
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Yanan Jiang,
Harbin Medical University, China

REVIEWED BY

Paerhati Rexiti,
The First Affiliated Hospital of Xinjiang
Medical University, China
Zhao Lang,
Beijing Jishuitan Hospital, China

*CORRESPONDENCE

Xing Du

duxing92@yeah.net

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 25 November 2022

ACCEPTED 15 December 2022
PUBLISHED 11 January 2023

CITATION

Xiang J, Jiang M and Du X (2023) The
role of Hippo pathway in ferroptosis.
Front. Oncol. 12:1107505.
doi: 10.3389/fonc.2022.1107505

COPYRIGHT

© 2023 Xiang, Jiang and Du. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 11 January 2023

DOI 10.3389/fonc.2022.1107505
The role of Hippo pathway
in ferroptosis

Jiangxia Xiang1†, Mengmeng Jiang2† and Xing Du3,4*

1Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University
Central Hospital, Chongqing, China, 2Department of Medical Oncology, The Third Central Hospital
of Tianjin, Tianjin, China, 3Department of Orthopedics, The First Affiliated Hospital of Chongqing
Medical University, Chongqing, China, 4Orthopedic Laboratory of Chongqing Medical University,
Chongqing, China
The role of Hippo pathway in ferroptosis

The Hippo pathway is mainly composed of mammalian serine/threonine

(Ste20)like kinases 1/2 (MST1/2), large tumor suppressor 1/2 (LATS1/2), and

transcriptional coactivator Yes-associated protein (YAP), and is closely related

to cell growth, survival, proliferation, and migration; tissue and organ size

control; and tumorigenesis and development. Ferroptosis is a regulated form of

cell death characterized by the accumulation of iron-dependent reactive

oxygen species (ROS) and the deplet ion of plasma membrane

polyunsaturated fatty acids (PUFAs), which is caused by the imbalance of

oxidation and the antioxidant system. This article elaborates the role of

Hippo pathway in ferroptosis, providing ideas for the regulation of cell fate

and the treatment of tumors.
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Introduction

The Hippo pathway can accept and integrate upstream signals and guide cell gene

transcription and biological behavior through the transcriptional coactivator Yes-

associated protein (YAP), which is closely related to cell growth, survival, proliferation,

and migration; tissue and organ size control; and tumor occurrence and development.

Ferroptosis is a regulated form of cell death characterized by the accumulation of iron-

dependent reactive oxygen species (ROS) and the depletion of plasma membrane

polyunsaturated fatty acids (PUFAs), which is caused by the imbalance of oxidation

and the antioxidant system in vivo. In this review, the role of Hippo pathway in

ferroptosis was reviewed and discussed.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1107505/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1107505/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1107505&domain=pdf&date_stamp=2023-01-11
mailto:duxing92@yeah.net
https://doi.org/10.3389/fonc.2022.1107505
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1107505
https://www.frontiersin.org/journals/oncology


Xiang et al. 10.3389/fonc.2022.1107505
Hippo pathway and Yes-associated
protein

The core molecule of Hippo pathway

The Hippo pathway is mainly composed of mammalian

Ste20-like kinases 1/2 (MST1/2), large tumor suppressor 1/2

(LATS1/2), regulator family Salvador family WW domain-

containing protein 1 (SAV1), Mps One Binder (MOB) kinase

activator 1 (MOB1), and transcriptional coactivator YAP

(1–4) (Figure 1).

After MST1/2 is activated by the upstream kinase thousand-

and-one amino acid kinase (TAOK) (5) or dimerization itself

(6), it can combine with SAV1 through its C-terminal Sav/

RASSF/Hpo (SARAH) domain to phosphorylate SAV1 (2).

Phosphorylated SAV1 can interact with LATS1/2 to assist

LATS1/2 phosphorylation (7). At the same time, the

regulatory protein MOB1 of LATS1/2 is phosphorylated by

MST1/2 (T12, T35) (8). Phosphorylated SAV1 and MOB1

assist MST1/2 to phosphorylate the hydrophobic motif (HM)

outside the active center of LATS1/2 kinase (T1041, T1079) (9,

10). After HM is phosphorylated, with the help of MOB1,
Frontiers in Oncology 02
LATS1/2 finally undergoes self-phosphorylation (S87, S909),

thus being fully activated (4, 8) (Figure 1).

