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Chromatin mutations in
pediatric high grade gliomas

Hsiao P. J. Voon and Lee H. Wong*

Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, VIC, Australia
Pediatric high grade gliomas (HGG) are lethal tumors which are currently

untreatable. A number of recent studies have provided much needed insights

into the mutations and mechanisms which drive oncogenesis in pediatric

HGGs. It is now clear that mutations in chromatin proteins, particularly H3.3

and its associated chaperone complex (ATRX), are a hallmark feature of

pediatric HGGs. We review the current literature on the normal roles of the

ATRX/H3.3 complex and how these functions are disrupted by oncogenic

mutations. We discuss the current clinical trials and pre-clinical models that

target chromatin and DNA, and how these agents fit into the ATRX/H3.3

mutation model. As chromatin mutations are a relatively new discovery in

pediatric HGGs, developing clear mechanistic insights are a key step to

improving therapies for these tumors.

KEYWORDS

histone H3.3, H3.3 K27M, DMG = diffuse midline glioma, H3.3 G34R/V, ATRX, pediatric
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Introduction

Gliomas are the most common form of primary brain tumors and are currently lethal

in both children and adults. Over the past decade, a number of large-scale genome

sequencing studies have identified key mutations which drive oncogenesis in these

tumors (1–4). From these studies, it has become increasingly clear that adult and

pediatric gliomas are distinct biological entities with specific mutational profiles. These

differences are now officially recognized in the latest 2021 WHO classification of CNS

tumors (5). One of the clearest features which distinguishes pediatric from adult gliomas,

are the high rates of mutations in chromatin-related proteins in pediatric tumors (6).

Specifically, mutations in histone genes have been officially designated as diagnostic

subgroups of pediatric-type diffuse high-grade gliomas: diffuse midline glioma, H3K27-

altered; diffuse hemispheric glioma, H3 G34-mutant (5). The overwhelming majority of

these histone point mutations occur on the histone variant H3.3 (83% of K27M

mutations, 100% of G34R/V mutations) (4), with rare mutations in canonical

histone H3.1.
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In addition, H3.3 mutations in pediatric gliomas frequently

occur in conjunction with inactivating mutations in ATRX (20%

H3.3 K27M, >90% of H3.3 G34R) (4). ATRX is a SNF2 helicase/

ATPase (7) that partners with DAXX (8, 9) to form an H3.3

chaperone complex (10, 11). Taken together, this suggests that

H3.3 and its ATRX chaperone complex are core contributors to

oncogenesis in pediatric gliomas. Furthermore, inactivating

mutations in ATRX are also found in conjunction with point

mutations in isocitrate dehydrogenase (IDH) in adult-type

diffuse gliomas (>86%) (12, 13), recently designated as

“astrocytoma, IDH-mutant” (5). Mutations in IDH1/2

(mIDH) generate an oncometabolite which inhibits a range of

chromatin modifiers and, similar to H3.3 mutations, severely

disrupt chromatin profiles. IDH mutations are most common in

adolescents (14) and younger adults (<55 years) (15), possibly

indicating a graded continuum between these chromatin

mutations and age-of-onset. This review will focus on the

current understanding of these glioma-associated chromatin

mutations which affect younger age groups.
Histone H3.3

Histones are the protein component of nucleosomes, which

form the basic repeated structural unit of chromosomes. Each

nucleosome consists of ~146 bp of DNA wrapped around a

histone octamer comprised of two units each of histone H2A,

H2B, H3, and H4 (Figure 1A). The majority of nucleosomes are

comprised of “canonical” histones such as histone H3.1/2 which

are encoded by 13 genes in the human genome (16). Histone

H3.1/2 are synthesized only during S-phase of the cell cycle and
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are rapidly assembled behind the DNA replication fork (16).

Unlike canonical replication-dependent H3.1/2, histone variant

H3.3 is expressed throughout the cell-cycle in a replication-

independent manner (17) and is thought to replace histones

which are displaced outside of S-phase (18).

