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Pleiotropic effects of the
COX-2/PGE2 axis in the
glioblastoma tumor
microenvironment

Phillip T. Dean and Shelley B. Hooks*

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of
Georgia, Athens, GA, United States
Glioblastoma (GBM) is the most common and aggressive form of malignant

glioma. The GBM tumor microenvironment (TME) is a complex ecosystem of

heterogeneous cells and signaling factors. Glioma associated macrophages

and microglia (GAMs) constitute a significant portion of the TME, suggesting

that their functional attributes play a crucial role in cancer homeostasis. In

GBM, an elevated GAM population is associated with poor prognosis and

therapeutic resistance. Neoplastic cells recruit these myeloid populations

through release of chemoattractant factors and dysregulate their induction

of inflammatory programs. GAMs become protumoral advocates through

production a variety of cytokines, inflammatory mediators, and growth

factors that can drive cancer proliferation, invasion, immune evasion, and

angiogenesis. Among these inflammatory factors, cyclooxygenase-2 (COX-2)

and its downstream product, prostaglandin E2 (PGE2), are highly enriched in

GBM and their overexpression is positively correlated with poor prognosis in

patients. Both tumor cells and GAMs have the ability to signal through the COX-

2 PGE2 axis and respond in an autocrine/paracrine manner. In the GBM TME,

enhanced signaling through the COX-2/PGE2 axis leads to pleotropic effects

that impact GAM dynamics and drive tumor progression.

KEYWORDS

glioblastoma, COX-2, PGE2, microglia, macrophage, inflammation, tumor
microenvironment, cancer
Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive form of central

nervous system (CNS) tumor. GBM accounts for 48.3% of all malignant brain tumors.

GBM patients have a median survival rate of only 14-17 months with standard treatment

including surgical resection, chemotherapy, and radiotherapy, and a median survival of

less than 6 months without therapeutic intervention (1–3). Poor prognosis in GBM
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1116014/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1116014/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1116014/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1116014/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1116014&domain=pdf&date_stamp=2023-01-26
mailto:shooks@uga.edu
https://doi.org/10.3389/fonc.2022.1116014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1116014
https://www.frontiersin.org/journals/oncology


Dean and Hooks 10.3389/fonc.2022.1116014
patients is linked to high intra-and inter-tumor heterogeneity,

chemoresistance, and an immunosuppressive environment (4).

The GBM tumor microenvironment (TME) plays a crucial role

in development and progression of the disease. The TME is a

dynamic cellular and molecular ecosystem of tumor cells,

glioblastoma stem cells (GSCs), stromal cells (fibroblasts,

endothelial), and immune cells (microglia, macrophages, T-

cells, B-Cells) actively responding to their surrounding cells,

tissues, and molecular cues (5, 6). This highly complex network

communicates through production of cytokines, chemokines,

bioactive lipids, and extracellular matrix components. Together

they dictate diverse pro-inflammatory and anti-inflammatory

responses that shape their environment through communication

and interaction (7).

The most abundant and multifaceted members of the GBM-

TME are the glioma associated microglia and peripheral

macrophages (GAMs). They constitute up to 30-50% of tumor

associated cells, and thus have a strong influence on the GBM-

TME (8, 9). The degree of GAM integration in the GBM-TME is

positively correlated with tumor grade and inversely correlated

with patient survival (7, 10). The presence of these inflammatory

cells in the TME leads to dysregulated inflammation and plays a

key role in the immunosuppressive nature of GBM, consistent

with the well-established association between cancer and

inflammation (11). In contrast to their phagocytic and

cytotoxic capabilities against infection, GAMs produce

inflammatory mediators that promote tumor growth,

immunosuppression, and angiogenesis. GAMs produce an

array of cytokines, growth factors, and bioactive lipids that aid

in a pro-tumoral shift, such as Interleukin (IL)-1b, IL-6,

transforming growth factor-b (TGF-b), epidermal growth

factor (EGF), and the prostaglandin E2 (PGE2) (12, 13). PGE2

is highly enriched in the GBM-TME and has a substantial

impact on proliferation, migration, immunosuppression, and

angiogenesis. Similarly, cyclooxygenase 2 (COX-2), the enzyme

responsible for PGE2 production, is also highly upregulated in

GBM and is associated with tumor growth (Shono et al., no date;

14–16). Here, we review the current understanding of the COX-

2/PGE2 signaling axis in GAMs, its regulation of the tumor

microenvironment, and its impact on GBM tumor progression.