TAOK can phosphorylate MST1 (T183) and MST2 (T180)

or directly phosphorylate LATS1/2 (4, 5) (Figure 1). In addition

to TAOK and MST1/2, MAP4K4/6/7 and MAPK4K1/2/3 in the

MAP4K (mitogen-activated protein kinase kinase kinase kinase)

family can also directly activate LATS1/2 (11) (Figure 1). The

direct activation of MAP4K on LATS1/2 is independent of

MST1/2, and when MAP4K and MST1/2 genes are knocked

out, YAP phosphorylation is still in progress; thus, there may be

kinases other than MAP4K and MST1/2, such as TAOK, that

phosphorylate YAP through LATS1/2 (11, 12).

LATS1/2 activated by phosphorylation can recognize the five

HXRXXS motifs of YAP (13) and phosphorylate them (S61,

S109, S127, S164, and S381) (14). Among them, after the

phosphorylation of serine (S127) at position 127 of YAP, 14-3-

3 proteins in the cytoplasm can capture it and locate it in the

cytoplasm (13) (Figure 1). The phosphorylation of serine (S381)

at position 381 can induce creatine kinase CK1 to phosphorylate

serine (S384) at position 384 of YAP; thus, recruiting Skp1-

Cullin-F-box (SCF) b-TRCP E3 ubiquitin ligase degrades YAP

through the ubiquitin proteasome pathway (14) (Figure 1).
FIGURE 1

Hippo pathway and its regulatory factors. The Hippo pathway consists of serine/threonine kinases MST1/2 and LATS1/2, regulatory molecules
SAV1 and MOB1, and effector molecules YAP. When the Hippo pathway is not activated, YAP, as a transcriptional coactivator, can enter the
nucleus and combine with TEAD competitively, thus inducing the transcription of target genes. When the Hippo pathway is activated, activated
MST1/2 can phosphorylate LATS1/2, and then, YAP is further phosphorylated. Phosphorylated YAP can be captured by 14-3-3 proteins in the
cytoplasm or degraded through the SCFb-TRCP E3 ligase-mediated ubiquitin proteasome pathway. The Hippo pathway is regulated by several
upstream signals. Cell connectivity and cell polarity components, such as KIBRA, AMOT, PTPN4, and a-catenin, are a classical upstream
regulator of the Hippo pathway; the effect of the GPCR on the Hippo pathway depends on its a subunit type; and mechanical cues can regulate
the Hippo pathway by affecting LATS1/2 activity through the cytoskeleton. (MST1/2, mammalian Ste20-like kinase 1/2; SAV1, Salvador family WW
domain-containing protein 1; LATS1/2, large tumor suppressor factor 1/2; MOB1, MOB kinase activating factor 1; YAP, Yes-associated protein;
TAOK, TAO kinase; MAP4K, mitogen-activated protein kinase kinase kinase kinase; TEAD, TEA domain transcription factor family; VGLL4,
vascular-like protein 4; KIBRA, kidney brain protein; Merlin, NF2, neurofibroma protein 2; AMOT, angiomotin; PTPN14, protein tyrosine
phosphatase non-receptor type 14; AJ, adherent junction; TJ, tight junction; GPCR, G protein–coupled receptor.).
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Effective molecule of the Hippo
pathway—Yes-associated protein

When the Hippo pathway is not activated, YAP is located in

the nucleus; interacts with the transcription factors

Transcriptional enhanced associate (TEA) domain (TEAD) 1–

4; starts the expression of genes such as the connective tissue

growth factor (CTGF), cysteine-rich angelic indicator 61

(Cyr61), myelocytosis oncogene (Myc), and survivin; and

promotes cell growth and proliferation (15) (Figure 1). When

the Hippo pathway is activated, YAP is phosphorylated by

LATS1/2, or located in the cytoplasm by binding with 14-3-3

proteins (13), or degraded by the proteasome via SCFb-TRCP E3

ubiquitin ligase (14). At this time, vascular-like protein 4

(VGLL4) inhibits its transcriptional activity by combining its

TONDU (TDU) domain with the transcription factor TEAD

(16, 17) (Figure 1).

