positive controls were tested in tissues known to be
positive to the antibodies. Negative controls for cross
contamination were used without the primary antibodies. For
detection of DNA fragmentation as a marker of apoptosis, tissues
slides were stained with the ApopTag peroxidase assay kit for the
TdT-mediated dUTP nick-end labeling (TUNEL) (Millipore,
S7100, Billerica, MA, USA). For immunofluorescence staining,
6-7 µm cryosections were fixed in 100% methanol as described
(46), and incubated with primary antibodies against F4/80
(#23115, Biolegend, San Diego, CA), IFNg (#585, R&D
systems, Minneapolis, MN) and LC3A/B (#4108, Cell Signaling
Technology, Danvers, MA) used at 1:100 dilutions. Samples were
counterstained with DAPI (ThermoFisher Scientific). Images
were taken with the Olympus BX41 microscopic imaging
system or the Olympus IX73155 imaging system (Center
Valley, PA). Quantitative assessment of tumor areas, pERK1/2,
Ki-67, TUNEL, MITF and IFN g was performed using ImageJ
software (version 1.53g, NIH). For this, about 15
photomicrographs per group were randomly selected. Ki-67+
cell count was carried out with the particle count module in
ImageJ. Cellular staining of the other markers was assessed
automatically by thresholding the area stained by the
antibodies. Some sporadic melanin pigmentations were
removed using the erase tool in Adobe Photoshop prior image
analysis. F4/80+ cells were manually counted from 5-7 images
per group. For CD4 and CD8, tissue sections were processed
using the automated IHC assay Discovery Ultra (Ventana
Medical Systems, Tucson, AZ). Slides were subject to antigen
retrieval (CC1 buffer, 100°C, 56 minutes) and pretreatment with
cell conditioner followed by incubation with primary antibodies
against CD4 (4SM95, #14-9766-80) and CD8 (4SM15, #14-0808-
82) (Thermofisher Scientific) for 60 minutes at 36°C. The
detection reagents were the Omap-anti-Rat HRP RUO (760-
4457) and Purple RUO Discovery kit (760–229) (Roche
Diagnostic, Indianapolis, IN). Spleen was used as positive
control and negative control was obtained following antibody
omission. Image analysis was performed with a multispectral
imaging system (Nuance, Perkin Elmer). The wavelengths of the
antibodies, melanin and hematoxylin were calculated and the
resulting spectra library was used to assess the percentage of
tissue stained by CD4 and CD8. Sixteen optical density images
were acquired per group at 40x. Results were expressed by the
percent of positivity of the purple signal representing each
Frontiers in Oncology | www.frontiersin.org 3
antibody respectively within the image. For statistical analysis
the values were expressed as the mean ± S.E. All statical analyses
were performed using Wilcoxon / Kruskal-Wallis tests. Unless
otherwise specified a p-value of 0.05 was used for statistically
significant differences among groups.

Cell Culture and Growth Analysis
A375, A2058, and B16-F25 melanoma cells were obtained from
(ATCC, Manassas, VA), and cultured in Dulbecco’s Modified
Eagle Medium with 10% fetal bovine serum (Life Technologies,
Grand Island, NY) at a 37°C incubator supplemented with 5%
CO2. They were confirmed to express Melan-A. For growth
analysis, cells were seeded onto 96-well dishes at 5,000 cells/well,
and next day treated in quadruples with varying concentrations
of trametinib and chloroquine (Selleckchem, Houston, TX). Two
days later, cells were incubated with 5 µL 3-[4,5-dimethylthiazol-
2-yl]-2,5 diphenyl tetrazolium bromide (20mg/mL, Sigma) for 2
hours and media were then replaced with DMSO. The optical
density at 590 nm was measured using a plate reader (Synergy
H1, BioTek Winooski, VT). For protein analysis, cells were
cultured in 6-cm dishes, treated with chloroquine and
trametinib for 24-48 hours, and then lysed with RIPA buffer.

