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The tumor microenvironment (TME) is a complex and constantly changing

cellular system composed of heterogeneous populations of tumor cells and

non-transformed stromal cells, such as stem cells, fibroblasts, endothelial cells,

pericytes, adipocytes, and innate and adaptive immune cells. Tumor, stromal,

and immune cells consume available nutrients to sustain their proliferation and

effector functions and, as a result of their metabolism, produce a wide array of

by-products that gradually alter the composition of the milieu. The resulting

depletion of essential nutrients and enrichment of by-products work together

with other features of the hostile TME to inhibit the antitumor functions of

immune cells and skew their phenotype to promote tumor progression. This

review briefly describes the participation of the innate and adaptive immune

cells in recognizing and eliminating tumor cells and how the gradual metabolic

changes in the TME alter their antitumor functions. In addition, we discuss the

overexpression of the immune checkpoints and their ligands as a result of

nutrient deprivation and by-products accumulation, as well as the amplification

of the metabolic alterations induced by the immune checkpoints, which

creates an immunosuppressive feedback loop in the TME. Finally, the

combination of metabolic and immune checkpoint inhibitors as a potential

strategy to treat cancer and enhance the outcome of patients is highlighted.
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Introduction

The tumor microenvironment (TME) is composed of

cellular and non-cellular elements that establish a dynamic

interaction in which the concentration of nutrients and

metabolic by-products constantly fluctuates over time,

modifying the nutritional status of the cells. From a

perspective of energy and biomass production, tumor cells

show remarkable plasticity to adapt to the changing conditions

of the TME, which allows them to overcome the diminished

availability of oxygen and other nutrients. As a part of metabolic

reprogramming, tumor cells may display alterations in their

glycolytic activity, glutaminolysis, Fatty Acid Oxidation (FAO),

Oxidative Phosphorylation (OXPHOS), etc (1). Aerobic

glycolysis, also known as the Warburg effect, is probably the

most evident and widespread metabolic adaptation in tumor

cells. This process consists of a massive increase in glucose

consumption and lactate production, even in the presence of

oxygen, which provides tumor cells with a mechanism to fulfill

the biosynthetic requirements to maintain uncontrolled

proliferation. The increase in glucose consumption is

concerted by changes in oxidative metabolism, activation of

oncogenes, and inactivation of tumor-suppressor genes (2).

Nevertheless, studies on carbon flux have demonstrated that

metabolic reprogramming on tumor cells is not limited to increased

glucose uptake. Tumor cells employ multiple biosynthetic pathways

to support their high proliferative rate, such as FAO or

glutaminolysis, as well as increase the uptake of exogenous

nutrients, such as amino acids like glutamine, tryptophan, and

arginine. The depletion of these nutrients by consumption

concomitantly promotes the accumulation of other by-products

such as kynurenines and adenosine (3). Glutamine is an essential

fuel for the increased demand of ATP, biosynthetic precursors, and

reducing agents in cells with high proliferative rates, such as tumor

and activated T cells. Glutaminolysis begins when glutamine enters

the cell through the transporter ASCT2/SLC1A5 and is metabolized

to glutamate and ammonium by the glutaminase enzyme (GLS).

The resulting glutamate plays a key role in biomass production,

redox homeostasis, and modulation of signaling pathways (4). In

addition, the regulation of tryptophan concentration is essential for

maintaining tissue homeostasis since the metabolism of this amino

acid is related to nutrient sensing and metabolic response to cellular

stress. In the TME, increased tryptophanmetabolism by tumor cells

induces the suppression of T cell responses (5). In multiple tumors,

the overexpression of the enzyme that catabolizes tryptophan into

kynurenines, Indoleamine-2,3-dioxygenase (IDO) has been

reported to signal through the aryl hydrocarbon receptor (AhR)

and to have immunosuppressive activity (6). Similarly, arginine

availability in the TME plays a critical role in tumor cell

proliferation and progression. Arginine is mainly synthetized

from citrulline by the enzymes arginosuccinate synthase (AS) and

arginosuccinate lyase (ASL) in a process known as the citrulline-
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nitric oxide cycle. This cycle represents the main arginine source for

nitric oxide (NO) synthesis in immune cells (7). Arginine starvation

assays have demonstrated that this amino acid is indispensable for

tumor cells in vitro (8).