Histone H3.3 is encoded by two genes in the genome

(H3F3A and H3F3B) and differs from canonical H3.1/2 at 5/4

amino acid residues respectively at positions 31, 87, 89, 90, with

an additional difference at 96 between H3.3 and H3.1. The so-

called “AAIG” motif at positions 87, 89, and 90 determine the

interactions with chaperone assembly complexes (11)

(Figure 1B). The combination of replication-independent

synthesis and specific chaperones means that H3.3 has a

genome localization pattern and function, which is unique and

distinct from canonical H3.1/2. As H3.1/2 are linked to DNA

replication, the canonical histones are uniformly distributed

across the genome in the wake of replicating DNA

polymerase. In contrast, H3.3 is most often associated with the

promoters of active genes where it replaces histones which have

been displaced by the passage of RNA polymerase (18–20). In

addition, H3.3 is also associated with unusual chromatin

environments such as telomeres (10, 20, 21), ERV repeats (22,

23), and imprinted genes in mouse embryonic stem (ES) cells

(22); the VH locus which undergoes V(D)J recombination (24);

primordial germ cells (25), and complete remodeling of the

paternal genome post-fertilization (26, 27).

As a result, H3.3 has been associated with diverse functions

including fertility, embryogenesis, maintenance of stem cell

states, and execution of differentiation programs (28). It is not

entire clear why H3.3 is uniquely important for maintaining or

altering chromatin states but it is evident that despite the high
A B

C

FIGURE 1

Key structural and functional features of histone H3.3. (A) DNA wrapped around nucleosome comprised of histones arranged into an octamer
configuration with protruding tails. (B) Key features which distinguish histone variant H3.3 from canonical H3.1/2. (C) Selected amino acid
residues on the H3.3 tail which are regulated by post-translational modifications. Red boxes show the position of frequently mutated residues.
Grey ovals represent examples of epigenetic readers, writers, and erasers known to interact with mutated and surrounding residues.
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degree of sequence similarity, H3.3 is functionally distinct from

canonical H3.1/2. The unexpected discovery of oncogenic H3.3

point mutations further emphasized this difference and shifted

our collective understanding of chromatin biology and

associated mutations in cancer. The first studies in this area

discovered heterozygous substitution mutations at position 27

(lysine) and 34 (glycine) exclusively on H3F3A of H3.3 (2, 3), as

well as a minority on K27M (lysine to methionine) mutation on

HIST1H3B (H3.1). Interestingly, the H3.3 K27M mutations

appear to be distinct from H3.1 K27M counterparts as they

are associated with different secondary mutations (29), age-of-

onset (29), and chromatin and gene expression profiles (30–32).

It is therefore highly likely that the H3.3 mutations in pediatric

gliomas are functionally significant in a manner that is related to

the normal endogenous functions of H3.3.
H3.3 K27M mutations

Of these histone mutations, the H3.3 K27M mutations are

the most common and therefore also the most well-studied.

Early studies reported H3.3 K27M mutation rates of >90% in

tumors which were then classified as Diffuse Intrinsic Pontine

Gliomas (DIPG). The WHO CNS tumors classification schema

has since been updated and H3.3 K27M is now considered a

defining feature of a class of pediatric high-grade gliomas

dubbed “diffuse midline glioma, H3 K27-altered” (5). H3.3

K27M mutations most often arise in midline structures

including the thalamus, pons and brainstem, with a median

age of diagnosis of around 9-10 years (4). The nature and

location of these tumors severely limits treatment options and

the 2-year survival rate is <10%, with a median survival time of

11 months (4). The H3.1 K27M mutations are specific to the

pons and occur in a younger age group (median 5 years) and are

associated with a median survival time of 15 months (4).

Early studies suggested that the H3.3 K27M mutation was

acting primarily through inhibition of the Polycomb Repressive

Complex 2 (PRC2) (33, 34), a methyltransferase which mediates

trimethylation of lysine 27 (35). The H3K27me3 modification is

primarily associated with the promoters of silenced genes and is

important for regulation of gene expression, particularly through

differentiation (35, 36). The H3.3 K27M mutation consistently

triggers the global loss of H3K27me3 and in vitro studies

indicated that the K27M mutation was capable of binding and

inhibiting PRC2 (33, 34). However, direct interactions between

H3.3 K27M and PRC2 have proven difficult to detect in vivo (37,

38) and these proteins have distinct localization profiles (31).

PRC2 primarily localizes to promoters of silenced genes (36)

while histone H3.3 is primarily associated with regions of high

nucleosome turnover, notably the promoters of active

genes (20).