Inflammation is well established as a robust driver of cancer

and is now considered to be one of the hallmarks of cancer (11). In

natural inflammatory responses, infections and cell damage are

cleared by immune cells that launch an acute proinflammatory

response to neutralize the threat. Once the threat has been

neutralized, immune cells launch an anti-inflammatory response

to resolve inflammation. In aberrant situations, such as chronic

inflammation and cancer, the threat may not be neutralized,

causing dysregulation of the inflammatory program. The

relationship between glioma and inflammation is characterized

by multiple key steps: first, the recruitment and infiltration of

immune cells to the site of the tumor; second, complex signaling

crosstalk between the tumor cells and multiple types of immune
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cells mediated through small molecule release and activation of

receptors on neighboring cells; third, tumor cell responses

including proliferation, transcriptional regulation, migration,

and differentiation; and finally, tumor progression driven by

immune evasion, neovascularization, and tissue remodeling.

Activation of GAMs induces the release of cytokines, growth

factors, and other inflammatory mediators that promote tumor

growth, angiogenesis, and an immunosuppressed state.
Microglia and macrophages in
the CNS

Microglia and brain infiltrating macrophages serve an

essential role as immune sentinels, responding to infection and

injury in the central nervous system (CNS) to maintain brain

homeostasis (5, 17). Bone marrow derived macrophages

(BMDMs) originate in the bone marrow as peripheral

hematopoietic progenitors, and they become circulating

monocytes in the blood stream. BMDMs are highly motile as

they locate to target tissue, but motility lowers as they approach a

tumor and eventually take residence in the tumor tissue.

Microglia, found throughout the brain, represent a distinct

myeloid population, and are considered the resident

macrophages of the CNS. Microglia are primarily derived from

erythro-myeloid progenitor cells in the yolk sac during early

embryogenesis and are long lived, relying on self-renewal in the

CNS (18, 19). They maintain homeostatic conditions by

supporting neurogenesis, synaptic pruning, and phagocytotic

clearing of apoptotic cells and debris (20, 21). Microglia exhibit

diverse morphologies and phenotypes in response to various

stimuli. Surveilling microglia are highly ramified to efficiently

respond to environmental stimuli (22). Once activated, they

rapidly change to an amoeboid morphology (23, 24). Microglia

activation leads to production of IL-1b, which plays an

important role in modulating the blood brain barrier (BBB)

and promotes a leaky state that allows entrance of bone marrow

derived immune cells to enter the brain (25). BMDMs have

remarkably similar morphology to the ameboid shaped

microglia making it challenging to distinguish between the two

histologically (19). Thus, both BMDM-derived brain infiltrating

macrophages and resident microglia are present in the brain and

in the GBM-TME, and these cells can be functionally and

phenotypically difficult to distinguish. Compared to BMDMs,

microglia have limited migratory capacity and instead use their

processes to extend and retract, constantly surveilling their

surroundings (26). These migratory differences lead to the

differential distributions between macrophages and microglia

in the GBM-TME. Single-cell RNAseq analysis of GBM revealed

that highly motile infiltrating macrophages were primarily

located in the central regions of the tumor while microglia

tend to surround the outer edge of the tumor (27).

Additionally, GBM tumors typically display necrotic cores and
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microvascular hyperplasia due to the hypoxic environment.

GAMs accumulate in these hypoxic/necrotic areas of tumors

where they support tumor proliferation and angiogenesis

(28, 29).
GAMS in the GBM microenvironment

In glioma, macrophages and microglia are recruited to the

tumor site by glioma-derived chemoattractant factors such as

colony stimulating factor 1 (CSF1), C-C motif chemokine ligand 2

(CCL2; also known as monocyte chemoattractant protein 1,

MCP-1), fractalkine (CX3CL1), and vascular endothelial growth

factor (VEGF) (30–33). Following recruitment, GAMs secrete

inflammatory mediators that regulate angiogenesis, proliferation,

and immunosuppression in the GBM-TME. PGE2 is emerging as

a key mediator of these effects, and both PGE2 and its upstream

biosynthetic enzyme COX-2 are overexpressed in the GBM-TME,

are associated with poor prognosis, and mediate pleiotropic effects

that support glioma proliferation, angiogenesis, and

immunosuppression (16, 34).