In the TME, tumor and stromal cells compete with immune

cells for the uptake of these nutrients while producing a wide array

of metabolic by-products with immunosuppressive activity. In

nascent tumors, immune cells are immersed in an environment

rich in nutrients that allows them to control tumor growth by

eliminating susceptible tumor cells (9). Nevertheless, as tumors

progress and the equilibrium phase of the immunoediting is

established, metabolic alterations of tumor and stromal cells

promote a metabolically hostile environment for effector

immune cells. The resulting changes in concentrations of

nutrients and by-products signal immune cells to end their

antitumor functions and skew their phenotypes to enable

immune escape and favor tumor cell proliferation. In this

review, the participation of the innate and adaptive immune

cells in recognizing and eliminating neoplastic cells is described.

In addition, we discuss the main effects of the changes in the

concentration of glucose, and some amino acids, as well as their

by-products, on immune cells, highlighting the shifting of

immune response from antitumor to tumor-promoting activity.

Special focus is given to the crosstalk between immune

checkpoints (ICs) and metabolic reprogramming in the

establishment of an immunosuppressive feedback loop in the

TME. Finally, current advances regarding therapy combining both

metabolic and IC inhibitors (ICIs) are reviewed.
Participation of the immune
response in tumor development

The involvement of the immune system in the context of

cancer has gained relevance in recent years since immune cells

have been shown to play a dichotomic role in tumor

development. On the one hand, the immunoediting theory

postulates that immune cells recognize and eliminate

susceptible tumor cells and that this process shapes tumor

biology. On the other hand, it has been shown that chronic

inflammation caused by an incomplete resolution process favors

tumor progression. Excellent reviews have been published on the

dual role of the immune system in tumor biology (10–12).

Although immune elimination of tumor cells mainly relies

on the cytotoxic activity of CD8+ T cells, the activation of an

effective antitumoral immune response involves the

coordination of diverse innate and adaptive immune cells in a

process regarded as the Cancer-Immunity Cycle (13). In nascent

tumors, susceptible tumor cells are eliminated by innate immune

cells. In this process, NK and NKT cells exert their cytotoxic

function by releasing molecules with cytolytic potential, while

phagocytic cells, by producing TNF-a and reactive oxygen
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(ROS) and nitrogen (RNS) species. Tumor cell death causes the

release of tumor antigens and damage-associated molecular

patterns (DAMPs) that stimulate the phagocytosis of dying

tumor cells and promote the chemotaxis of immune cells from

blood vessels. Moreover, the release of tumor antigens may also

occur through the secretion of extracellular vesicles (EVs) by

viable tumor cells. As previously reported, EVs contain tumor

antigens and critical components that trigger the antitumor

immune response (14). Tumor antigens released or contained

in EVs are phagocyted by immature resident or arriving

dendritic cells (DCs), processed through the ubiquitin-

proteasome pathway, and resulting peptides are associated to

class I and class II MHC molecules. Subsequently, DCs mature

and migrate to draining lymph nodes to activate naïve CD4+

and CD8+ T cells. Activation triggers metabolic changes in T

cells, such as aerobic glycolysis, necessary to sustain their

proliferation and production of cytokines and cytotoxic

molecules (15). Finally, T cells migrate through the

bloodstream to infiltrate the tumor site, where effector CD8+

T cells (CTLs) recognize and eliminate tumor cells. This event

promotes the release of more DAMPs and tumor antigens,

perpetuating the Cancer-Immunity Cycle to eliminate

susceptible tumor cells.

However, several reports indicate that tumors in advanced

stages develop multiple mechanisms to evade immune

destruction (16, 17). Among these mechanisms, reports

highlight the diminishing of tumor cell antigenicity,

recruitment of cells with regulatory activity and pro-tumoral

function such as regulatory T cells (Tregs), M2 macrophages,

and myeloid-derived suppressor cells (MDSCs), and the

overexpression of molecules that limit the antitumor functions

of immune cells, known as Immune Checkpoints (ICs) and their

ligands. Recently, metabolic alterations in the TME promoted by

tumor and stromal cells have been pointed out as an additional

mechanism to evade immune destruction (18).
Metabolic reprogramming in
the TME

Multiple studies have demonstrated that cell metabolism is a

housekeeping process to maintain cell survival, as well as a

powerful guiding force that directs cell fate. As a result of the

dynamic interplay between highly proliferating immune and

tumor cells, local levels of nutrients such as glucose, glutamine,

tryptophan, and arginine, among others are reduced in the TME.