Western Blotting
Protein extracts (20-30 µg/sample) were separated by 10%
acrylamide gel SDS–PAGE, and immunoblotted with
antibodies against p62/SQSTM1 (5114S), Cyclin D1 (5114S),
pErk (2978S), CDK4 (12790S), p21 (2946S), pSTAT1 (9167S)
from (Cell Signaling Technology) and pc-Jun (PAS-17879)
(ThermoFisher Scientific). Actin was used as control (SC-1516,
Santa Cruz Biotechnology, Santa Cruz, CA). Membranes were
blocked with 5% BSA (Sigma-Aldrich) in Tris-buffered saline,
0.1% Tween 20 and, after incubation with primary antibodies,
signals were visualized with IR-dye-conjugated secondary
antibodies and scanned using Odyssey imaging system (Li-
COR, Lincoln, NE).
RESULTS

Trametinib and Chloroquine Treatments
Retards Melanoma Growth in Mice
To assess the response to treatments, we induced melanoma
growth in 5-7 weeks old Tyr-CreER. BrafCa.Ptenfl/fl mice via 3
topical applications of 1.5 µl of 5 mM 4-hydroxytamoxifen (4-
OHT) on the back skin spaced at 1-day intervals. About 1-week
after the induction when pigmented melanoma lesions became
visible, animals (n=4-8/group) were treated via intraperitoneal
injection of the solvent control, the MEK inhibitor trametinib
(TRA, 3 mg/Kg) either alone or together with chloroquine (CQ,
40 mg/kg) (Figure 1A). In agreement with previous studies on
the conditional Braf mutant melanoma model (40), the solvent
control animals developed darkly pigmented spot lesions about 1
week after induction and they reached the humane end-point 4
weeks later due to an aggressive melanoma growth (Figure 1B,
Supplementary Figure S1A, B). In addition, some control
June 2022 | Volume 12 | Article 782877
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animals showed asynchronous tumor formation with dome-
shaped papules of variable size that enlarged and ulcerated
(Supplementary Figure S1B). In contrast, animals treated with
TRA showed a reduced tumor growth, which was further
enhanced by the combination treatment of CQ and TRA
(Figure 1B). Quantification of the tumor areas showed a
significant decrease (p<0.05) of the lesions in the TRA and
combo treatments compared to the control subjects (Figure 1C).
Frontiers in Oncology | www.frontiersin.org 4
To verify the efficiency of drug delivery, we performed
immunostaining for pERK, downstream substrate of MEK, and
LC3, an autophagy adaptor protein destined for degradation in
autophaygosome (47, 48). We found that pERK-positive cells
were significantly reduced in tumors treated with TRA alone or
together with CQ (Figure 2A). The intensity of LC3 was
markedly elevated in tissues treated with CQ (Supplementary
Figure S2). These data indicate that TRA and CQ achieved
inhibition of MEK and autophagy, respectively. To examine the
effects on cell proliferation and cell death, we performed
immunostaining for the cell proliferation marker Ki-67 and
TUNNEL assay, respectively. We then quantified Ki-67+ and
TUNNEL+ cells from 10-15 images of each group. We found
that the number of Ki-67+ cells were significantly decreased in
tissues of the TRA and CQ combo group compared to the control
and the TRA single agent treatment groups (p<0.05)
(Figure 2B). In agreement with the in vivo data, treatment of
TRA alone or together with CQ decreased pERK and Cyclin D1
expression in B16, A2058 and A375 melanoma cells
(Supplementary Figure S3). Interestingly, the number of
TUNNEL+ cells was increased in tumors treated with
trametinib either alone or combo with CQ, but to our surprise
this increase was less pronounced in the combo group (p<0.05)
than that of trametinib alone (p<0.01) (Figure 2C). These data
indicate that TRA and CQ combo delayed melanoma growth
primarily through an enhanced inhibition of cell proliferation.

Chloroquine and Trametinib Maintained
High Level Pigmentation
All melanoma lesions of the animals treated with TRA either alone or
together with CQ appeared intensely dark pigmented, whereas the
control group appeared more heterogeneous with most being dark
and some unpigmented nodules (Supplementary Figure S1).
Consistent with the clinical presentation, histological analysis
showed that all treated tumors and, most but not all, control
tumors contained pigmented cells (Figure 3A). MITF is a critical
regulator of melanocyte growth and differentiation (49).
Immunostaining showed that TRA treatment induced a 30%
increase of MITF+ cells and the effect of combo treatment did not
reach a significance (Figure 3B). In agreement with the in vivo data,
treatment of B16 melanoma cells with TRA and CQ induced
increased pigmentation and cell death (Supplementary Figures
S4A–C). By qRT-PCR, we found that in vitro treatment of CQ
increased MITF mRNA levels in human melanoma cell lines
(Supplementary Figure S5A, B). These data indicate that
treatments of TRA and CQ inhibitedmelanoma cell dedifferentiation.