The nuclear entry and exit behavior of TEAD, as a

transcription factor downstream of the Hippo pathway, is not

regulated by MST1/2, LATS1/2, MAP4K, and other Hippo

pathway–related molecules. It is known that the p38 MAPK

signaling pathway plays an important role in regulating the

nuclear entry and exit behavior of TEAD. Under the stimulation

of continuous high osmotic pressure, p38 was directly combined

with TEAD to make TEAD nucleate (18). In addition, the p38

MAPK signal pathway can promote the polymerization of F-

actin, inhibit Hippo pathway, and promote YAP to enter the

nucleus (19).

In addition to TEAD1–4, YAP can interact with Runx1/2,

BRD4, Smad, and other transcription factors after entering the

nucleus (2, 10, 20).
Regulation mode of Hippo pathway

The Hippo pathway is mainly regulated by mechanical

signal, cell polarity and cell connection, and G protein–

coupled receptor (GPCR) (2, 4, 21, 22) (Figure 1).

F-actin is one of the important regulatory factors of Hippo

pathway. The presence of F-actin inhibitors, such as bravastatin,

the fillin/actin depolymerization factor (cofilin), gelsolin, and b-
coactin/capping protein Z (CapZ), leads to a decrease in the

transcriptional activity of YAP-related genes, while the

induction of F-actin polymerization enhances the activity of

YAP (23, 24), and F-actin regulates YAP activity in a manner

that is LATS1/2-dependent rather than MST1/2-dependent (21).

The proteins involved in the formation of cell polarity and

cell connection can also regulate the Hippo pathway. On the one

hand, kidney and brain (KIBRA) protein on the top skin layer of

cells can recruit LATS1/2 to the cell membrane through Merlin

(also known as neurofibromin 2, NF2). On the other hand, it can

recruit MST1/2 to the cell membrane through SAV1, thus

mediating the phosphorylation of LATS1/2 by MST1/2 (25)
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and inhibiting the activity of YAP (Figure 1). In this process,

MST1/2 is not phosphorylated (26).

Angiomotin (AMOT), which is related to cell polarity

formation, can bind to F-actin through its N-terminal (27).

When F-actin is destroyed, AMOT is phosphorylated by LATS1/

2 and separated from F-actin (28). Then, AMOT, as a scaffold

protein, binds to MST1/2, LATS1/2, and YAP, respectively, and

mediates the phosphorylation of MST1/2 to LATS1/2 and

LATS1/2 to YAP (9) (Figure 1). In addition, AMOT can bind

to Merlin, expose the domain that Merlin binds to LATS1/2, and

make LATS1/2 bind to it and be activated, thereby inhibiting the

activity of YAP (29) (Figure 1).

AMOT and protein tyrosine phosphate non-receptor type 14

(PTPN14), the cell tight junction–related protein, can bind to

the WW domain of YAP through the PPXY motif, making them

locate at the cell tight junction (30). When cells are in high

density, a-catenin can combine 14-3-3 proteins with

phosphorylated YAP to promote its cytoplasmic localization

(31) (Figure 1).

GPCR can be combined with a variety of hormones and

growth factors and regulate the activity of YAP through LATS1/

2 (Figure 1). In addition, different types of subunits a of G

protein show different actions: Gas can activate LATS1/2,

phosphorylate YAP, and promote its cytoplasmic localization,

while Gai/o, Gaq/11, and Ga12/13 inhibit the activity of

LATS1/2 and increase the transcriptional activity of YAP (32).
Ferroptosis

Cell death is divided into regulated cell death (RCD) and

accidental cell death (33). RCD refers to the form of cell death

that is regulated by the cell’s own gene and depends on the

signal pathway related to cell death, mainly including

apoptosis, necrotic apoptosis, and pyroptosis. Accidental cell

death refers to a form of death that does not depend on

molecular signal pathways when physical or chemical factors

cause damage to cells (34). RCD plays an important role in the

normal development of organisms and the maintenance of

homeostasis. In recent years, with the discovery of ferroptosis

and the in-depth study of its mechanism, ferroptosis is also

considered as a kind of controllable cell death (35, 36).

