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lipidomics and cytokinomics
profiling predict disease
recurrence in metastatic
colorectal cancer patients
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Purpose: In metastatic colorectal cancer (mCRC) patients (pts), treatment

strategies integrating liver resection with induction chemotherapy offer

better 5-year survival rates than chemotherapy alone. However, liver

resection is a complex and costly procedure, and recurrence occurs in

almost 2/3rds of pts, suggesting the need to identify those at higher risk. The

aim of this work was to evaluate whether the integration of plasma

metabolomics and lipidomics combined with the multiplex analysis of a large

panel of plasma cytokines can be used to predict the risk of relapse and other

patient outcomes after liver surgery, beyond or in combination with clinical

morphovolumetric criteria.

Experimental design: Peripheral blood metabolomics and lipidomics were

performed by 600 MHz NMR spectroscopy on plasma from 30 unresectable

mCRC pts treated with bevacizumab plus oxaliplatin-based regimens within

the Obelics trial (NCT01718873) and subdivided into responder (R) and non-R

(NR) according to 1-year disease-free survival (DFS): ≥ 1-year (R, n = 12) and < 1-

year (NR, n = 18). A large panel of cytokines, chemokines, and growth factors

was evaluated on the same plasma using Luminex xMAP-based multiplex

bead-based immunoassay technology. A multiple biomarkers model was

built using a support vector machine (SVM) classifier.
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Results: Sparse partial least squares discriminant analysis (sPLS-DA) and loading

plots obtained by analyzing metabolomics profiles of samples collected at the

time of response evaluation when resectability was established showed

significantly different levels of metabolites between the two groups. Two

metabolites, 3-hydroxybutyrate and histidine, significantly predicted DFS and

overall survival. Lipidomics analysis confirmed clear differences between the R

and NR pts, indicating a statistically significant increase in lipids (cholesterol,

triglycerides and phospholipids) in NR pts, reflecting a nonspecific

inflammatory response. Indeed, a significant increase in proinflammatory

cytokines was demonstrated in NR pts plasma. Finally, a multiple biomarkers

model based on the combination of presurgery plasma levels of 3-

hydroxybutyrate, cholesterol, phospholipids, triglycerides and IL-6 was able

to correctly classify patients by their DFS with good accuracy.

Conclusion: Overall, this exploratory study suggests the potential of these

combined biomarker approaches to predict outcomes in mCRC patients who

are candidates for liver metastasis resection after induction treatment for

defining personalized management and treatment strategies.
KEYWORDS
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Introduction

Colorectal cancer (CRC) is the third most common cancer

worldwide and the second leading cause of cancer deaths in the

western world (1, 2), with liver metastases developing in almost

half of the cases with metastatic disease. Surgery for CRC liver

metastases (CRCLM) is the only curative treatment, resulting in

50% 5-year survival rates when integrated with effective systemic

therapies (3, 4). However, liver resection is a complex and costly

procedure associated with significant morbidity and mortality

risks, and relapse occurs in almost two-thirds of patients after

potentially curative resection, within 2 years of the surgery in the

majority of cases (5). Therefore, accurate identification of

patients at higher risk of recurrence is critical for developing

different follow-up schedules or avoiding nonbeneficial invasive

surgical procedures.

Currently, resectability is established using clinical-

morphovolumetric criteria based on conventional computed

tomography (CT) or magnetic resonance imaging (MRI),

approaches that cannot recognize occult metastatic disease

elsewhere, thus affecting the patient outcome (6). Moreover,

recent evidence and a meta-analysis do not support the routine

use of preoperative positron emission tomography (PET)-CT in

patients with potentially resectable disease (6, 7). Efforts to develop

risk scores that include clinical parameters resulted in several

proposed prognostic scoring systems that failed to be adequately

predictive and are unlikely to enter clinical practice (8–10).
02
Similarly, a few attempts have been made to study the prognostic

role of tumor molecular parameters, such as mutational status or

tumor gene expression profiles, with no consensus yet (9, 11, 12).

Circulating blood biomarkers for prognostication are currently

attracting increasing attention because they are minimally

invasive and their trend can be evaluated over time.

The application of metabolomic profiling to biological fluids

has recently emerged as a powerful and reliable tool for

identifying novel biomarkers to improve early diagnosis and

prognostication and for predicting the response of cancer

patients to treatment (13–16). In this context, nuclear

magnetic resonance (NMR) spectroscopy represents the only

nondestructive technique able to rapidly identify and quantify

complex mixtures of metabolites in small samples, and its use is

increasing for successful patient stratification in various diseases,

including cancer (17–20).

The NMR approach has already been used to study

metabolic alterations in CRC using a variety of sample types,

including urine, tissues, sera and feces (21–24). Serum

metabolomics has been demonstrated to have a potential role

in CRC clinical management for early detection of CRC (25–29),

enhancing staging accuracy (30, 31), distinguishing locoregional

disease vs. metastatic disease, differentiating between liver-only

vs. extrahepatic metastases, and identifying patients who will

have a poor outcome (19, 27, 32, 33).

Cytokines contribute to cancer development and

progression, and deregulated serum levels of cytokines can be
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detected in cancer patients, including colorectal cancer, and they

correlate with patient outcomes (27, 34–37).

We recently completed a phase 3 study (Obelics trial) of 230

mCRC patients, investigating different schedules of bevacizumab

plus oxaliplatin/fluoropyrimidine regimens (mFOLFOX-6/

mOXXEL) (38). In detail, we compared the traditional

concomitant administration of bevacizumab with an

experimental schedule in which bevacizumab was given 4 days

before chemotherapy. Although the objective response rate, the

primary endpoint of the study, did not significantly differ

between the two treatment groups, a longer overall survival

(OS), fewer adverse effects and better health-related quality of

life were observed with the sequential bevacizumab

administration schedule. A total of 81 patients enrolled in the

trial underwent resection of metastases with no significant

differences observed in the radical resection rate between the

two arms.

Here, we retrospectively evaluated the peripheral blood

samples of mCRC patients who underwent liver metastasis

resection within the Obelics trial, hypothesizing that the

integration of plasma metabolomics and lipidomics as well as

the multiplex analysis of a large panel of plasma cytokines may

enable a more informative prediction, either at diagnosis or over

time, of the risk of relapse and outcome after liver surgery, beyond

or in combination with clinical morpho-volumetric criteria.
Materials and methods

Study population and sample collection

The cl inical samples were col lected within the

multicentricObelics trial (NCT01718873), which investigated

different schedules of bevacizumab in combination with

oxaliplatin plus fluoropyrimidines (FOLFOX-6 or OXXEL)

regimens for treating metastatic colorectal cancer (mCRC)

patients. Patient recruitment and sample collection were

approved by the ethics committee of the National Cancer

Institute of Naples – Fondazione G. Pascale. Written informed

consent was obtained from all of the patients in accordance with

the Declaration of Helsinki for the use of human biological

samples for research purposes. Blood samples from the patients

were obtained after overnight fasting. Plasma samples were

retrospectively selected from patients in the Obelics trial

enrolled at Pascale Institute who underwent surgery for

resection of only liver metastases; patients with severe surgical

complications were excluded. For thirty patients (15 in the

experimental arm and 15 in the standard arm) with these

characteristics, blood samples were collected at different time

points (baseline and whenresectability was defined at the

response evaluation). The patient characteristics are shown in

Table 1, and the patient inclusion process is reported in Figure 1.
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The patients were subdivided into responder (R) and non-R

(NR) according to 1-year disease-free survival (DFS): ≥ 1-year

(R, n = 12) and < 1-year (NR, n = 18).