Chloroquine and Trametinib Combo
Decreased Immune Cell-Infiltration
Cancer cell death can be caused by cancer cell-intrinsic
mechanisms and by immune cells. Host immunity is crucial for
the anti-melanoma activity of BRAF and MEK inhibitors (50, 51).
Previous reports and our in vitro studies have shown that high
concentrations of CQ increases melanoma cell apoptosis (36). It is
therefore surprising that TUNEL+ apoptotic cell numbers were
less pronounced in the CQ and trametinib combo group than that
A

B

C

FIGURE 1 | Treatments of trametinib and chloroquine retard melanoma
progression. (A) Animal treatment strategy. The back skin of 5-7-weeks old
Tyr-Cre-ERT2.BrafCaPtenfl/fl mice (n=4-8) were treated with 3 topical
applications of 1.5 µl of 5 mM 4-OHT spaced at 1-day intervals. 7-10 days
later, animals were treated with oral gavage of 50 µl of solvent control (5%
methylcellulose, 5% DMSO in water), 3 mg/Kg trametinib alone or together
with 40 mg/Kg chloroquine (CQ). (B) Clinical images. Representative images
taken at different time points. (C) Quantification of tumor areas based on
surface pigmentation, on the back skin of animals at 9, 23, and 37 days post
induction with 4-OHT and drug treatment. The symbol "*" represents a p-
value of less than 0.05.
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A

B

C

FIGURE 2 | Treatments of trametinib and chloroquine decrease MEK/ERK signaling and melanoma cell proliferation. (A, B) Immunohistochemistry of mouse
melanoma tissue sections for (A) pERK and (B) Ki-67 [brown]. (C) TUNEL staining of mouse melanoma tissue sections for apoptotic cells [brown]. Nuclei was
counterstained in blue with Hematoxylin. The main images and the inserts were taken at 20X and 40X objective, respectively. Scale bars: 100 µm. Graphs represent
average percent area of tissues stained positive of pERK, Ki-67 and TUNEL + S.E. 10 to 15 images of each treatment group were analyzed via Olympus imaging
analysis system. The symbols "*" and "**" represent a p-value of less than 0.05 and 0.001 respectively.
A

B

FIGURE 3 | Trametinib and chloroquine treatments maintain melanoma pigmentation. (A) H&E staining. Images were taken at 4x and 10x objectives. (B)
Immunostaining of mouse melanoma tissue sections for MITF [brown]. Nuclei was counterstained in blue with Hematoxylin. The main images and the inserts were
taken at 20X and 40X objective, respectively. Graph represents average percent area of tissues stained positive of MITF + S.E. 10 to 15 images of each treatment
group were analyzed via Olympus imaging analysis system. The symbols "*" and "**" represent a p-value of less than 0.05 and 0.001 respectively.
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of trametinib alone (Figure 2C). This result led us to suggest that
immune cell activity might be reduced by CQ in the tumor
microenvironment. In this regard, it was previously suggested
that CQ treatment of immunological diseases such as arthritis
(52), can have a direct effect on immune cells (53–55). By
immunostaining, we found that CD4 and CD+8 T-lymphocytes
were significantly decreased in tissues treated with CQ and TRA
(Figures 4A, B). F4/80+ macrophages showed a trend decrease by
the treatments, but did not reach a significance (Figure 4C). These
results indicate that CQ decreased immune cell infiltration into the
tumor microenvironment.

IFNg is commonly used to assess effector immune cell activities
(56). While we were not able to distinguish immune cell
expression status of IFNg in the tissue sections by
immunostaining, we found that IFNg was readily detected in
hair follicles and was increased in epidermal and dermal cells of
trametinib and CQ. However, the combo treatment did not reach
significance compared to TRA alone (Supplementary Figure
S6A). This is rather intriguing as MEK inhibitors including
trametinib is associated with acneiform dermatitis, owing to off-
target effects on KLF4/NF-kB-dependent transcription of
inflammatory cytokines (57). We examined whether trametinib
directly affected interferon signaling by immunoblotting of
melanoma cells treated in vitro. We found that pSTAT1 was
decreased in human melanoma cells treated with trametinib at 0.1
µM concentration either alone or with CQ (Supplementary
Figure S6B). These data indicate that the observed IFNg
Frontiers in Oncology | www.frontiersin.org 6
changes may be a result of hair cycling or require cell-cell
communications in an in vivo setting.
DISCUSSION

Using the conditional BRAF oncogene-driven murine melanoma
model, this work demonstrates that co-treatment of the MEK
inhibitor trametinib along with the autophagy inhibitor
chloroquine induced an enhanced therapeutic effect. This slower
tumor growth was accompanied by a decreased cell proliferation,
pERK expression, and immune cell infiltration. The combination
treatment produced an important improvement over the single
agent treatment. Our findings are consistent with earlier reports
showing that vemurafenib or trametinib combined with an
autophagy inhibitor hinders progression of pancreatic and brain
tumors (58, 59) (60). It is worth noting that Braf-driven genetic
animal model showed 100% penetrance of melanoma growth (40).
However, the time required for the development of pigmented
lesions varied between different animals. It is possible that earlier
initiation of drug treatments may yield a different outcome.