Ferroptosis is a regulated form of cell death characterized by

the accumulation of iron-dependent lipid ROS and the depletion

of plasma membrane PUFAs, which is caused by the imbalance

of oxidation and the antioxidant mechanism in vivo (37, 38).

As a new and controllable form of cell death, ferroptosis first

came into the view of scientists in 2003. STOCKWELL

laboratory (39) found that erastin (eradicator of Ras and ST)

and Ras-selective lethal 3 (RSL3), two oncogenes encoded by

erastin protein and RSL protein, had a specific lethal effect on H-

ras proto-oncogene (HRAS) mutant cells when they screened

small molecules with a specific lethal effect on the small GTPase
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of the RAS family [HRAS, N-ras proto-oncogene (NRAS), and

K-ras proto-oncogene (KRAS)] of mutant cells, and this lethal

effect did not depend on BCL-2, BAX, BAK, and other

apoptosis-related proteins, It is also different from the known

forms of non-programmed cell death such as cell necrosis (38).

Subsequent studies have proven that cell death caused by erastin

and RSL3 is closely related to the accumulation of iron-

dependent lipid ROS (38). This form of cell death is

named ferroptosis.
Mechanism of ferroptosis

Production of reactive oxygen species
Molecules containing oxygen atoms that have not been

completely reduced are called ROS. The active oxygen in

organisms mainly includes superoxide (O2•
-), peroxide (H2O2

and ROOH), and oxygen free radicals (HO• and RO•) (40, 41).

Intracellular ROS are mainly produced by the electron

transfer chain (42, 43) and Nicotinamide Adenine Dinucleotide

Phosphate (NADPH) oxidase (NOX) in the energy metabolism of

mitochondria (44) and the biological reactions catalyzed by

oxidase, such as the formation of uric acid from hypoxanthine

and the oxidation of fatty acids by peroxisomes (43). In addition,

radiation and air pollutants can induce cells to produce living
Frontiers in Oncology 04
oxygen (42), and neutrophils and macrophages can produce living

oxygen when they are activated to exercise anti-infection

function (45).

In the said process, O2 is oxidized to O2•
- by the

corresponding oxidase, and then, O2•- can transfer an electron

to Fe3+, or the disproportionation reaction occurs under the

action of superoxide dismutase to generate H2O2 and O2. H2O2

can accept one electron of Fe2+ to form HO• and HO- (42,

46) (Figure 2).

Lipid ROS can be produced by a non-enzymatic lipid

spontaneous oxidation reaction or lipoxygenase (46–48)

(Figure 2). Spontaneous lipid oxidation is usually initiated by

ROS. Take HO• as an example; HO• can capture the H of

PUFAs (R) on the cell membrane to generate R• and further

react with oxygen to generate ROO•. ROO• can further capture

the H of another PUFA on the cell membrane to generate

ROOH and a new R•, and ROOH can accept an electron of

Fe2+ to form RO• and HO-. RO• and the newly generated R• can

start a new round of oxidation reaction, form a vicious circle,

and cause a large-scale oxidation of lipid on the cell membrane

(47, 48).