GBM tumors are highly vascular and rely on neovascularization

for tumor growth. Microglia and macrophages play a supporting

role in this process through the production of angiogenic factors

and degradation of the extracellular matrix (ECM) (35). Depletion

of microglia and macrophages in an animal model of GBM resulted

in reduced micro-vessel density (MVD), proliferation, and overall

tumor volume (36). Additionally, selective depletion of only

microglia led to a comparable attenuation of MVD to that of

total GAM depletion, suggesting that microglia are particularly

important immune facilitators of angiogenesis in glioma (36).

GAMs release multiple angiogenic factors that promote

angiogenesis and invasiveness, including transforming growth

factor b (TGF-b), IL-6, and vascular endothelial growth factor

(VEGF) (37). VEGF expression is upregulated in hypoxic regions

where it acts as a robust chemoattractant to recruit GAMs, which in

turn promote angiogenesis (29). In the presence of glioma cells,

microglia produce significant amounts of TGF-b, which in turn

induces production of matrix metalloproteinase 9 (MMP9) and

MMP2, leading to degradation of ECM and supporting glioma stem

cell invasion (38). GSCs are treatment resistant, multipotent, self-

renewing cells with high heterogeneity (39, 40). GAMs and GSCs

are often functionally interconnected and co-localized. Mapping of

cellular distribution in human GBM revealed that striking numbers

of GAMs were located around GSC clusters and, as observed with

GAMS, the density of GSCs positively correlated to tumor grade

(40). GAMs accumulate in perivascular regions where they produce

proangiogenic factors such as VEGF and CXCL2, due to

chemoattractant release from GSCs (36). Taken together, these

observations suggest a complex signaling interplay between tumor

cells, stem cells, and GAMs to regulate angiogenesis and invasion.

Growing evidence suggests that COX-2 and PGE2 are key

mediators of the effect of GAMs on angiogenesis. COX-2 and
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PGE2 are produced by microglia and macrophages, and PGE2

accumulation is particularly high in hypoxic/necrotic regions of the

TME (16, 41). PGE2 in the TME is linked to increased expression of

glioma-derived monocyte chemoattractant CCL2/MCP-1, leading

to active recruitment of GAMs (31, 42). In response, GAMs induce

IL-6 production, which increases GBM invasiveness (31). COX-2

and PGE2 regulate expression of VEGF and trigger increasedMVD,

suggesting that this pathway is critical to the signaling networks that

regulate angiogenesis in the GBM-TME (15).

Growing evidence suggests that GAMs also play a key role in

establishing the immunosuppressant microenvironment that is

characteristic of GBM. Specifically, GAMs regulate the ability of

GBM tumor cells to evade clearance by the immune system by

down regulation of antigen presentation and subsequent T-cell

activation (43). Importantly, elevated levels of PGE2 in the

GBM-TME were demonstrated to downregulate major

histocompatibility complex class II (MHC class II), responsible

for antigen presentation, in microglia (44). In patients,

expression of MHC class II is downregulated in GAMs

isolated from patients with GBM, leading to ineffective T-cell

activation and immunosuppression (45). Induction of COX-2/

PGE2 leads to robust production of immunosuppressive

mediators such as IL-6, IL-10, and GM-CSF that lead to

induction of regulatory T cells, further exacerbating

immunosuppression (44, 46). Microglial mTOR/STAT3

s igna l ing i s a lso upregula ted in GBM, tr igger ing

immunosuppression through induced expression of IL-6 and

IL-10 and inactivation of microglial mTOR (43).

Advances in the genomic landscape of the GBM TME has

demonstrated the significant roles that GAMs play in tumor

progression, but there is still much to be elucidated concerning

GAM heterogeneity, plasticity, and classification. It has become

apparent that these myeloid populations are highly dynamic,

represent spatial diversity, and need to be evaluated

multidimensionally. This complexity is in poorly represented

by simplified M1/M2 framework that is commonly used to

describe macrophage phenotypes. Classically, macrophages

and microglia have been categorized through the dualistic lens

of M1 (pro-inflammatory) and M2 (anti-inflammatory)

activation states. In context of GBM, M1 represents an anti-

tumor phenotype, while M2 is described as pro-tumor (47).

Microglia being the resident brain macrophages, adopted this

nomenclature as well without regard to the distinct differences

between them. As research in the field advanced, it became clear

that a significant amount of in vitro data that supported the M1/

M2 framework could not be recapitulated in vivo (48–50).