As an allosteric inhibitor of MEK1/MEK2 activities,
trametinib showed favorable pharmacokinetic and therapeutic
effects on xenograft model melanoma (61). Chloroquine alone
had a minimal influence on MEK/ERK signaling and its
combination with trametinib effectively inhibited ERK
activation. Cancer cells elicit autophagy as a mechanism of
A

B

C

FIGURE 4 | Co-treatment of trametinib and chloroquine decreases immune cell infiltration. (A, B) Immunohistochemistry of mouse melanoma tissue paraffin sections
for CD4 and CD8 [Magenta], Nuclei [hematoxylin, blue], Melanin pigmentation [Dark brown], Scar bars= 50 µm. (C) Immunofluorescent staining of mouse melanoma
tissue cryosections for F4/80 [Orange]. Nuclei [Hoechst 3342, blue]. Scar bars= 100 µm Graphs represent average percent of tissues stained for CD4, CD8, and F4/
80 ± SE. For CD4 and CD8, 16 images of each treatment group were analyzed via multispectra analysis system. For F4/80, 7-10 images were analyzed via Olympus
imaging analysis system. The symbols "*" and "**" represent a p-value of less than 0.05 and 0.001 respectively. ns, non significant.
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resistance to BRAF/MEK inhibitors, as was demonstrated in
brain and ovarian cancers (62–64). One assumption is that
inhibition of autophagy blocked drug sequestration and
reduced MEK/ERK signaling (23). In addition, CQ is found to
inhibit melanoma survival through a lysosomal protease activity-
independent upregulation of the proapoptotic protein PUMA
(36). Recent studies have shown that chloroquine sensitizes
GNAQ/11-mutated metastatic uveal melanoma to MEK
inhibition via downregulation of YAP1 transcriptional activity
(39). When used at 75 mg/kg, CQ was found to modulate
antitumor immune responses by resetting tumor-associated
M2 macrophages to M1 phenotype (65).

Besides cancer cell-intrinsic mechanisms of resistance to
therapy, an al tered immune system of the tumor
microenvironment (TME) is linked to tumor relapse and
resistance. BRAF and MEK inhibitors increase T-cell
cytotoxicity in the TME (66). Combination of PD-L1/PD-1 and
BRAF/MEK inhibitors improves T-cell toxicity towards cancer
cells, and delays tumor resistance (18, 19). In this regard,
autophagy also regulates TME and therapeutic responses (67)
(68). Our findings show that treatment of CQ and TRA induced a
marked reduction of T-lymphocytes and macrophages in the
TME, suggesting that CQ suppression of immune cells limits
overall efficacy in cancer therapy. Immunostaining of the tissue
sections revealed expression of IFNg murine hair follicles, but
failed to reveal conclusive data concerning IFNg expression in
immune cells. Immunoblotting of in vitro treated melanoma cells
showed a downregulation of pSTAT1, suggesting the trametinib
has a non-specific effect on STAT signaling pathway. Further
studies may be directed to elucidating molecular mechanisms and
benefits of CQmodulation of IFNg expression in normal skin cells,
immune cells, and cancer cells.

While autophagy is closely associated with malignancy, there
is also evidence indicating autophagy as a double-edged sword in
promoting and inhibiting cancers of different stages (69) (70).
Cisplatin-induced inhibition of autophagy was a pro-survival
mechanism for melanoma cells (71). Further investigations are
necessary to understand both the autophagy-dependent and
independent mechanisms responsible of the effects of CQ on
cancer cells, as well as the indirect effects through the TME.
Lastly, although chloroquine has a favorable safety profile as a
single agent treatment, its combination with other agents may
have unexpected effects on normal tissues such as the heart and
the kidney (69). Strategies may include staggered timing of drug
delivery which might increase benefit/risk ratio.
Frontiers in Oncology | www.frontiersin.org 7
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