Lipid ROS can also be formed by enzyme catalysis. Under

the catalysis of lipoxygenase, PUFAs on the cell membrane can

directly react with O2 to generate ROOH, which receives an

electron of Fe2+ to form RO• and HO-, and then RO• starts the
FIGURE 2

Mechanism and regulation of ferroptosis. Ferroptosis is a regulated form of cell death characterized by the peroxidation of polyunsaturated fatty
acids (PUFAs) of the plasma membrane. Peroxide PUFAs are mainly produced in the Fe2+-dependent chain reaction mediated by reactive
oxygen species (ROS) and lipoxygenases (LOXs). GPX4 and FSP1 can eliminate excessive PUFAs while producing them, thus maintaining the
homeostasis of the intracellular environment. When the cell oxidation and antioxidant systems are out of balance, the PUFAs of the plasma
membrane are oxidized in large quantities, which changes the permeability of the plasma membrane, leading to cell death. (R, PUFAs; PUFAs,
polyunsaturated fatty acids; GPX, glutathione peroxidase; FSP1, ferroptosis inhibitor protein 1; CoQ10, coenzyme Q10; Cys2, cystine; Cys,
cysteine; Glu, glutamic acid; Gly, glycine; GCL, glutamate cysteine ligase; GSS, glutathione synthetase; GSH, reduced glutathione; GSSG,
oxidized glutathione; erastin, ferroptosis inducer; RSL3, ferroptosis inducer; BSO, buthionine-(S,R)-maple imine; BHT, butylated hydroxytoluene;
BHA, tert butyl hydroxyanisole; DFO, deferoxamine; CPX, ciclopidone).
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chain oxidation reaction of PUFAs on the cell membrane

(43, 46).

In the said process, iron ions play a significant role as

electron transmitters (48). Under normal conditions, the

concentration of iron ions that can participate in the redox

reaction is stable and maintained at 0.2–0.5 mMol/L (49); the

remaining iron ions are stored in proteins such as heme and

ferritin and do not participate in the redox reaction to avoid

excessive production of ROS. However, under excessive

oxidative stress, a high concentration of superoxide can release

Fe2+ in iron-containing protein, thus promoting the generation

of ROS (43, 48).
Antioxidant system
Under physiological conditions, excessive ROS produced in

the body can be eliminated by a powerful antioxidant system.

The antioxidant system is mainly composed of macromolecular

enzymes such as superoxide dismutase, catalase, glutathione

peroxidase, ascorbic acid peroxidase, and other small

antioxidants such as vitamin C/E, carotenoids, and flavonoids

(42, 50).

Superox ide di smutase (SOD) can cata lyze the

disproportionation reaction of O2•
- so that one molecule of

O2•
- is oxidized to O2, and the other molecule is reduced to

H2O2. There are three kinds of SOD isoenzymes in mammalian

cells, namely, Cu/Zn SOD (the active center contains Cu/Zn

ions), Mn SOD (the active center contains Mn2+), and catalase.

Cu/Zn SOD is mainly distributed outside the cells and in the

cytoplasm, and Mn SOD is mainly distributed in the

mitochondria (51). Catalase mainly exists in peroxisomes,

cytoplasm, and microsomes, which can catalyze H2O2 to

decompose it into O2 and H2O and is one of the main forces

to eliminate peroxides in the body (50).

Glutathione peroxidase (GPX) is the general name of a

group of isoenzymes (GPX1–8). The active center of GPX

contains selenocysteine residues, which can reduce H2O2/

ROOH to H2O/ROH through reduced glutathione (GSH), and

produce oxidized glutathione (GSSG) (52).

Mammalian cells contain four kinds of GPX, namely,

GPX1–GPX4 isoenzymes: GPX1 is mainly found in the

cytoplasm, nucleus, and mitochondria of the liver, lung,

kidney tissue cells, and red blood cells. GPX2 mainly exists in

the cytoplasm and nucleus of gastrointestinal cells. GPX3,

known as plasma GPX3, is a secreted protein, which exists in

the cytoplasm of different tissues and cells such as the kidney,

lung, heart, and muscle. GPX4 widely exists in the cytoplasm,

nucleus, and mitochondria of different tissues and cells and can

combine with the membrane, thus, it is called phospholipid

GPX (53).

GPX4 is the main regulatory molecule of ferroptosis (54). It

can transform toxic lipid peroxide (ROOH) into non-toxic

lipoid (ROH) through GSH so that the fluidity and integrity of
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the biofilm will not be damaged (43). Whether inhibiting the

expression of GPX4 or its enzyme activity, or inhibiting the

synthesis of GSH, it can induce the occurrence of ferroptosis

(54, 55).