In addition, it has become increasing clear that a broad range

of chromatin modifications are disrupted in the presence of this
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mutation. As well as reductions in H3K27me3, the K27M

mutation is also associated with reduced DNA methylation

(hypomethylation) across the genome (39), increased H3K27ac

(38, 40, 41), reduced H3K36me2 (42, 43), and increased H3K9ac

and H3K4me3 (44). As there is no consensus on proteins which

interact directly with the K27M mutation, the primary

chromatin alterations associated with this mutation are

currently unknown. Given the conflicting studies and the

diverse range of chromatin alterations, it is possible that there

are multiple interacting partners which are disrupted by the

K27M histone tail mutation. The H3K27 residue is important for

gene regulation and is a target for both post-translational

methylation and acetylation, which regulate silencing and

activation respectively (45) (Figure 1C). The substitution

mutation could potentially affect the activity of K27 methyl-

and acetyl- transferases as well as the demethylases and

deacetylases. It is also possible that chromatin readers, writers

and erasers which target neighboring residues could be disrupted

by the K27 substitution (Figure 1C). Furthermore, as the H3.3

K27M mutation appears to be distinct from the H3.1 mutations,

there may be histone-specific interactors which have thus far

been overlooked.
H3.3 G34R mutations

A second frequent histone mutation in pediatric gliomas is a

substitution of the glycine residue at position 34, most often to

arginine (G34R, 94%) and less frequently to valine (G34V, 6%)

(4). The G34R/V mutations occur exclusively on histone H3.3

(3, 6, 46) and frequently overlap with inactivating mutations in

ATRX and TP53 (90%) (4). The H3.3 G34R/V mutations are

most often found in high grade gliomas localized to the cerebral

hemispheres with a median age of diagnosis of 15 years and a

median survival time of 17-18 months (4, 47). Additional G34

substitutions have also been reported in giant cell tumor of bone

(G34W/L/R/V/M) (48) and osteosarcomas (G34W/R) (49).

Unlike the K27 residue, G34 is not a direct target for post-

translational modifications but is located close to the K36 residue

which is trimethylated (K36me3) (Figure 1C). H3K36me3

predominantly localizes to the bodies of active genes and is

associated with elongating RNA polymerase II (50). This

modification is thought to suppress cryptic initiation of

transcription (51) by suppressing histone turnover within gene

bodies (52). The substitution of a small glycine to a bulky

arginine residue has been suggested to inhibit the activity of

the H3K36 methyltransferase (SETD2) (53) and the K9/K36

demethylase (KDM4) (54) (Figure 1C). Inhibition of SETD2

reportedly occurs in cis and would therefore only affect the K36

residue on the mutated histone (53). In contrast, the chromatin

alterations (increased H3K9me3 and H3K36me3) associated

with inhibition of KDM4 were observed across the genome

which is consistent with a dominant negative effect expected
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from these mutations, although the specific mechanism remains

unclear (54). In addition to H3K36me3 and H3K9me3, the H3.3

G34R mutations have also been associated with altered patterns

of H3K27me3 (53), and DNA methylation (55). Furthermore,

the G34R substitution also interferes with reader proteins such

as ZMYND11 (56) and ZMNYD8 (57) which bind this region of

the histone tail, and has been associated with altered

splicing (58).

As for the K27M substitutions, there is no single clear

unifying model to account for the primary defects and

downstream effects of the H3.3 G34 substitution mutation.

Indeed, the current observations suggest that G34 mutations

could affect multiple chromatin pathways simultaneously, which

is likely to also be the case for the K27M mutation. Given that

the G34 substitutions occur exclusively on histone H3.3, it is

likely that the oncogenic mechanism is specific to this variant

histone. In support of this, the H3.3 G34R mutation often

overlaps with inactivating mutations in ATRX which is part of

an H3.3 chaperone complex.
ATRX mutations

ATRX is a chromatin remodeler which forms a complex

with DAXX, an H3.3-specific chaperone, to deposit H3.3 and

maintain H3K9me3 heterochromatin silencing at repetitive

DNA. This complex is frequently mutated across a range of

cancers, and mutations are strongly associated with activation of

a telomere maintenance pathway known as Alternative

Lengthening of Telomeres (ALT) (59). A recent study found

around 17% of all pediatric high grade gliomas (pHGG) have

inactivating mutations in ATRX (4). Of the ATRX-mutated

HGGs, 33% overlap with H3.3 G34R/V and 50% overlap with

H3.3 K27M mutations (4). There is no overlap between ATRX

and H3.1 K27M mutations, which are instead associated with

mutations in ACVR1 (4, 29, 60). These findings strongly suggest

that histone H3.3 plays an important oncogenic role in pHGG.