Additionally, single cell analysis revealed distinct phenotypic

and spatial differences between GAMs in human GBM samples

and that both M1 and M2 markers were expressed concurrently

in microglia (51). The dichotomous M1/M2 system fails to

reflect heterogeneity, spatial landscape, ontogeny, or disease

states (52, 53). A recent review has elegantly demonstrated this

new concept by presenting GAMs in spatial association to
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primary brain tumor type, identified potential markers that

differentiate macrophages from microglia, and outlined factors

that may support microglia heterogeneity in the TME (22).
COX-2: Activity and expression

COX-1/2, also known as Prostaglandin G/H synthase 1/2

(PTGS1/2) respectively, are key rate limiting enzymes that covert

arachidonic acid (AA) into prostaglandin G2 (PGG2) and PGH2

which can then be metabolized by prostaglandin E synthase

(PGES) downstream to form 5 bioactive lipids known as

prostanoids (16, 54). These five prostanoids are PGE2, PGI2,

PGD2, PGF2a, and thromboxane A2 (TXA2). Induction of COX

activity and its downstream products are linked to classic

inflammatory states such as fever, acute pain, local tissue

injury, and arthritis, and as such it is targeted by classic non-

steroidal anti-inflammatory drugs in treating these conditions

(55). While COX-1 is expressed constitutively throughout most

tissues and acts a homeostatic inflammatory mediator for

requisite physiological tasks, COX-2 has very low constitutive

expression in most tissues, but its expression is rapidly inducible

in response to pathological insults and inflammatory stimuli

such as cytokines, growth factors, and various tumor promoters

(16, 56). COX-2 gene expression is regulated by regulatory cis-

elements in its promoter. The two most well characterized

critical elements for regulation are the cAMP response element

(CRE), which is recognized and activated by dimeric

transcription factor activator protein 1 (AP1) and CRE

binding protein (CREB), and two nuclear factor kappa B (NF-

kB) consensus binding sites, which bind p65 NFkB. Additional
sites include a CCAAT/enhancer, which is activated by and the

CCAAT/enhancer binding protein (C/EBP). Together, these

transcription factors recruit transcriptional co-activator p300

to the AP1/CREB/NFkB/C/EBP regulatory complex, and this

complex is essential for proper COX-2 transcription initiation

(57). Therefore, COX-2 expression is induced by multiple

interacting transcription factors and their associated binding

partners (57).

Diverse extracellular stimuli induce the expression of COX-2

through activation of cell surface receptors that initiate signaling

cascades which culminate in the regulation of these transcription

factors. Classically, lipopolysaccharide (LPS) stimulates toll-like

receptor 4 (TLR4) to engage the adapter molecule myeloid

differentiation factor 88 (MyD88), which then signals through

Mitogen Activate Protein (MAP) kinase cascades to induce AP1

activation and association with the COX-2 promoter. The IL-1

receptor induces COX-2 expression through similar MyD88-

dependent MAP kinase activation upon activation by its ligand,

IL-1b (58). C/EBP is also activated downstream of MAP kinase

activation. LPS/TLR4 activation also triggers MyD88-dependent
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activation of tumor progression locus 2 (Tpl2), which leads to

nuclear translocation and activation of both NFkB and CREB. In

addition to receptor-stimulated regulation, COX-2 expression

can be upregulated by hypoxia, which triggers NF-kB interaction

with the NF-kB regulatory element and recruitment of Hypoxia

Inducible Factor 1a (HIF-1a) to the COX-2 promoter (59, 60).

Finally, Nitric oxide (NO), a small molecule converted from L-

arginine by inducible nitric oxide synthase (iNOS), can enhance

COX-2 expression through activation of CREB (61). Therefore,

COX-2 transcriptional regulation reflects convergent, integrated

regulation by multiple stimuli.
PGE2/EP2 signaling

The diversity of effects of COX-2/PGE2 on angiogenesis,

t umo r - p r omo t i n g i nfl amma t i o n , i n v a s i o n , a n d

immunosuppression in GBM reflects the diversity of signaling

pathways regulated by these mediators (Figure 1). PGE2 binds

and signals through the EP family of receptors (EP1-4). Due to

the functional variability of these receptors, PGE2 initiates

pleiotropic downstream effects. EP receptors are all G-protein

coupled receptors (GPCRs) with distinct downstream effects

depending on their G-protein coupling. Activation of Gq-

coupled EP-1 leads to activation of phospholipase C (PLC),

which increases intracellular Ca2+ and activates protein kinase C

(PKC). The EP-3 receptor is primarily Gi-coupled, resulting in

inhibition of the adenylate cyclase/cAMP signaling and

activation of Gbg dependent signaling. EP-2 and EP-4 are

both Gs-coupled receptors that activate cAMP formation

through adenylate cyclase which leads to activation of the

protein kinase A (PKA) pathway. EP2/4 activation by PGE2

leads to b-arrestin recruitment, activation of proto-oncogene

tyrosine-protein kinase (c-Src), and subsequent transactivation

of epidermal growth factor receptor (EGFR), initiating

downstream phosphoinositide 3-kinase (PI3K)–Akt,

MAPKinase, Ras/Raf, and c-Jun N-terminal kinase (JNK)