Blood samples were collected in plasma preparation

Vacutainer tubes (BD Biosciences), centrifuged at 1500 × g for

10 min within 2 h of collection and then stored at -80°C until the

day of analysis.

Vital tumor areas selected by a pathologist from the

metastases resected from the liver of ten patients were frozen

at -80°C until analysis. Normal liver tissues for the same patients

were also collected and frozen.

Pathological tumor response was evaluated according to the

2010 American Joint Committee on Cancer (AJCC) TRG

system: TRG 1, no viable cancer cells; TRG 2, single or few

cancer cells; TRG 3, fibrosis predominating over residual cancer;

TRG 4, predominant viable cancer cells outgrowing the

fibrosis (39).
Plasma 1H NMR spectroscopy

All plasma samples were prepared for NMR analysis by

mixing 330 mL of plasma with 300 mL of PBS (containing 10% v/

v H2O) and 70 mL of reference standard D2O solution containing

0.1 mM sodium 3-trimethylsilyl [2,2,3,3-2H4] propionate (TSP).

Samples were inserted into an NMR tube, and all of the spectra

were recorded using a Bruker Avance III HD (600 MHz) NMR

spectrometer operated at a 599.97 MHz 1H resonance frequency

and equipped with a TCI cryoprobe. To attenuate the broad

NMR signals from the slowly tumbling molecules in the lipids

and proteins, a standard Carr−Purcell−Meiboom−Gill (CPMG)

pulse sequence was used to record the 1D spin−echo spectra. To

suppress the water peaks, a CPMG presaturation pulse sequence

was used with the equation -RD-90°-(t-180°-t) n - ACQ, where

RD is the relaxation delay of 2 s; 90° and 180° represent the

pulses that trip the magnetization vector; t is the spin−echo

delay; n represents the number of loops; and ACQ is the data

acquisition period. In our experiment, the data points were

acquired using 256 transients.
Extraction of the lipidic fractions
from the plasma samples and
1H NMR spectroscopy

Each 100 µL plasma sample was resuspended in 170 µL of

H2O and 700 µL of methanol. Then, 350 µL of chloroform was

added, and the samples were mixed on an orbital shaker on ice

for 10 min. Then, 350 mL of H2O/chloroform (1:1, v/v) was

added to each sample and centrifuged at 4000 rpm for 10 min at

4°C. Thereafter, the lipidic (apolar) phases were collected and

evaporated. Then, these fractions were dissolved in 700 µL of
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deuterated chloroform containing 0.1 mM TSP and inserted into

NMR tubes. 1H-NMR spectra at 300 K were acquired using a

Bruker Avance III HD (600 MHz) NMR spectrometer equipped

with a TCI cryoprobe and zgesgp as the pulse sequence. The data

points were acquired using 512 transients.
Frontiers in Oncology 04
Tissue 1H HRMAS NMR spectroscopy

Frozen tumor tissue samples were cut to an appropriate size

(mean weight: 10 mg) and placed in 50 mL disposable rotor insets

filled with reference standard D2O solution containing 0.1 mM

TSP for the field lock. Inserts with frozen samples were transferred

to 4 mm zirconium rotors. Samples were kept at 277 K to slow

down tissue degradation. Spectra were acquired by a Bruker

Avance III HD (600 MHz) NMR spectrometer equipped with a

high resolution magic angle spinning (HRMAS) probe using a

magic angle spinning rate of 4 kHz and CPMG presaturation

pulse sequence. A total of 256 scans were collected.
NMR data processing

All of the 1H NMR spectra were manually phased and

baseline-corrected and referenced to the CH3 resonance of

TSP at 0 ppm. The spectral 0.50-8.60 ppm region of the 1H-
FIGURE 1

CONSORT diagram showing the 30 mCRC patients selected.
TABLE 1 Baseline characteristics of 30 patients.

Patients
(#30)

Good outcome – R
(#12)

Pour outcome –NR
(#18) p-value

Gender

M 12(40%) 2 (16.7%) 10 (55.6%)
0.0332*

F 18 (60%) 10 (83.3%) 8 (44.4%)

Age median
(95% CI range)

59 (54.9-61.6) 55 (52.1-60.2) 61 (54.5-64.8)

PFS median
(95% CI range)

10.43 (11.69-27.72) 47.39 (31.62-52.65) 3.015 (2.75-6.76)

RAS status

wild-type 11 (36.7%) 3 (25%) 8 (44.4%)
0.279

mutated 19 (63.3%) 9 (75%) 10 (55.6)

TRG

1-2 19 (63.3%) 10 (83.3%) 9 (50%)
0.0634

3-4 11 (36.7%) 2 (16.7%) 9 (50%)

ARM

esperimental 15 (50%) 5 (41.7%) 10 (55.6%)
0.456

standard 15 (50%) 7 (58.3%) 8 (44.4%)

CEA

> 5UI/L 23 (70%) 10 (80%) 13 (72%)
0.480

≤ 5 UI/L 7 (30%) 2 (20%) 5 (18%)

Primary tumor location

right colon 10 (33.3%) 5 (41.7%) 5 (27.8%)
0.429

left colon 20 (66.7%) 7 (58.3%) 13 (72.2%)

Significant p-value < 0.05 is indicated by symbol *.
fron
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NMR spectra was integrated in buckets of 0.04 ppm by the

AMIX package (Bruker, Biospin, Germany). In detail, we

excluded, in the case of the polar spectra, the water resonance

region (4.5-5.2 ppm) during the analysis and normalized the

bucketed region to the total spectrum area using Pareto scaling

by the MetaboAnalyst v5.0 tool (40).
Cytokinome evaluation

A large panel of cytokines, chemokines, and growth factors

were evaluated in plasma collected when resectability was

defined using LuminexxMAP-based multiplex bead-based

immunoassay technology. In detail, the concentrations of b-
NGF, CCL2 (MCP-1), CCL3 (MIP-1a), CCL4 (MIP-1a), CCL7
(MCP-3), CCL11 (Eotaxin), CTACK (CCL27), CXCL1 (GRO-

a), CXCL9 (MIG), CXCL10 (IP-10), CXCL12 (SDF-1a),
FGFbasic, G-CSF, GM-CSF, HGF, IFN-a2, IFN-g, IL-1a, IL-
1ß, IL-1ra, IL-2, IL-2Ra, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9,
IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-16, IL-17, IL-18,

LIF, M-CSF, MIF, PDGF-ßß, RANTES, SCF, SCGF-ß, TNF-a,
TNF-b, TRAIL and VEGF were determined using the Bio-Plex

Pro™ Human Cytokine Screening Panel, 48-Plex assay and a

Bio-Plex array reader (Luminex, Austin, TX, USA) that

quantifies multiplex immunoassays in a 96-well format with

very small fluid volumes. The analyte levels were calculated

using a standard curve with software provided by the

manufacturer (Bio-Plex Manager Software).
Pathway analysis of
significant metabolites

Pathway analysis of the modulated metabolites was

performed using the Metaboanalyst 5.0 tool (40). In detail, we

calculated the centrality through Pathway Impact, a

combination of the centrality and pathway enrichment results.