At the same time, metabolic by-products such as lactate,

kynurenines, polyamines, and adenosine are accumulated.

These metabolic alterations gradually change the environment

of the TME, as illustrated by pH acidification of the milieu due to

lactate accumulation, and act as a selective pressure that modifies

the phenotypic features of the cellular components of the TME
Frontiers in Oncology 03
(19). Acidosis inhibits the glycolytic metabolism, thus affecting

the proliferation of immune and some tumor cells.

As mentioned above, tumor cells can adapt to the changing

conditions of the TME, such as hypoxia, deficiency of nutrients,

iron accumulation, or acidic pH. For instance, some clones may

express resistance mechanisms such as acid extruders (e.g., Na+,

HCO3- cotransporters, H+ ATPases, and Na+/H+ exchangers) to

overcome and even take advantage of high lactate concentrations

(20). Moreover, metabolic alterations in the TME promote

tumor heterogeneity. Adverse features such as hypoxia and

acidic pH induce cell cycle arrest or cell death in some tumor

cell clones, while other clones reprogram their metabolism and

acquire adaptation mechanisms that allow them to survive

and proliferate.

Additionally, lactate is transported into cells through

monocarboxylate transporters (MCTs) and signal through the

specific G protein-coupled receptor 81 (GPR81), which has been

reported to participate in cancer development and regulation of

antitumor immune responses. Internalized lactate plays essential

roles in tumor biology, such as improving tumor cell glycolysis

by enhancing c-Myc signaling and the expression of the pyruvate

kinase isoenzyme M2 (PKM2) (21, 22). As a result of lactate

accumulation, emerging epigenetic modifications such as

histone lactylation have been identified as important metabolic

stress-related modifications that promote tumorigenesis (23, 24).

However, immune cells lack the capacity to display these

adaptation mechanisms, and metabolic alterations significantly

affect their phenotype and effector mechanisms. For the correct

elimination of tumor cells, CD4+ and CD8+ tumor-infiltrating

lymphocytes (TILs), NK cells, and M1 macrophages rely on a

highly glycolytic metabolism and amino acid consumption,

while pro-tumoral immune cells, such as Tregs, M2

macrophages, and MDSCs mainly display an oxidative

metabolism. Thus, changes in nutrient availability and

concentration of metabolites in the TME impair the effector

mechanisms of antitumor immune cells and favors the

accumulation, survival, and suppressive functions of protumor

immune cells.

In the next sections, we summarize the effects of the most

common metabolic changes in glucose/lactate, glutamine,

tryptophan/kynurenines, arginine, and adenosine, on

inhibiting the tumor-infiltrating immune cells and their

influence on the expression of the ICs and their ligands.
Glucose and lactate

The introduction of high throughput technologies has

confirmed Otto Warburg’s early observations that tumors

consume more glucose than normal tissues and deepened the

understanding of the biological role of glucose and lactate in the

TME. In this regard, single-cell RNA-sequencing (scRNAseq)
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data from breast cancer patients showed that tumor cells display

a gene signature associated with higher glucose consumption

compared to normal epithelial cells (25), and glucose

consumption by pancreatic ductal adenocarcinoma (PDAC)

cell lines has been reported to impair proliferation of CD8+ T

cells (26). Lactate, once considered a mere waste product of

glycolytic metabolism, is now well known to play a critical role in

establishing the TME and modulating immune evasion

mechanisms by altering the phenotype and effector activity of

immune cells (27). Li et al. recently published a comprehensive

review of the role of lactate in physiologic and pathological

processes (20).

In hepatocellular carcinoma (HCC), transcriptomic data

revealed a lactate metabolism-related gene signature (LMRGS)

based on the expression of six genes (FKTN, PDSS1, PET117,

PS1, RARS1, and RNASEH1). HCC cases with high LMRGS were

associated with immune cell infiltration characterized by the

presence of follicular helper T cells (Tfh), Tregs, and M0

macrophages. In contrast, cases with a low LMRGS were

mainly infiltrated by resting NK cells, monocytes, and mast

cells (28).