pathway signaling, all known to increase cell proliferation,

migration, and differentiation (62–65). A distinct difference

between EP-2/4 is that, upon PGE2 activation, the EP-4

receptor becomes rapidly internalized and desensitized, while

EP-2 rarely internalizes and sustains persistent receptor

signaling at the cell surface (66).

PGE2 is the predominant downstream product of COX-2

and is implicated in tumor growth and progression in multiple

solid malignancies such as breast (67), colorectal (68), lung (69),

skin (70), pancreatic (71), prostate (69) and CNS tumors (16). In

gliomas COX-2/PGE2 expression is correlated with an increase

in glioma grade and poor prognosis. A study of 66 patient glioma

samples revealed that 71% of GBM tumor samples had higher

than 50% COX-2 positive cells (3% had less than 25% COX-2
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positive cells) compared to 30% COX-2 positive cells of low-

grade gliomas (40% had less than 25% COX-2 positive cells)

(72). COX-2 production of PGE2 is induced upon the treatment

of GBM patients with both radiation and chemotherapy leading

to a steep increase of immunosuppressive cytokines (16).

Elevated COX-2/PGE2 has been shown to correlate with

decreased survival and earlier recurrence following

radiaotherapy (14, 41). Additionally, levels of circulating PGE2

in patients were shown to decrease significantly following

surgical resection of malignant tumors (73). Spatial expression

of COX-2 in GBM shows that the majority of COX-2 expression

is localized to the core of the tumor, dissipating in the periphery,

and is negligible in adjacent tissues. This pattern of expression is

consistent with the fact that GBM characteristically maintains a

hypoxic microenvironment particularly in the central regions of

tumor and hypoxia facilitates COX-2 upregulation in a HIF-1a
dependent manner (60, 74).

Multiple feed-back regulatory loops exist between COX-2

production of PGE2 and PGE2 regulation of COX-2 expression,

amplifying the pro-tumor, immunosuppressive influences of

COX-2/PGE2 on the TME (Figure 2A) (75–77). PGE2

stimulation of the EP2 and EP4 receptors activates nuclear

translocation of CREB and binding to the COX-2 promoter,

COX-2 expression, and production of more PGE2 (78). In the

presence of glioma-derived soluble factors, microglia produce

significant amounts PGE2, establishing a paracrine mechanism
Frontiers in Oncology 05
as well (12). This feedback loop may give context to the high

correlation of COX-2/PGE2, as well as the percentage of

infiltrating GAMs with high grade gliomas and poor

prognosis. Additionally, PGE2 induces VEGF through HIF-1a
activation, and VEGF can stimulate COX-2/PGE2 production,

suggesting that these mediators are also co-regulated in a feed-

forward, amplifying mechanism (76, 79). VEGF overexpression

in the GBM-TME is associated with poor prognosis, and this

PGE2/VEGF axis may contribute to the prevalence of

angiogenesis and invasiveness of GBM. Macrophages,

microglia, and tumor cells sustain the ability to produce and

respond to COX-2/PGE2 through autocrine/paracrine signals

creating a cyclical storm of inflammatory mediators (Figure 2B).
Therapeutic implications

GBM is notoriously resistant to conventional therapies,

driving a need for additional targets and approaches. COX-2’s

multifaceted role in cancer progression suggests it may be a

potential target for therapy. Inhibition of COX-2 by nonsteroidal

anti-inflammatory drugs (NSAIDs) is a common treatment of

cancers and it has increased patient survival in some cancers

(80). However, NSAIDs are not selective for COX-2; they also

target COX-1 and the related side-effects, including upper

gastrointestinal (GI) stress, limit their use (81). The
FIGURE 1

Pleiotropic effects of COX2/PGE2 axis in GBM. COX-2 dependent production of PGE2 leads to multiple tumor promoting effects through
activation of EP1-4 receptors. These include angiogenesis, immune evasion, glioma stem cell renewal, invasion and ECM remodeling, and
enhance proliferation. Created with BioRender.com
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development of COX-2 selective inhibitors (COXIBs) in the late