Metabolites were selected by evaluating both VIP values > 1 in

the class discrimination and correlation values >0.8. Moreover,

the Homo sapiens pathway library was chosen and analyzed

using Fisher’s exact test for overrepresentation and relative

betweenness centrality for pathway topology analysis.
Data processing and statistical analysis

The sparse partial least squares-discriminant analysis (sPLS-

DA) algorithm was applied to explain the maximum separation

between the defined class samples in the data. Score and loading

plots were used to highlight and assess the role of X-variables

(NMR signals and cytokine concentrations) in the classification

models and, hence, to identify the top 10 significant NMR

signals and cytokines. In detail, for the loading plot, we set H
Frontiers in Oncology 05
= K - 1, where H is the number of dimensions and k is the

number of variables to select on each dimension (41). The

significant NMR signals were assigned to metabolites and

lipids using the reference metabolite spectra from the HMDB

database (42).

The levels of proton signals were normalized to the total

spectrum area using Pareto scaling with the MetaboAnalyst v5.0

tool (40). The average rate of change (D) values were obtained

considering for each metabolite the ratio between [the average

level of the proton signals at the response evaluation] and [the

average level of the proton signals at baseline]×100 in the R and

NR patient groups.

Receiver operating characteristic (ROC) curves were

calculated for metabolites/lipids/cytokines that were found to

be significantly correlated with DFS ≥ 1 year by the Biomarker

Analysis tool of Metaboanalyst v5.0 (40). The area under the

curve (AUC) was used to assess the accuracy. The 95%

confidence intervals (CIs) were calculated to compute the

optimal cutoffs for any given feature (significant metabolites,

lipids and cytokines).

DFS was defined as the time from liver metastasis resection

to the date of progression or death, whichever occurred first.

Patients who did not progress were censored on the date of the

last follow-up visit. OS was defined as the time from

randomization to the date of death. Patients alive at the time

of the final analysis were censored on the date of the last follow-

up information available. DFS and OS curves were estimated

according to the Kaplan−Meier method, and differences were

evaluated with the log-rank test in MedCalc software (https://

www.medcalc.org).

The Cox regression model was used to assess the role of the

cutoff for metabolite parameters in predicting DFS and OS.

Hazard ratios (HR) were derived from the Cox regression

analysis, and their 95% confidence intervals (95% CI) were

calculated using the proportional hazard model. Univariate

analysis assessed the correlation of the baseline patient

characteristics (sex, CEA, RAS status, TRG, treatment ARM

and primary tumor location), metabolites, lipids and cytokines

with DFS and OS. In all statistical tests, a p value less than 0.05

was considered significant. A multivariate analysis was

performed using MedCalc software (https://www.medcalc.org)

according to a backward elimination of factors showing a p value

less than 0.05 in the univariate analysis.

Finally, biomarker analyses were performed on the basis of

ROC curves for multiple biomarkers (metabolites, lipids and

cytokines) using the support vector machine (SVM) algorithm

by the module “Biomarker Analysis” in the Metaboanalyst 5.0

tool (40). The SVM classification algorithm aims to find a

nonlinear decision function in the input space by mapping the

data into a higher dimensional feature space and separating it by

means of a maximum margin hyperplane (43).The input of an

SVM is a training set S= (x1, y1)…,(xn, yn) of the vector of

features (metabolites, lipids and cytokines) for each pt together
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with their known classes yi∈ {R, NR}. The output of an SVM is a

Model f: X ! {R, NR} that predicts the class f(x) of any new pt

(44). MetaboAnalyst’s SVM analysis is performed through

recursive feature selection and sample classification using a

linear kernel (45). Features are selected based on their relative

contribution to the classification using cross validation error

rates. The least important features are eliminated in the

subsequent steps. This process creates a series of SVM models.

The features used by the best model are considered to be

important and are ranked by their frequencies of being

selected in the model. In detail, in our study, different

biomarker models were tested, and sample predictions were

made. We evaluated 100 cross validations (CVs) to produce a

smooth ROC curve, and the results were averaged to generate

the plot. The average of the predicted class probabilities of each

sample across the 100 cross-validations was produced (40).
Results

Metabolic profiles of plasma samples
from metastasis-resected cancer patients

Blood samples from a group of mCRC patients undergoing

liver metastasis resection after first-line conversion oxaliplatin-

based chemotherapy plus bevacizumab, enrolled within the

Obelics trial (NCT01718873), were collected at baseline and at

the time of response evaluation when resectability was

established. Only those patients obtaining R0 resection without

any severe surgical complications were considered, balanced

between the two arms (Figure 1). Blood samples available

from thirty patients were analyzed by comparing, on the basis

of disease-free survival (DFS) at 1 year: good responders (R),

with a DFS ≥ 1 year, versus poor responders (NR), with a DFS <

1 year. The median DFS was 47.39 months (95% CI, 31.62-

52.65) and 3 months (95% CI, 2.75-6.76) for R (n=12) and NR

(n=18) patients, respectively. Of note, the median follow-up in

this patient population was 39 months.

Baseline patient and tumor characteristics were well

balanced between the two groups, although there was a

statistically significant difference in the gender proportion

(Table 1). The median number of chemotherapy cycles

administered before surgery was 6 (range 6-12) in both groups

of patients; only 22% of NR and 25% of R patients received

12 cycles.

We first analyzed the plasma metabolic signature at the time of

response evaluation when resectability was established. As reported

in Figure 2, sparse partial least squares discrimination analysis

(sPLS-DA) (19.4% of the total variance), calculated on the 1H NMR

plasma spectra, clearly discriminated R from NR patients

(Figure 2A), with a model accuracy of 63.3%, suggesting that the

two study groups are distinctively different in terms of their plasma

metabolic profiles. Moreover, the sPLS-DA score plot showed that
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the profiles of the R patients clustered together, whereas the NR

patients were scattered, suggesting that patients with good outcomes

may have similar metabolic profiles (Figure 2A).

An analysis of the PLS loading was then conducted to identify

the metabolites found to be most relevant to the class separation

(as reported in the Methods section). As shown in the loading plot

of the top 10 NMR signals that were significantly different, it

appears that R patients were characterized by lower plasma levels

of isoleucine, 3-hydroxybutyrate, valine and hydroxyproline and

higher levels of malate, histidine glutamate and gamma-

aminobutyric acid (GABA) (Figure 2B).Notably, two NMR

signals for both valine and histidine were reported, reinforcing

the significance of their differential expression between the two

patient groups.

Furthermore, these metabolites were used to perform a

metabolite-set enrichment analysis. A complex interplay of

several different metabolic pathways and metabolites was

highlighted (Figure 2C; Table 1S). In detail, aminoacyl-tRNA

biosynthesis; butanoate metabolism; arginine and proline

metabolism; alanine, aspartate and glutamate metabolism;

valine, leucine and isoleucine biosynthesis; beta-alanine

metabolism; nitrogen metabolism; valine, leucine and

isoleucine degradation; histidine metabolism; synthesis and

degradation of ketone bodies; and D-glutamine and D-

glutamate metabolism emerged as playing a role in

discriminating the plasma metabolic profiles of R from

NR patients.

Next, to establish the optimal cutoff value for the metabolites

selected by sPLS-DA, we performed ROC curve analysis, finding

areas under the curve (AUC) values of the metabolites ranging

between 0.63 and 0.74 (Figure 1S). Based on the metabolite

parameter cutoff values, univariate and multivariate analyses

were then conducted to evaluate metabolites potentially

associated with DFS.