Unlike the histone mutations, ATRX-mutated pHGGs show

no particular regional or temporal specificity. Indeed, ATRX

mutations extend into young adulthood and occur at high

frequency in adult low grade gliomas (13, 61), as well as other

cancers such as pancreatic neuroendocrine tumors (62), pediatric

osteosarcomas (63), sarcomas (64–66), pheochromocytomas and

paragangliomas (67, 68). These mutations are strongly associated

with the ALT telomeremaintenance pathway (59), most likely due

to disruption of H3.3 incorporation at telomeres. Puzzlingly,

patients with ATR-X syndrome who inherit germline mutations

in ATRX, do not appear to have an increased risk of cancer (69).

This suggests that ATRXmutations are necessary but not sufficient

to activate ALT, and additional mutations are likely required.

Given that ATRX mutations frequently co-occur with H3.3

mutations in pediatric gliomas, H3.3 mutations are good
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candidates for potential partners in ALT activation. Consistent

with this, H3.3 G34R has been reported to consistently activate

ALT when combined with inactivating mutations in ATRX,

TP53 and telomerase (TERT) in mouse ES cells (70). This was

attributed to inhibition of the H3 K9/K36 demethylase, KDM4B,

by the H3.3 G34R mutation. It appears that the loss of telomeric

H3.3 (ATRX KO) combined with increased H3K9me3 through

inhibition of KDM4B, results in a chromatin environment that

supports the formation of ALT-associated PML bodies (APBs)

which are essential for telomere maintenance (70). PML bodies

are naturally occurring phase-separated nuclear condensates

(71) which become abnormally large and localise to telomeres

in ALT-positive cancers (72). One of the main drivers of phase-

separation is heterochromatin protein 1 (HP1a) (73), a protein
which binds to the H3K9me3 modification (74). It seems that

inhibition of the KDM4B demethylase results in increased

H3K9me3 to facilitate phase-separation and APB formation.
IDH1/2 mutations

Interestingly, point mutations in a citric-acid cycle enzyme,

isocitrate dehydrogenase (IDH1/2), are also known to inhibit

this family of lysine demethylases (75). IDH mutations are

relatively rare (~6%) in pediatric HGGs and tend to occur in

the forebrain of older patients with a median age of 17 years (4).

However, IDH mutations occur at very high frequency (~80%)

in adult low-grade gliomas (aLGG, WHO grade II and III) (13)

and tend to be associated with younger cohorts (76). The

majority (52%) of IDH-mutated aLGGs overlap with ATRX/

TP53 inactivating mutations while the remainder are

predominantly oligodendrogliomas which co-occur with 1p/

19q co-deletion mutations (13). The high frequency overlap

between IDH and ATRX mutations is reminiscent of the H3.3/

ATRX mutations in pediatric high-grade gliomas, and hints at

similarities between the IDH and H3.3 mutations.

The IDH1/2 enzymes catalyze the oxidative decarboxylation

of isocitrate to 2-oxoglutarate/a-ketoglutarate (2-OG/a-KG),
which is a key reaction in the citric acid cycle. In addition, a-
KG serves as a cosubstrate for aKG-dependent dioxygenases,

which include the TET family of 5-methylcytosine hydroxylases

and histone lysine demethylases such as the KDM4 family of

enzymes (75). Oncogenic mutations in IDH most often occur as

heterozygous, dominant negative point mutations at the active site

of IDH1 (R132) or IDH2 (R172) (77). These mutations convert

aKG to R(-)-2-hydroxyglutarate (2HG), an oncometabolite that

inhibits aKG-dependent dioxygenases, including the KDM4

family that is affected by H3.3 G34R mutations (75, 78).