As mentioned earlier, T cells are the most potent mediators

of the adaptive antitumor immune response and require high

glucose consumption to effectively perform their effector

functions. Glucose deprivation decreases the phosphorylation

of p28 and JNK induced after TCR stimulation (29), leading to

decreased production of IFN-g, IL-2, and TNF-a, and Th1

differentiation on CD4+ T cells and impaired exocytosis of

cytotoxic granules on cytotoxic T lymphocytes (CTLs). Some

reports indicate that glucose deprivation allows the glycolytic

enzyme GAPDH to bind the 3’UTR region of the IFN-g
transcript and promotes the loss of the open chromatin marks

H3K9Ac and H3K27Ac in Th1-related genes, preventing their

transcription (30, 31). Additionally, T cells express the lactate

transporters SLC5A12 and SLC16A1, and exposure to this

metabolite alters some functional activities such as glycolytic

activity, motility, the cytotoxic activity of CTLs, and skew CD4+

T cells to Th17 phenotype, characteristic of persistent

inflammatory responses (32, 33).

The hostile environmental features of the TME, such as the

presence of anti-inflammatory cytokines and metabolic

reprogramming, promote the accumulation of Tregs that favor

tumor survival and progression. Tregs exert their suppressor

activity on other immune cells through membrane-membrane

interaction or by producing anti-inflammatory cytokines, such

as IL-10 and TGF-b (34). In the glucose deprived, lactate

enriched TME, Tregs are able to maintain their suppressor

activity, since their metabolism is reprogrammed by the

master transcription factor FOXP3 from glycolysis to

OXPHOS (35). Interestingly, Watson et al. reported that Tregs

display a heterogeneous metabolism of glucose and lactate, in

which glucose-avid Tregs show lower suppressor activity than

lactate-avid Tregs that promote immune suppression and tumor
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progression. Moreover, glucose starvation skews Tregs toward

lactate consumption, and blockade of the lactate transporter

MCT1 promotes the accumulation of glucose-avid Tregs that

preserve the antitumor functions of CTLs (36).

These studies demonstrate that glucose depletion and lactate

accumulation probably due to the increased metabolism of

proliferating immune cells are sufficient to inhibit the effector

functions of T cells and induce the accumulation of Tregs. It is

tempting to speculate that this process is hijacked and taken one

step forward by tumor and stromal cells as an immune evasion

mechanism capable of inducing T cell dysfunction in the TME.

Dysfunctional T cells can be classified in anergic, exhausted and

senescent, and have been described to be induced by the hostile

conditions of the TME and fail to eliminate tumor cells (37). As

discussed in the next section, metabolic alterations are drivers of

ICs expression, which are markers of T cell exhaustion.

Furthermore, Tregs and tumor-derived gd T cells have been

reported to induce a senescent phenotype on effector T cells in

vitro that differs from exhaustion and anergy. This effect is

induced by glucose deprivation-mediated AMPK activation, and

glucose supplementation or the blockade of glucose uptake in

Tregs reverts the acquisition of the senescent phenotype by

effector T cells (38).

Exhausted T cells are mainly induced by chronic antigen

stimulation, show diminished effector function and high

expression of ICs. Interestingly, it has been reported that T

cells display characteristics of metabolic dysfunction even before

the emergence of the exhausted phenotype. Thus, exhausted T

cells show reduced glucose uptake, and transcriptional changes

suggestive of glucose deprivation, as well as diminished

mitochondrial function related to increased mitochondrial

depolarization and production of ROS (39). As a response to

TME variations, epigenetic modifications have been suggested as

drivers of metabolic exhaustion. Transcription factors TOX and

NR4A drive epigenetic changes characteristic of T cell

exhaustion that may be promoted by conditions like hypoxia,

glucose restriction, methionine deprivation, and ROS

accumulation, and in turn promote the expression of some ICs

(40, 41).