Univariate analysis demonstrated that sex (M vs. F) (HR, 2.90;

95% CI, 0.94–8.91; P=0.028) and tumor regression grade (TRG, 3-

4 vs. 1-2) (HR, 2.80; 95% CI, 0.85–9.21; P=0.036) were

significantly associated with DFS (Table 2). No significant

association was found between DFS and RAS status, CEA,

primary tumor location, or treatment arm. Among the

metabolites, both 3-hydroxybutyrate (HR, 4.35; 95% CI, 1.58–

11.97; P=0.011) and histidine (HR, 0.23; 95% CI, 0.081–0-63;

P=0.03) predicted DFS (Table 2, Figure 3A). In detail, as shown by

the Kaplan−Meier survival curves, only lower levels of 3-

hydroxybutyrate (<cutoff) or higher levels of histidine (≥cutoff),

evaluated before surgery, correlated with a more favorable DFS

(Figure 3A and Figure 2S). These two metabolites were also the

only parameters significantly correlated with overall survival (OS)

in the univariate analysis (Table 2S, Figure 3S). Notably, in

multivariate analysis, 3-hydroxybutyrate was the only parameter

that significantly predicted DFS (Table 2) and OS (Table 2S).

The prognostic role of TRG in patients with locally advanced

rectal cancer treated with neoadjuvant chemoradiation has been
frontiersin.org
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explored and was previously confirmed as a predictor of disease-

free survival in this setting (46, 47). Recently, TRG has been

suggested as a useful prognostic factor in mCRC patients

subjected to preoperative chemotherapy before metastasis

resection (48). This observation was confirmed in our cohort of

patients, where poor pathological responses (TRG 3-4) were

associated with shorter DFS than complete and near-complete

responses (TRG 1-2) (Table 2, Figure 3B). When the metabolites

histidine or 3-hydroxybutyrate were combined with TRG status, a

striking separation of distinct categories was obtained (Figure 3B).

Indeed, the two metabolites were far better predictors of DFS, with

patients with either low 3-hydroxybutyrate or high histidine being

associated with more favorable DFS outcomes, independent of

TRG status (Figure 3B). Conversely, the patients with high 3-

hydroxybutyrate or low histidine levels, although they had

favorable prognostic TRG1-2, displayed a worse prognosis,

further highlighting the powerful role of both metabolites in

predicting DFS (Figure 3B). Similar data were also obtained for

OS (Figure 4S). Kaplan–Meier curves of DFS and OS related to

TRG in combination with other metabolites confirmed that only

low 3-hydroxybutyrate or high histidine levels were associated

with more favorable DFS/OS outcomes, independent of TRG

status. The curves obtained for isoleucine were reported as

representative example (Figure S5).
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When we considered the plasma metabolic signature at

baseline, the sPLS-DA score plot demonstrated a less evident

discrimination between R and NR patients (Figure 6SA).

However, among the top 10 NMR signals contributing to class

separation, the PLS loading plot again identified high levels of 3-

hydroxybutyrate, hydroxyproline, and isoleucine as associated with

NR patients (Figure 6SB), as also reported at the response

evaluation time point for this group of patients (Figure 2B). In

addition, high levels of 2-hydroxybutyrate, proline, trimethylamine

and aspartate, and low levels of phosphoethanolamine and betaine,

were among the most significant metabolites associated with NR

patients (Figure 6SB). Overall, only a limited number of metabolic

pathways, all included in the analysis reported in Figure 2C, were

highlighted, confirming that the metabolic profiles of NR and R

patients, at baseline, were less discriminated than those evaluated at

the response evaluation time point (Figure 6SC and Table 3S).

Indeed, when we considered the normalized values of 3-

hydroxybutyrate and histidine NMR signals at both baseline (B-

R and B-NR) and at the response evaluation (R and NR), a clear

rate of change in metabolic abundance over time from baseline

was observed (Figure 4). Notably, the average rate of change (D)
for 3-hydroxybutyrate levels increased by 23.9% in NR and only

3.8% in R patients from baseline (p=0.042); conversely, the

average D for histidine levels increased significantly by 71.8%
B

C

A

FIGURE 2

Score plot (A) and loading plot (B) related to metabolomic profiling on plasma of mCRC patients, collected at response evaluation when liver
resectability was established and subdivided accordingly to DFS in good (R; DFS ≥ 1 year) and bad (NR; DFS < 1 year) responders. (C) The most
significant pathways are reported: colors, from yellow to red, indicate increasing levels of statistically significance (p values from the pathway
enrichment analysis); size of the nodes indicates pathway impact (a combination of both pathway enrichment results and centrality of each of
the matched metabolites within the pathway).
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TABLE 2 Univariate and Multivariate analyses of baseline patients characteristics, metabolites, lipids and cytokines for disease free survival (DFS).

Univariate Multivariate

HR (95% CI) P value HR (95% CI) P value

Patients characteristics

Gender

(M vs F) 2.90 (0.94-8.91) p=0.028* 1.21 (0.78-1.86)p=0.30

RAS status

(mut vs wt) 1.42 (0.49-4.41) p=0.54 –

TRG

(3-4 vs 1-2) 2.80 (0.85-9.21) p=0.036* 1.65 (1.04-2.61)p=0.09

ARM

(standard vs experimental) 2.37 (0.76-7.37) p=0.36 –

CEA

(>5 UI/L vs ≤ 5 UI/L) 1.16 (0.30-4.53) p=0.83 –

Primary tumor location

(left vs right) 1.01 (0.29-3.44) p=0.86 –

Metabolites(nps)

3-hydroxybutyrate level

(≥-0.322 vs < -0.322) 4.35 (1.58-11.97) p=0.011* 8.34 (1.00-69.34) p=0.020*

histidine level

(<0.158 vs ≥0.158) 4.42 (1.58-12.39)p=0.03* 1.95 (0.84-16.7) p=0.96

Lipids(nps)

Cholesterol

(≥0.0109 vs <0.0109) 9.72 (3.47-27.20) p=0.005* 1.26 (0.27-3.54) p=0.67

Triglycerides

(≥-0.000524 vs <-0.000524) 4.51 (1.59-12.81) p=0.003* 1.5 (0.33-9.67) p=0.56

Phospholipids

(≥- 0.147 vs <- 0.147) 2.83 (1.01-7.90) p=0.042* 1.43 (0.061-33.65) p=0.79

Cytokines(pg/mL)

IL-6

(≥5.45 vs <5.45) 4.83 (1.68-13.83) p=0.002* 1.11 (0.18-3.73) p=0.55

SCGF-b

(≥80000 vs <80000) 6.44 (1.83-22.63) p=0.034* 1.89 (0.41-19.25) p=0.59

CXCL10

(≥189 vs <189) 7.98(2.43-26.20) p=0.014* 1.05 (0.96-3.64) p=0.95

CTACK

(<6.30 vs ≥6.30) 6.26 (0.61-63.72) p=0.022* 1.65 (0.79-2.54) p=0.11

HR, hazard ratio; CI, confidence interval; M, male; F, female; nps, normalized values of the proton signals. Significant p-values <0.05 are reported in bold.
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in R vs. only 12.4% in NR patients from baseline (p=0.001)

(Figure 4). In other words, 3-hydroxybutyrate, whose high levels

predicted a poor DFS at the response evaluation, increased

during treatment only in the case of NR patients, whereas

histidine, whose high levels at the response evaluation

predicted a more favorable DFS, increased during treatment

only in R patients. As reported above, in order to validate that

only the 3-hydroxybutyrate and histidine were modulated in

statistically significant way during treatment in NR or R patients,

the plots obtained for isoleucine were reported as representative

example (Figure 7S).
Metabolomic profiles of cancer tissues
from resected liver metastases

We conducted a parallel metabolomics investigation by 1H

HRMAS NMR analysis on 10 available patient-matched frozen

resected liver metastasis tissues, 6 from NR and 4 from R

patients. Notably, the sPLS-DA (48.3% of the total variance)

calculated on the 1H NMR tissue spectra clearly discriminated R

from NR patients with a model accuracy of 80% (Figure 5A),

suggesting that the two study groups are distinctively different in

terms of their tissue metabolic profiles.