Inhibition of histone lysine demethylases could therefore be

a common factor which unites histone H3.3 and IDHmutations.

Consistent with this, both mutations frequently co-occur with

ATRX inactivation in gliomas, and both H3.3 G34R and IDH1
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R132H have been shown to promote ALT when combined with

inactivation of ATRX/TP53 and telomerase (70). In addition,

much like the histone mutations, IDH1/2 mutated gliomas also

exhibit broad disruptions in chromatin modifications including

DNA methylation (79) and histone methylation (H3K9me2,

H3K27me2, H3K79me2) (75), which ultimately results in a

failure in differentiation (78). At present, the common theme

across the H3.3/IDH mutations appears to be inhibition of

demethylases, coupled to defects in H3.3 either directly or

through inactivation of ATRX, leading to widespread

chromatin alterations that block differentiation. Although the

specific pathways which are most affected by H3.3/IDH

mutations are currently under investigation, it is clear that

chromatin disruption is a common feature across these

gliomas. This would potentially render these cancers

vulnerable to DNA damaging agents and epigenetic drugs

regardless of specific targets, and a number of these agents are

currently being trialled.
Clinical trials

The current management of pediatric gliomas typically

includes a combination of surgical resection and radiotherapy.

However, due to the location and infiltrative nature of high grade

gliomas, complete resection is often not possible and treatment

is usually palliative. Chemotherapy has proven ineffective for

pediatric high-grade gliomas thus far. In addition to the

universal issues of efficacy, selectivity and acceptable adverse

side-effects, effective drugs must also be capable of crossing the

blood brain barrier. A range of potential candidates are currently

being trialed but clear leads or principles have yet to emerge.

Developing a clearer understanding of mutations and

molecular mechanisms should provide some guidance on the

best strategies to trial, with the ultimate goal of developing

targeted and specific therapies. In accordance with this, there

are a number of ongoing trials which attempt to target the K27M

pept ide specifical ly through a neoant igen pept ide

(NCT04749641) or a peptide vaccine in combination with the

PD-1 inhibitor, nivolumab (NCT02960230) (80). In addition,

the IDH mutations are also an attractive target and trials are

somewhat more mature as the IDH mutations are more

common, occurring at high frequency in adult low grade

gliomas as well as acute myeloid leukemia (AML). Inhibition

of mutant IDH2 with enasidenib (81) or IDH1 with ivosidenib

(82) is effective at treating IDH-mutated AML providing clinical

evidence that inhibition of the mutant enzyme is beneficial.

Phase I trials in low grade gliomas found that ivosidenib was well

tolerated and reduced tumor volume (83). Trials with

vorasidenib, a mutant IDH1/2 inhibitor with improved blood

brain penetration, was similarly well tolerated and showed

preliminary antitumor activity (84). While IDH inhibitors
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have not yet been trialed specifically in IDH mutated pediatric

high grade gliomas, positive outcomes in adult gliomas would

likely be translated to the pediatric cohort.

In addition, there are trials underway for inhibiting EZH2

(PRC2) with tazemetostat (NCT03155620), and the polycomb

protein BMI1 with PTC596 (NCT03605550) (85). Although it is

not entirely clear that K27M acts through PRC2, it is clear that

both the histone and IDH mutations cause widespread

disruptions across the genome regardless of the specific

mechanisms. Therefore, it is possible that chromatin and

genome targeting agents would further exacerbate this

phenotype and trigger cell death. Indeed, the two strategies

which have some proven efficacy in gliomas both rely on DNA

damage. Radiation is a potent DNA damaging agent and

temozolomide which is used to treat adult gliomas, is an

alkylating agent that damages DNA by methylating purine

(guanine, adenine) bases. Although efficacy is obviously

limited and treatment only extends lifespan by months, trials

are currently underway to test re-radiation and combinations

with other drugs including chromatin and DNA damaging

agents [reviewed in (80)].

A number of chromatin, epigenetic, andDNAdamaging drugs

are routinelyused in chemotherapy regimes acrossdifferent cancers

but none have proven effective as single agents in pediatric high-

grade gliomas. As a result, most current trials involve testing these

drugs in combinationswith other agents. Themost frequently used

class of chromatin and epigenetic drugs are the histone deacetylase

inhibitors (HDACi) which include panobinostat (NCT02717455,

NCT04341311) and a nanoparticle formulation, MTX110

(NCT03566199, NCT04264143), fimepinostat (NCT02909777,

NCT03893487), and vorinostat (NCT02420613, NCT01189266).