In comparison, cellular senescence is mainly related to

telomere shortening due to repetitive division cycles. Although

a senescence-like phenotype has been reported in multiple

immune cells (42), it has been mostly studied on T cells that

are characterized by loss of surface expression of costimulatory

CD28 and telomere shortening due to their elevated proliferative

rate (43, 44). Similar to other senescent cells, T cells upregulate

their glycolytic metabolism in order to maintain the metabolic

requirements of the senescent phenotype, like the senescent-

associated secretory phenotype (SASP) (45). Interestingly,

senescence in T cells strongly depends on their mitochondrial

content. In particular, CD4+ T cells have been reported to better

withstand cellular senescence due to higher mitochondrial

content and oxidative metabolism, in comparison to CD8+ T
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cells (46). By contrast, senescent CD8+ T cells are able to acquire

a NK cell-like phenotype that might be important for the

removal of other senescent cells, and possibly tumor cells (47).

Although changes in the concentrations of glucose and

lactate have been shown to inhibit the effector mechanisms

and change the phenotype of T cells, more studies are needed

to clarify if these metabolic alterations are capable of driving cell

exhaustion or senescence in TILs.

Effective antitumor responses require the participation of

several other immune cells that may also be impaired by the

elevated glucose consumption in the TME. Similar to CD8+ T

cells, NK cells require a highly glycolytic metabolism during

activation. Increased glucose uptake and mTOR1-mediated

glycolytic activity are required for their IFN-g and granzyme B

production. This is illustrated by the fact that some NK cells,

especially the CD56bright subpopulation, depend on glucose

uptake through the GLUT1 transporter for IFN-g production

(48). Similarly, high lactate concentrations inhibit the activation

of the transcription factor NFAT in both CD8+ T and NK cells,

impairing their tumor infiltration and cytolytic effector

functions. Brand et al. reported that, in a model of mice

engrafted with low Lactate Dehydrogenase-expressing

(LDHlow) melanoma, tumor progression was reduced in an

IFN-g-dependent manner. LDHlow tumors showed higher NK

and CD8+ T cell infiltration with increased IFN-g and granzyme

B expression, compared to the control group (49). Moreover,

CD56bright NK cells cultured in conditioned media from

colorectal cancer metastasis undergo apoptosis induced by

lactate-mediated intracellular pH decrease, mitochondrial

stress, and accumulation of ROS (50). Based on these findings,

we propose that, in addition to promoting immune evasion at

the primary tumor, a high lactate production may facilitate the

establishment of the premetastatic niche.

Two opposite phenotypes have been described in

macrophages. The M1 phenotype shows antitumor activity

that depends on glycolytic metabolism, with high oxygen

consumption and pentose phosphate pathway (PPP), while the

M2 phenotype mainly depends on OXPHOS (51). In this regard,

glucose deprivation and lactate accumulation may skew

macrophages toward the M2 phenotype , favor ing

immunosuppression. In fact, the M2 phenotype polarizing

cytokine IL-4 inhibits mTOR signaling, which favors oxidative

metabolism over glycolytic activity (52). Lactate has been

reported to inhibit LPS-induced glycolytic activity on bone

marrow-derived macrophages (BMDMs), resulting in lower

expression of the cytokines IL-6, IL-12p40, and the co-

stimulatory molecule CD40 (53), and to induce the expression

of M2-specific markers, such as arginase-1, Mannose Receptor

C-Type 1, CD206, and VEGF production, through ERK/STAT3

signaling (54). This effect seems to be dependent on the

heterodimer of the odorant receptor Olfr78, and the G-

protein-coupled receptor GRP132 since knockdown of Olfr78
Frontiers in Oncology 05
prevents M2 polarization and promotes tumor infiltration by

M1 macrophages and CD4+ and CD8+ T cells (55).

The effect of glucose concentration on DC maturation and

the subsequent activation of T cell responses is less clear. On the

one hand, maturation of DCs induced by TLR ligands or type I

IFN favors a switch from oxidative to glycolytic metabolism.