As shown in the loading plot (Figure 5B), the top 10 NMR

signals were significantly different between the two patient cohorts. It

is worth noting that higher levels of hydroxyproline and lower levels

of GABA were observed in NR patients than in R patients,
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recapitulating the data obtained in the plasma samples (see

Figure 2B). We also conducted a targeted analysis in order to

verify tissue levels of 3-hydroxybutyrate and histidine metabolites

that were not among the top 10NMR signals. Interestingly, although

not statistically significant, higher levels of 3-hydroxybutyrate and

lower levels of histidine were confirmed inNR tissues in line with the

data reported on plasma samples (Figure 8S).

In addition, higher levels of methylamine, aspartate, proline,

citrulline, lactate, 2-hydroxybutyrate, and threonine were

observed in NR patients than in R patients.

We also compared the metabolic profiles of all liver

metastases (LM) with the matched adjacent noncancerous

tissues (NC), again demonstrating a clear separation into two

distinct clusters (Figure 9SA), with high levels of proline, 2-

hydroxybutyrate, aspartate and lactate associated with LM vs.

NC (Figure 9SB), which interestingly were previously reported

among the top metabolites discriminating NR vs. R in LM tissues

(Figure 5). Indeed, the metabolite-set enrichment analyses

demonstrated three common pathways (aminoacyl-tRNA

biosynthesis; alanine, aspartate and glutamate metabolism;

valine, leucine and isoleucine biosynthesis) distinguishing both

R vs. NR LM tissues and LM vs. NC tissues (Figure 10SA).

Notably, some altered common pathways and metabolites

(aminoacyl-tRNA biosynthesis; arginine and proline

metabolism; alanine, aspartate and glutamate metabolism; and

valine, leucine and isoleucine biosynthesis) distinguished R vs.

NR patients in both plasma and metastatic tissue metabolomics,

suggesting potential mechanistic correlations (Figure 10SB).
B

A

FIGURE 3

(A) Kaplan–Meier curves of disease free survival (DFS) accordingly to 3-hydroxybutyrate (3-HB) and histidine (HIS) (B) Kaplan–Meier curves of
DFS accordingly to tumor regression grade (TRG) alone or in combination with either 3-HB or HIS. Log-rank p-values are reported. * and **
symbols indicate p-values < 0.05 and < 0.01, respectively.
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Lipidomic profiles of plasma samples
from metastasis-resected cancer patients

As suggested from all of the data reported above, plasma

metabolic profiling at the response evaluation time point is able

to discriminate R from NR patients, reflecting the impact of

treatment. Therefore, further analyses conducted on plasma

samples from our cohort of patients were limited to this

time point.

To better define a metabolic signature predicting DFS, we also

acquired 1HNMR spectra on the lipidic fractions extracted from the

thirty plasma samples. The sPLS-DA plot (54.8% of the total

variance) grouped R and NR patients into two different clusters

with a model accuracy of 65%, suggesting the presence of some

lipidic proton signals with significantly different levels between the
Frontiers in Oncology 10
two patient groups (Figure 6A). The related loading plot showed

that the NR group had lower levels of choline and higher levels of

proton signals of fatty acids, cholesterol, triglycerides, omega-3 and

phospholipids than the R group (Figure 6B), indicating increased

plasma lipids in patients with poor DFS.

To determine the optimal cutoff value for the significant lipidic

signals selected by sPLS-DA, we performed ROC curve analysis

(Figure 11S), which showed AUC values ranging between 0.681 and

0.787. Based on the obtained parameter cutoff values, univariate

analysis showed that lower levels (<cutoff) of cholesterol (HR, 9.72;

95%CI, 3.47–27.20; P=0.005), triglycerides (HR, 4.51; 95%CI, 1.59–

12.81; P=0.003), or phospholipids (HR, 2.83; 95% CI, 1.01–7.90;

P=0.042) were significantly associated with good DFS (Table 2;

Figure 7A) and OS (Table 2S; Figure 12S). Moreover, higher levels

of choline (≥cutoff) were also found to correlate with good OS
FIGURE 4

Box and whisker plots summarize the normalized values of 3-hydroxybutyrate and histidine evaluated at both baseline (B-R and B-NR) and at
response evaluation (R and NR) (* p-value=0.042; ** p-value=0.001).
BA

FIGURE 5

Score plot (A) and loading plot (B) related to metabolomic profiling, on resected liver metastases tissues 4 R and 6 NR mCRC subdivided
accordingly to DFS in good (R; DFS ≥ 1 year) and bad (NR; DFS < 1 year) responders.
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(Table 2S; Figure 12S). None of these signals were statistically

significant in the multivariate analysis for both DFS and OS

(Tables 2 and 2S).

Most importantly, as also reported for histidine and 3-

hydroxybutyrate (Figure 3), we compared the DFS prediction

potential of the lipid NMR signals with TRG, demonstrating that

low cholesterol levels were a better predictor of DFS,

independent of TRG status, and that both phospholipids and

triglycerides plus TRG evaluation were better predictors of DFS

than TRG alone (Figure 7B). Interestingly, the patients with high

levels of either phospholipids or triglycerides, although they had
Frontiers in Oncology 11
favorable prognostic TRG1-2, displayed a worse prognosis,

further highlighting the powerful role of lipid metabolites in

DFS prediction (Figure 7B). Similar data for phospholipids and

triglycerides were also obtained for OS (Figure 13S).
Cytokinomic profiles of plasma samples
from metastasis-resected cancer patients

We evaluated a panel of 48 chemokines and cytokines in the

patients’ plasma at the time of the response evaluation by a
BA

FIGURE 6

Score plot (A) and loading plot (B) related to lipidomic profiling on plasma of mCRC patients, collected at response evaluation when liver
resectability was established and subdivided accordingly to DFS in good (R; DFS ≥ 1 year) and bad (NR; DFS < 1 year) responders.
B

A

FIGURE 7

(A) Kaplan–Meier curves of disease free survival (DFS) accordingly to cholesterol (CHOL), phospholipids (PL) and triglycerides (TG). (B) Kaplan–
Meier curves of DFS accordingly to tumor regression grade (TRG) alone (log-rank p=0.036) and in combination with CHOL, Pl or TG (log-rank
p-values are reported). * and ** symbols indicate p-values < 0.05 and < 0.01, respectively.
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multiplex bead–based system. We applied sPLS-DA to analyze

the results (17.4% of the total variance), again finding that the

NR and R patients grouped into two distinct clusters with a

model accuracy of 66.7% (Figure 8A). The loading plot showed

that 9 out of the top 10 cytokines that were more statistically

relevant for class separation, IL-6, CXCL9 (MIG), SCGF-b, IFN-
a2, CXCL10 (IP-10), IL-12, IL-8, VEGF and MIP-1b, showed
higher plasma levels in the NR relative to the R patients. Only

the plasma levels of CTACK chemokine (CCL27) were higher in

the R group Figure 8B.