Oxidation and antioxidation imbalance
When the antioxidant system is inhibited or the active

oxygen is hyperactive, the PUFAs on the plasma membrane

are very sensitive to the active oxygen and lipoxygenase (48), and

it is easy to generate ROOH. In the presence of Fe2+, ROOH is

easy to further oxidize to RO•, which can seize H from the

adjacent PUFAs, start a new round of lipid oxidation reaction,

cause a large amount of oxidation of PUFAs, and damage the

integrity of the biofilm, eventually leading to cell death (56).
Regulation mode of ferroptosis

Ferroptosis is essentially the cell death caused by the

imbalance of the production and clearance system of lipid

ROS, which causes a large consumption of PUFAs on the

biofilm. Therefore, the factors influencing the production or

the clearance process of lipid ROS can regulate the

ferroptosis process.

Inducible factors of ferroptosis
GPX4 is the main regulator of ferroptosis (54). The

inhibition of GPX4 expression by RNAi can induce

ferroptosis, while the overexpression of GPX4 can resist the

RSL3-induced ferroptosis (54). RSL3 can covalently bind with

selenocysteine at the active site of GPX4 and directly inhibit the

enzyme activity of GPX4, thus inducing ferroptosis (54); as an

inhibitor of GPX4, the artificial small molecule compound

ML162 can also induce ferroptosis (57) (Figure 2).

As the elimination of lipid ROS by GPX4 requires the

consumption of reduced GSH, the factors affecting the

synthesis of GSH can affect ferroptosis. GSH is formed by one

molecule of glutamic acid and one molecule of glycine under the

catalysis of glutamate–cysteine ligase and glutathione synthetase

(58). Erastin and its analogues can inhibit the Xc- system, hinder

the uptake of cystine, block the source of intracellular cysteine,

and inhibit the synthesis of GSH (55). Buthionine-(S, R)-

submaple imine (BSO) can inhibit glutamate–cysteine ligase,

deplete glutathione, lead to the accumulation of lipid ROS, and

induce ferroptosis (55) (Figure 2).

Inhibiting factors of ferroptosis
In the past, studies on ferroptosis mainly focused on GPX4,

while the recently discovered ferroptosis regulatory pathway,

which is mediated by ferroptosis suppressor protein 1 (FSP1)

and independent of GSH peroxidase, suggests that ferroptosis

may be regulated by multiple upstream mechanisms (Figure 2).
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FSP1 was originally named AIFM2 (apoptosis inducing factor

mitochondrial 2) because it is homologous with AIFM1, but it

lacks mitochondrial localization and has no function of

promoting apoptosis (59). The N-terminal of FSP1 contains a

myristoylation motif. After myristoylation, FSP1 is located in the

plasma membrane through its N-terminal. The myristoylated

FSP1 can play the role of its oxidoreductase to reduce CoQ10

and thereby reduce lipid peroxidation and the sensitivity of cells

to ferroptosis (59, 60).

Since ferroptosis is caused by the excessive production of

lipid ROS, the application of antioxidants such as ferrostatin-1,

trolox, butylated hydroxytoluene, and tert butyl hydroxyanisole

can eliminate lipid ROS, thereby inhibiting the process of

ferroptosis. In addition, since the lipid oxidation process

requires the participation of ferrous ions, the application of

iron ion–chelating agents such as desferrilamine and

cyclopidone can reduce the production of lipid ROS, thereby

inhibiting ferroptosis (61) (Figure 2).
Hippo pathway and ferroptosis

Recent studies have shown that cell density information can

regulate the activity of YAP/WW domain containing transcription

regulator 1, a transcription coactivator, through the Hippo pathway,

thus regulating the sensitivity of cells to ferroptosis.