1990s was met with major enthusiasm and great expectations for

safer COX-2 inhibition. However, while these drugs do indeed

display lower GI stress, the initial enthusiasm for their use has

been dampened by significant cardio- and cerebro-vascular

toxicities (82). COX-2 selective inhibitors have shown some

efficacy in clinical trials as an adjuvant to chemotherapy and

radiotherapy (16, 81). Therefore, even though there is clear

evidence that COX-2 function is a plausible target in the

treatment of GBM, direct inhibition of the enzyme with

selective inhibitors may not be an effective strategy.

The multifaceted physiological roles of COX-2 limit its

potential as a direct target for long-term therapeutic use.

However, therapeutic intervention targeting the cyclical

upregulation of COX-2/PGE2 in the TME can be achieved

without direct COX-2 inhibition, and these indirect strategies

may provide safety and efficacy advantages. A promising

approach is targeting of downstream mediators of COX-2,

especially PGE2, and their receptors. The pleiotropic effects of

autocrine and paracrine signaling through the COX-2/PGE2 axis

in the tumor microenvironment need to be further delineated to

target specific paths that lead to malignant progression. Isolating

the specific effects of COX-2/PGE2 for individual EP receptors

and how they each shape GBM TME in a spatial and temporal

manner will inform future therapeutic avenues. For example,

PGE2/EP2 signals through a G protein-dependent pathway

(cAMP/CREB) and PGE2 stimulates VEGF production

through multiple mechanisms (HIF-1a activation, cAMP

signaling, and EGFR transactivation) promoting angiogenesis

(76). The essential role of the EP2 receptor in the autocrine/

paracrine signaling establish it as an attractive target for

intervention. In recent years, multiple EP2 small molecule
Frontiers in Oncology 06
inhibitors have been identified and tested, including butaprost,

CAY10399, ONO-AE1–259, and TG6‐10‐1 (83). The brain-

permeable, small molecule EP2 antagonist TG6‐10‐1 has

shown early promise as a possible therapeutic. In a recent

study, inhibition of the PGE2/EP2 signal cascade by TG6‐10‐1

demonstrated significantly reduced GBM tumor growth in both

subcutaneous and intercranial in vivo models (84).

While there has been extensive research into COX- in

inflammation and cancer, the specifics of its dynamic

regulation within and among the diverse cell types in the TME

has yet to be fully elucidated. Understanding how induction of

COX-2 expression is regulated in the context of GBM-TME may

reveal therapeutic targets and strategies that are more selective

than global COX-2 inhibition. For example, RGS10, a small G-

protein regulator, has been shown to be a robust regulator of

COX-2/PGE2 in both macrophages and microglia. RGS10

strongly suppresses COX-2 following activation by diverse

upstream activators, including LPS, TNFa, and interferon

gamma (85, 86). RGS10 does not completely abrogate COX-2,

but attenuates the stimulated induction of COX-2 expression in

stimulated cells (87). Therefore, RGS10 represents a potential

target to break the cycle of COX-2 expression and PGE-2

production in GBM (86).
Concluding remarks

The GBM microenvironment is a dynamic system, and its

high heterogeneity leads to an immunosuppressive

environment. Tumor cells recruit immune cells which aid in

this immunosuppression through production of inflammatory

mediators. Infiltration of GAMs leads to dysregulated
A B

FIGURE 2

COX-2/PGE2 autocrine and paracrine feedback loops in the GBM TME. (A) COX-2 expression is induced through the activation of EP-2/4 by
PGE2. Activation of CREB leads to association with the COX-2 promoter region and upregulation of COX-2 expression. (B) Tumor cells and
GAMs upregulate COX-2 expression upon PGE2 activation through autocrine and paracrine mechanisms. Exacerbation of this cycle enhances
robust upregulation of COX2/PGE2 in the GBM TME leading to tumor promoting effects and poor prognosis. Created with BioRender.com
frontiersin.org
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inflammatory states that promote tumor progression. COX-2

and PGE2 are increased in GBM, and their pleiotropic signals

impact proliferation, angiogenesis, immune evasion, stem cell

renewal, and invasion. GBM lacks an effective treatment

strategy. Harnessing the COX-2/PGE2 axis and understanding

GBM microenvironment dynamics are important steps to

revealing potential targets and informing new therapeutics.
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