Next, we performed ROC curves to determine the optimal

cutoff value of these cytokines, reporting AUC values ranging

between 0.471 and 0.773 (Figure 14S). Based on the obtained

parameter cutoff values, univariate analysis showed that lower

levels (< cutoff) of IL-6 (HR, 4.83; 95% CI, 1.68-13.83; P=0.002),

SCGF-b (HR, 6.44; 95% CI, 1.83-22.63; P=0.034), and CXCL10

(HR, 7.98; 95% CI, 2.43-26.20; P=0.014) or higher levels

(≥cutoff) of CTACK (HR, 0.22; 95% CI, 0.026-1.91; P =0.022)

were significantly associated with good DFS (Table 2; Figure 9A).

Similar results were found for OS (Table 2S, Figure 15S).

Again, we compared the DFS prediction potential of these

four cytokines with TRG, demonstrating that only low IL6 levels

were a clearly better predictor of DFS, independent of TRG

status (Figure 9B). Similar data were obtained considering

OS (Figure 16S).
Combined biomarker signature using the
support vector machine (SVM) algorithm

Finally, taking advantage of all of the data accumulated on

metabolomics, lipidomics and cytokinomics (as predictors of DFS)

associated with the DFS of our cohort of patients, we analyzed all of

the possible combinations of statistically significant variables that
Frontiers in Oncology 12
emerged to create a multiple biomarkers model using a support

vector machine (SVM) algorithm. As shown in Figure 10, we found

that the best combination of circulating biomarkers to predict R

(DFS ≥ 1 year) and NR (DFS < 1 year) patients in our cohort of

metastases-resected cancer patients was represented by 3-

hydroxybutyrate, cholesterol, phospholipids, triglycerides and IL-

6, evaluated in plasma samples collected at the time of the response

evaluation. In detail, ROC curve analysis for these combined

biomarkers had an AUC value equal to 0.73 (95% CI: 0.083-

0.0972) (Figure 10A). The combination of these five features was

able to classify 15 R and 15 NR patients (Figure 10B) with a positive

predictive value of 73% (probability of the correct identification of

R) and a negative predictive value of 93% (probability of the correct

identification of NR), overall correctly predicting the outcome of

83.3% (accuracy) of the patients.
Discussion

Recurrence following chemotherapy and metastatic liver

resection is a significant hurdle in CRC. Therefore, a better

prediction of DFS is critical for the adequate management of

patients undergoing CRCLM resection as a curative strategy.

However, all previous efforts to identify risk prediction

approaches beyond or in addition to clinical morpho-

volumetric criteria have been quite disappointing.

Our investigation, through plasma 1H NMR-based

metabolomics and lipidomics as well as multiplex bead-based

immunoassay cytokinomics, revealed that distinct metabolites,

lipids and cytokines in the plasma after conversion chemotherapy

were associated with the clinical outcome in a cohort of thirty

mCRC patients undergoing curative resection of liver metastases.

Notably, metabolite-set enrichment analysis, evaluated in plasma at

the time of response evaluation before surgery, highlighted a
BA

FIGURE 8

Score plot (A) and loading plot (B) related to cytokinomics profiling on of mCRC patients, collected at response evaluation when liver
resectability was established and subdivided accordingly to DFS in good (R; DFS ≥ 1 year) and bad (NR; DFS < 1 year) responders.
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complex interplay between different metabolic pathways that clearly

distinguished poor vs. good outcome patients.

In detail, H1 NMR-based plasma metabolomics profiling,

evaluated at the time of response evaluation when resectability

was established, identified a panel of metabolites that

distinguished patients with DFS ≥ 1 and < 1 year. Moreover,

according to the cutoff levels evaluated by ROC curves and the

univariate analysis, two metabolites in the plasma, lower levels of

3-hydroxybutyrate and higher levels of histidine, were

significantly associated with more favorable DFS and OS. Our
Frontiers in Oncology 13
data also demonstrated that the outcome prediction of both

metabolites was better and independent from the pathological

response evaluated by TRG, a recognized prognostic factor in

mCRC. Notably, 3-hydroxybutyrate was the only independent

factor that significantly predicted both DFS and OS in the

multivariate analysis.

The plasma metabolic signature at baseline was less able to

discriminate between patients with DFS ≥ 1 and < 1 year compared

with the presurgery evaluation. Indeed, few metabolic pathways

were able to distinguish the two groups of patients at baseline.
BA

FIGURE 10

(A) Smooth receiving operating-characteristic (ROC) curve performed on the combination of 3-hydroxybutyrate, cholesterol, IL-6,
phospholipids and triglycerides for predicting R (DFS ≥ 1 year)vs NR (DFS < 1 year) patients. AUC value and 95% CI are reported. (B) Average of
predicted class probabilities of each patient group (NR and R) across the 100 cross-validations. Confusion matrix is reported in table indicated R
and NR patients and those identified by support vector machines (SVM) algorithm (SVM-R and SVM-NR).
B

A

FIGURE 9

(A) Kaplan–Meier curves of disease free survival (DFS) accordingly to IL-6, SCGF-b, CXCL10 and CTACK. (B) Kaplan–Meier curves of DFS
accordingly to tumor regression grade (TRG) alone (log-rank p=0.036) and in combination with IL6 (log-rank p-value is reported). * and **
symbols indicate p-values < 0.05 and < 0.01, respectively.
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However, the dynamic evolution of both histidine and 3-

hydroxybutyrate plasma levels from baseline up to the response

evaluation before surgery was consistent with their prognostic

prediction. Indeed, histidine increased upon treatment

significantly more in patients with DFS ≥ 1, whereas 3-

hydroxybutyrate increased upon treatment only in the case of

patients with DFS < 1 year.

Overall, our findings suggest that metabolomics profiling

during treatment might contribute to predicting treatment

resistance and tumor relapse, highlighting the importance of

dynamic monitoring that offers the opportunity to modify the

treatment strategy early, before surgery, which cannot be

achieved with post-surgical pathology findings such as TRG.

Our results are consistent with one of the first meta-analyses

analyzing serum metabolomics data in cancer patients, which

found that both 3-hydroxybutyrate and histidine were among

the top serum metabolites discriminating cancer patients from

healthy donors across different cancer types. In detail, histidine

was among the top three most decreased metabolites and 3-

hydroxybutyrate was among the two most increased metabolites

in cancer patient blood (49).