Wu et al. (62) showed that cell density information can affect

the sensitivity of cells to ferroptosis through the E-cadherin-NF2

(Merlin)-YAP-TEAD-ACSL4/TFRC (ACSL4, acyl-CoA

synthetase long-chain family member 4; TFRC, transferrin

receptor 1) pathway. TFRC and ACSL4 are important regulators

of ferroptosis (63, 64). TFRC can cooperate with transferrin to

transport iron ions from extracellular to intracellular (63). ACSL4

mediates the synthesis of polyunsaturated w6 fatty acids

arachidonic acid (AA) and docosahexaenoic acid (AdA) and the

synthesis of arachidonic acid coenzyme A (AA CoA) and

docosatetraenoic acid coenzyme A (AdA CoA). AA CoA and

AdA CoA combine with cell membrane phospholipid molecules

(phosphatidylinositol and phosphatidylethanolamine) and are

important substrates for ferroptosis (64, 65).

For HepG2, PC9, H1650, HCT116, and other cell lines, with

the increase of cell density, the sensitivity of cells to ferroptosis

induced by erastin, RSL3, and the deficiency of cystine decreased.

When the cell density increases, the adhesive connection between

cells and E-cadherin at the junction increases. E-cadherin can

transfer the cell density information to the Hippo pathway

through NF2 (62). On the one hand, NF2 reduces the

degradation of LATS1/2 by inhibiting E3 ubiquitin ligase CRL4-

DCAF1 (66). On the other hand, NF2 mediates the

phosphorylation of LATS1/2 via MST1/2 (25, 29), thereby

enhancing LATS1/2 activity. Activated LATS1/2 phosphorylates

YAP and promotes its cytoplasmic localization. At this time, the
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expression of ACSL4 and TFRC genes downstream of YAP-

TEAD was inhibited. Due to the lack of iron ions and the

substrate AA CoA and AdA CoA, the sensitivity of cells to

ferroptosis decreased (62).

Different from the said cell lines, BT474 cells have a low

sensitivity to ferroptosis whether at a higher or lower cell density,

which may be due to the high expression of E-cadherin in BT474

cells even at a lower cell density. MDA-MB-231 cells are highly

sensitive to ferroptosis even when the cell density is high; this is

because the expression of E-cadherin in MDA-MB-231 cells

remains at a very low level even when the cell density is high (62).

In addition, Yang et al. (67) found that in renal cell

carcinoma, cell density information can regulate ferroptosis

through the transcription coactivator TAZ (WW domain-

containing transcription regulator protein 1, WWTR1). When

the cell density is low, the activated TAZ can promote the

expression of epithelial membrane protein 1 (EMP1) and then

upregulate the level of NADPH oxidase 4 (NOX4). NOX4

increases the level of lipid ROS in cells and induces ferroptosis.
Summary and prospects

YAP has been considered to be related to cell growth and

proliferation. In most tumors, YAP is highly expressed, which

can inhibit tumor cell death and increase its migration and

invasion ability. In addition, because the high expression of YAP

is related to the therapeutic resistance of tumors, the research

and development of therapeutic methods targeting YAP and

Hippo pathways have always attracted much attention. In a few

tumors such as lymphoma and multiple myeloma, YAP

promotes cell apoptosis and plays a role similar to that of a

tumor suppressor. In different tumors, how the different effects

of YAP on cell death are regulated, and whether they are related

to the characteristics of tumor cells or different tumor

microenvironments, need further discussion.

In addition, studies related to ferroptosis showed that under

different cell density information, the sensitivity of cells to

ferroptosis regulated by YAP was different: Under high cell

density, the activity of YAP decreased, and the sensitivity of

cells to ferroptosis decreased accordingly; at low cell density,

YAP activity increased, and the sensitivity of cells to ferroptosis

increased. Different tumor tissues have different cell densities. It

may become a new idea for a specific tumor treatment to induce

the ferroptosis of tumor cells with low cell density by regulating

the Hippo pathway. However, there are still many problems with

this idea, such as how to define human tumors with low cell

density, how to specifically induce the ferroptosis of tumor cells

without damaging normal tissues, and whether the induction of

ferroptosis in vivo will lead to a large-scale imbalance between

oxidation and antioxidation, thus causing irreversible damage to

human normal tissues.
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