Drugs that target the genome include agents such as nucleoside

analogues (gemcitabine, NCT02992015), topoisomerase inhibitors

(etoposide NCT04049669; irinotecan NCT01837862; and

topotecan NCT03709680), and alkylating agents (temozolomide

NCT03709680, NCT04049669, NCT03243461; lomustine

NCT04049669; carboplatin NCT01837862). In addition,

inhibition of DNA repair pathways using poly ADP-ribose

polymerase (PARP) inhibitors have been hypothesized to

complement IDH inhibition and DNA alkylation by blocking the

break-excision repair pathway and a number of these are now in

trials (BGB-290 NCT03749187; olaparib NCT03233204; veliparib

NCT03581292). Itwill be interesting to see if anyof these trials yield

positive results.
Pre-clinical models

It should be noted that the majority of the compounds which

are currently in clinical trials are already used in the treatment of

other cancers. However, there is potential for developing entirely

novel compounds with improved specificity, and this process
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would be greatly expedited by pre-clinical models which

accurately reflect pediatric HGGs. Pre-clinical models can be

roughly divided into three groups each with their own

advantages and shortcomings: patient-derived cell lines,

patient-derived xenograft (PDX) animal models, and animal

models with clinically-relevant endogenous mutations.

While patient-derived models should theoretically mirror

individual tumors (86), it is inevitable that in vitro or ex vivo cell

culture and transplantation will induce and/or select for alterations

in the tumor cells relative to in situ counterparts. Amongst the

primary concerns are tumor heterogeneity and clonal selection. It is

impossible to capture the complex endogenous environment of

tumors and everymanipulation fromcell culture to transplantation

applies artificial selective pressurewhich alters themorphology and

clonality of the patient-derived cells (87, 88).While PDXmodels of

pediatric gliomas have been established (89, 90), thesemodels have

only undergone limited molecular characterization and it is not

currently clear how well these systems reflect endogenous tumors.

One alternative to patient-derived models is the creation of

engineered mouse models with clinically relevant mutations

which develop equivalent tumors. Given the high frequency of

H3.3 mutations in pediatric HGGs, it is very clear that these

mutations are oncogenic drivers yet it seems that they are not

sufficient to drive tumorigenesis in mouse models (33, 91).

Constitutive expression of H3.3 K27M is embryonically lethal

(92) and expression must be limited to neural lineages.

Expression of H3.3 K27M in isolation does not result in tumor

formation (91, 92) but adding a TP53 mutation induces HGG

formation at low frequencies (91, 92). The frequency of HGG

formation can be boosted with the addition of PDGFRA (91, 92)

but these mutations rarely co-occur in patient tumors. The

difficulties in establishing model systems has been attributed to

restricted developmental stages and cell lineages which are

vulnerable to H3.3 mutations (93). Further research into

mutations and mechanisms may improve these mouse models

in the future however it still remains to be seen if these models

can accurately reflect the human tumors.

No model system can completely capture the complexity of

patient tumors and all models will suffer from unavoidable

pitfalls. It is therefore vitally important that multiple model

systems are developed in parallel so that potential therapies can

be tested across a range of systems. As with all experimental

strategies, orthogonal approaches are the gold-standard for

maximizing the chances of identifying efficacious agents while

minimizing potential for harm.
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Concluding remarks

Given that pediatric high grade gliomas have proven resistant

to all interventions, any degree of improvement would be welcome

at this stage. Based on the high rates of mutations in chromatin

protein and the adverse effects of thesemutations on the genome, it

is almost certain that genome targeting agents would prove

beneficial as part of combinatorial strategies. However, given the

non-specific effects of these drugs and the sensitive nature of neural

tissues, off-target effects are likely to pose an issue. As is true for

most therapies, targeted delivery and boosting specificity will play

an important role in improving overall outcomes and developing

accurate pre-clinical models will greatly expedite this process. In

addition, further studies into the exact molecular mechanisms

behind these mutations could help to uncover pathways that can

be targeted with greater specificity and efficacy.
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