Histidine is an essential amino acid associated with increased

inflammation and oxidative stress (50). In CRC patients, serum

histidine was significantly reduced compared to healthy controls

(51) and correlated with stage progression (26). Low levels of

histidine have been attributed to higher activity of histidine

decarboxylase, resulting in an accelerated decarboxylation of

histidine to histamine, a mediator involved in inflammatory and

immune responses associated with cancer initiation and

progression (26).On the other hand, 3-hydroxybutyrate is a

component of ketone bodies and an end-product of fatty acid b-
oxidation. In this context, cancer-associated 3-hydroxybutyrate

augmented levels suggest both increased protein catabolism,

involving a ketogenic amino acid, and increased fatty acid

oxidation, to support the energy demand of cancer cell

proliferation (22).Interestingly, NMR-based metabolomics

profiling studies demonstrated significantly higher serum levels of

3-hydroxybutyrate in mCRC patients versus healthy donors or

CRC patients compared with those with colon polyps and healthy

controls (19, 30). Notably, a recent meta-analysis of global serum

metabolomics profiling studies of CRC patients compared to

healthy subjects confirmed that 3-hydroxybutyrate was

consistently upregulated, suggesting that, together with a few

other selected metabolites, it has potential as a diagnostic

biomarker for CRC (22).

Lipidomic profiling by NMR spectroscopy on the same plasma

samples of mCRC patients, collected at the response evaluation, also

discriminated between patients with DFS ≥ 1 and < 1 year.

According to the cutoff levels evaluated by ROC curves and the

univariate analysis, lower levels of cholesterol, phospholipids and

triglycerides were significantly correlated with more favorable DFS

and OS. In addition, higher levels of choline were correlated with

OS. However, none of the lipids remained significant inmultivariate
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analysis. Notably, as also reported for histidine and 3-

hydroxybutyrate, cholesterol, phospholipids and triglycerides were

independent and better predictors of DFS than TRG status.

Altered lipid metabolism is currently considered a hallmark

characteristic of many cancers, including CRC (52). High levels

of lipids are indeed necessary for tumor cell energy production,

membrane turnover, and signal transduction, which are needed

for cell growth motility and metastases (53). Elevated serum

levels of cholesterol and triglycerides were previously reported in

CRC patients compared to patients with benign colorectal

disease and healthy controls and were correlated with

advanced TNM stage (54). Both cholesterol and triglyceride

serum levels were also associated with the development of

distant metastasis in CRC patients (55). Notably, a recent

meta-analysis including only prospective studies confirmed

that high levels of total serum cholesterol and triglycerides are

positively correlated with the presence of CRC (56).

Although phospholipid studies on tumors and cancer cells

are limited, the concomitant downregulation of choline levels

and upregulation of phospholipids associated with poor DFS in

patients in our study might suggest that choline and its

derivatives are consumed in greater amounts than in the

normal state to drive phospholipid synthesis (57). Indeed,

choline plays a critical role in the synthesis of the

phospholipid components of the cell membranes, and its

abnormal metabolism is emerging as being associated with

oncogenesis (57, 58). Notably, in accordance with our data,

lower levels of choline were found in CRC patients than in

healthy donors and were correlated with stage progression (26).

A very recent report showed that multiple circulating

lysophosphatidylcholines (lysoPCs) and phosphatidylcholines

(PCs) were associated with a high risk of disease recurrence

within 6 months in patients undergoing CRCLM resection (59).

Intriguingly, altered levels of lipids in tumor cells, particularly

phospholipids and cholesterol, have been suggested to promote

drug resistance by altering the membrane composition (56).High

lipid levels may also promote cancer development by inducing an

inflammatory response and cytokine dysregulation (60).

Mechanistically, crosstalk between lipid metabolism dysregulation

and proinflammatory cytokine secretion has been described (61).

Thus, our lipidomic findings may reflect an increased inflammatory

status in patients with short DFS, in agreement with a previous

report correlating an altered 1H-NMR lipid profile with short OS in

mCRC patients (19). In this regard, some studies reported that CRC

development is accompanied by cytokine production alterations

(36), and a novel cytokine-based prognostic classifier has been

recently developed in this setting (37).

Therefore, in our study, we also evaluated a panel of 48

chemokines and cytokines in the plasma of thirty patients at the

time of the response evaluation by a multiplex bead–based system.

According to the cutoff levels evaluated by ROC curves and the

univariate analysis, lower levels of IL-6, SCGF-b and CXCL-10

and higher levels of CTACK correlated with a more favorable DFS
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and OS. In comparison to TRG, only IL-6 was an independent

and better predictor of DFS. None of the cytokines evaluated

remained significant after multivariate analysis.

IL-6 is a proinflammatory cytokine involved in cancer

growth, invasion, progression and metastasis (62). Elevated

IL6 levels in CRC patient serum (63) or tumor tissue (64)

were correlated with advanced stages and a poor prognosis.

CXCL-10 is a small (10 kDa) secretable chemokine that

mediates adaptive inflammation, immunity, leukocyte

trafficking, and angiogenesis and induces the chemotaxis of

various subtypes of leukocytes, including NK cells, T and B

lymphocytes, macrophages and dendritic cells, by engaging its

receptor CXCR3. CXCL-10 levels increased significantly in CRC

patients compared to control subjects (65), and a recent meta-

analysis revealed significant associations between low CXCL-10

expression and good overall, disease-free and relapse-free

survival of CRC patients (66).

Stem cell growth factor-b (SCGF-b) is a secreted sulfated

glycoprotein that functions as a growth factor for primitive

hematopoietic progenitor cells. SCGF-b elevated plasma levels

were associated with circulating tumor cell (CTC)-positive

primary breast cancer patients, whereas interestingly, an inverse

correlation with CTCs was observed for Cutaneous T-cell attracting

chemokine (CTACK) in the same patient cohort (67). CTACK, also

known as CCL27, binds to the CCR10 receptor expressed in normal

skin, favoring T-cel l homing to the inflammatory

microenvironment and thus maintaining immune surveillance.

Observational evidence on CTACK and CRC is limited to a

single experience demonstrating no statistically significant

difference in the expression of CTACK mRNA levels in CRC

compared with normal paratumor tissues (68).

Overall, our data on circulating IL6 and CXCL10 expression

were consistent with previous observations in CRC patients,

whereas we were the first to demonstrate a correlation between

plasma levels of either SCGF-b or CTACK and CRC patient

clinical outcome.

The correlation between different altered metabolites,

highlighted by overlapping and integrated pathways and/or

cytokines, might also explain, with the exception of 3-

hydroxybutyrate, the lack of association of any single

parameter with DFS in the multivariate analysis. Thus, taking

advantage of SVM, we built a multiple biomarkers model that,

by combining presurgery plasma levels of 3-hydroxybutyrate,

cholesterol, phospholipids, triglycerides and IL-6, was able to

correctly classify patients by their DFS with good accuracy.

Notably, it is important to emphasize that this model appears

particularly useful to identify, before surgery, patients with early

recurrence and DFS < 1 year who could benefit from a risk-

adapted strategy with additional chemotherapy or a shift to an

alternative treatment. Similarly, among these patients, more

intensive follow-up postsurgery and consolidation by adjuvant

treatment should be implemented.
Frontiers in Oncology 15
Conclusions

To the best of our knowledge, our study is the first to

perform a combined dynamic evaluation of plasma

metabolomics, lipidomics and cytokinomics in metastatic CRC

patients undergoing liver resection after induction

chemotherapy treatment. The combined analysis of different

analytes was able to successfully discriminate presurgical

patients at high or low risk of recurrence and provide insight

into the associated metabolic and inflammatory processes.

However, our observational and exploratory study has several

limitations, including a limited sample size from a single center and

a retrospective approach, which might bias the results we have

observed. Therefore, these results need to be validated in larger

cohorts and prospective studies. The present pilot study indicates

the great potential of this combined biomarker approach for

defining personalized management strategies in candidate patients

for CRCLM resection after induction treatment.
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Phospholipids and cholesterol: Inducers of cancer multidrug resistance and
therapeutic targets. Drug Resist Updates (2020) 49:100670. doi: 10.1016/
j.drup.2019.100670

57. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant
transformation. Nat Rev Cancer (2011) 11(12):835–48. doi: 10.1038/nrc3162

58. Mehedint MG, Zeisel SH. Choline's role in maintaining liver function: New
evidence for epigenetic mechanisms. Curr Opin Clin Nutr Metab Care (2013) 16
(3):339–45. doi: 10.1097/MCO.0b013e3283600d46

59. Jonas JP, Hackl H, Pereyra D, Santol J, Ortmayr G, Rumpf B, et al.
Circulating metabolites as a concept beyond tumor biology determining disease
recurrence after resection of colorectal liver metastasis. HPB (2022) 24(1):116–29.
doi: 10.1016/j.hpb.2021.06.415

60. Long J, Zhang CJ, Zhu N, Du K, Yin YF, Tan X, et al. Lipid metabolism and
carcinogenesis, cancer development. Am J Cancer Res (2018) 8(5):778–91.

61. Gerner RR, Wieser V, Moschen AR, Tilg H. Metabolic inflammation: Role
of cytokines in the crosstalk between adipose tissue and liver. Can J Physiol
Pharmacol (2013) 91(11):867–72. doi: 10.1139/cjpp-2013-0050

62. Taniguchi K, Karin M. Il-6 and related cytokines as the critical lynchpins
between inflammation and cancer. Semin Immunol (2014) 26(1):54–74.
doi: 10.1016/j.smim.2014.01.001

63. Galizia G, Orditura M, Romano C, Lieto E, Castellano P, Pelosio L, et al.
Prognostic significance of circulating il-10 and il-6 serum levels in colon cancer
patients undergoing surgery. Clin Immunol (2002) 102(2):169–78. doi: 10.1006/
clim.2001.5163

64. Zeng J, Tang ZH, Liu S, Guo SS. Clinicopathological significance of
overexpression of interleukin-6 in colorectal cancer. World J Gastroenterol
(2017) 23(10):1780–6. doi: 10.3748/wjg.v23.i10.1780

65. Yamaguchi M, Okamura S, Yamaji T, Iwasaki M, Tsugane S, Shetty V, et al.
Plasma cytokine levels and the presence of colorectal cancer. PloS One (2019) 14(3):
e0213602. doi: 10.1371/journal.pone.0213602

66. Chen J, Chen QL, Wang WH, Chen XL, Hu XQ, Liang ZQ, et al. Prognostic
and predictive values of Cxcl10 in colorectal cancer. Clin Transl Oncol (2020) 22
(9):1548–64. doi: 10.1007/s12094-020-02299-6

67. Mego M, Cholujova D, Minarik G, Sedlackova T, Gronesova P, Karaba M,
et al. Cxcr4-Sdf-1 interaction potentially mediates trafficking of circulating tumor
cells in primary breast cancer. BMC Cancer (2016) 16:127. doi: 10.1186/s12885-
016-2143-2

68. Huang YH, Cao YF, Jiang ZY, Zhang S, Gao F. Th22 cell accumulation is
associated with colorectal cancer development. World J Gastroenterol (2015) 21
(14):4216–24. doi: 10.3748/wjg.v21.i14.4216

COPYRIGHT

© 2023 Costantini, Di Gennaro, Capone, De Stefano, Nasti, Vitagliano,
Setola, Tatangelo, Delrio, Izzo, Avallone and Budillon. This is an open-
access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply
with these terms.
frontiersin.org

https://doi.org/10.1021/pr500494u
https://doi.org/10.1002/nbm.1372
https://doi.org/10.1002/cncr.30829
https://doi.org/10.1155/2019/3491852
https://doi.org/10.1038/bjc.2016.243
https://doi.org/10.1038/bjc.2016.243
https://doi.org/10.1186/gm341
https://doi.org/10.3892/mmr.2015.4289
https://doi.org/10.3892/mmr.2015.4289
https://doi.org/10.1517/17530059.2.6.691
https://doi.org/10.1517/17530059.2.6.691
https://doi.org/10.1016/j.jss.2012.08.051
https://doi.org/10.1016/j.jss.2012.08.051
https://doi.org/10.1038/bjc.2012.456
https://doi.org/10.1002/ijc.29017
https://doi.org/10.1001/jamanetworkopen.2021.18475
https://doi.org/10.1002/1097-0142(19940601)73:11%3C2680::aid-cncr2820731105>3.0.co;2-c
https://doi.org/10.1002/1097-0142(19940601)73:11%3C2680::aid-cncr2820731105>3.0.co;2-c
https://doi.org/10.1093/nar/gkab382
https://doi.org/10.1186/1471-2105-12-253
https://doi.org/10.1093/nar/gks1065
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.2147/OTT.S98910
https://doi.org/10.1186/1471-2105-7-197
https://doi.org/10.1016/j.ijrobp.2004.11.017
https://doi.org/10.1016/j.ejca.2010.12.006
https://doi.org/10.1016/j.clcc.2021.10.006
https://doi.org/10.15252/emmm.201606798
https://doi.org/10.15252/emmm.201606798
https://doi.org/10.1017/S0007114511005289
https://doi.org/10.1007/s11306-011-0357-5
https://doi.org/10.1186/s12944-019-0977-8
https://doi.org/10.1111/j.1742-4658.2012.08644.x
https://doi.org/10.3748/wjg.v20.i26.8646
https://doi.org/10.1159/000086977
https://doi.org/10.1016/j.drup.2019.100670
https://doi.org/10.1016/j.drup.2019.100670
https://doi.org/10.1038/nrc3162
https://doi.org/10.1097/MCO.0b013e3283600d46
https://doi.org/10.1016/j.hpb.2021.06.415
https://doi.org/10.1139/cjpp-2013-0050
https://doi.org/10.1016/j.smim.2014.01.001
https://doi.org/10.1006/clim.2001.5163
https://doi.org/10.1006/clim.2001.5163
https://doi.org/10.3748/wjg.v23.i10.1780
https://doi.org/10.1371/journal.pone.0213602
https://doi.org/10.1007/s12094-020-02299-6
https://doi.org/10.1186/s12885-016-2143-2
https://doi.org/10.1186/s12885-016-2143-2
https://doi.org/10.3748/wjg.v21.i14.4216
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fonc.2022.1110104
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Plasma metabolomics, lipidomics and cytokinomics profiling predict disease recurrence in metastatic colorectal cancer patients undergoing liver resection
	Introduction
	Materials and methods
	Study population and sample collection
	Plasma 1H NMR spectroscopy
	Extraction of the lipidic fractions from the plasma samples and 1H NMR spectroscopy
	Tissue 1H HRMAS NMR spectroscopy
	NMR data processing
	Cytokinome evaluation
	Pathway analysis of significant metabolites
	Data processing and statistical analysis

	Results
	Metabolic profiles of plasma samples from metastasis-resected cancer patients
	Metabolomic profiles of cancer tissues from resected liver metastases
	Lipidomic profiles of plasma samples from metastasis-resected cancer patients
	Cytokinomic profiles of plasma samples from metastasis-resected cancer patients
	Combined biomarker signature using the support vector machine (SVM) algorithm

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