Reports indicate that glucose restriction limits the ability of DCs

to produce IL-2 and express the co-stimulatory molecule CD86,

which results in impaired CD4+ T cell activation. Moreover, the

inhibitory effect of IL-10 has been reported to be due to the

blockade of the metabolic shift toward glycolytic metabolism

(56, 57). On the other hand, it has been reported that LPS-

stimulated DCs under glucose deprivation express higher

amounts of co-stimulatory molecules CD80 and CD86 and the

cytokine IL-12. Consequently, glucose-restricted DCs exhibit

higher capability of activating antigen-specific CD8+ T cells

than DCs stimulated in normal glucose concentrations. The

restriction of nutrients, such as glucose or amino acids, inhibits

mTOR signaling, which prevents HIF-1a activation and the

metabolic switch in DCs (58). These seemingly contradictory

results may be explained by the dual function of DCs associated

with their maturation stage. Immature DCs display high

phagocytic activity for antigen capture in tissues, so these cells

may require a high nutrient consumption to support this active

process. After maturation and migration to the lymph nodes to

present antigens to T cells, DCs may reduce their metabolism to

avoid T cell inhibition due to nutrient depletion. This is

supported by the fact that AKT activation and increased

glycolysis are early events of DC activation (59) and that, after

migrating to lymph nodes activated T cells deprive DCs of

nutrients (58). In this sense, glucose depletion in the TME

may impair DC maturation and migration to lymph nodes,

preventing efficient T cell activation.

Regarding the effect of lactate on DCs, it has been reported

that lactate produced by lung cancer cells inhibits IL-2 and type I

IFN production and induces the expression of IL-10. As a result,

DCs fail to correctly present antigens to induce efficient

antitumor T cell responses (60). In particular, lactate impairs

type I IFN production on plasmacytoid DCs (pDC) through

GRP81 and MCTs (61). In the TME, granulocyte-macrophage

colony stimulating factor (GM-CSF)-induced tolerogenic DCs

inhibit glycolytic metabolism on T cells and promote the Treg

phenotype through lactate production (62).

As in the case of tumor cells, MDSCs have been reported to

exhibit significant metabolic plasticity. Based on dynamic

metabolic flux analysis, it has been proposed that MDSCs are

mainly dependent on glycolysis while maintaining high

tricarboxylic acid (TCA) cycle with minimal PPP and

OXPHOS activities (63). In Staphylococcus aureus infection,

MDSCs have been shown to require an increased glucose

uptake to undergo complete maturation. In contrast, a

glucose-deficient environment, such as the TME, promotes the
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accumulation of immature and highly suppressive MDSCs.

Reports indicate that MDSCs cultured in high glucose

concentrations display a reduced ability to suppress CD4+ T

cell proliferation (64). The dependence of PMN-MDSCs on

glucose uptake relies on the expression of glucose transporter

GLUT3; knockdown of this transporter reduces glucose uptake

and promotes apoptosis, suggesting it as a possible therapeutic

target to restore antitumor immunity (65).

Similarly, in vitro exposure of mouse bone marrow cells to

IL-6, GM-CSF, and lactate enhances the induction of bone

marrow-derived MDSCs that display high capacity to suppress

T cell proliferation and cytotoxicity of NK cells (66).

Radiotherapy has been reported to promote the Warburg

effect inducing lactate secretion in a mouse model of PDAC.

Tumor-derived lactate promotes MDSCs induction and

activation through the GPR81/HIF-1a/STAT3 signaling

pathway, suggesting the role of enhanced lactate secretion as a

mechanism of radioresistance (67).

According to this information, progressive glucose

deprivation and lactate accumulation in the TME due to

increased glycolytic metabolism suppress the effector functions

of immune cells and skew them toward anti-inflammatory/pro-

resolving phenotypes, which supports the survival of tumor cells.

The combination of treatments to inhibit the glycolytic activity

of tumor and stromal cells to restore baseline glucose levels and

the consequent decrease in lactate accumulation in the TME is a

promising therapeutic strategy to reinvigorate the effector

functions of tumor-infiltrating cells.
Metabolism of amino acids

As discussed earlier, metabolic reprogramming in the TME

is a hallmark of cancer and is not restricted to the Warburg

effect. Rapid growth and multiplication of tumor cells require a

high demand for other nutrients, such as amino acids. It has

been reported that some cancer cells lack the ability to synthesize

some amino acids, so they depend on the exogenous supply of

these nutrients to maintain their development and metabolism

(68). To meet this metabolic demand, cancer cells increase the

expression of transporters and enzymes involved in amino acid

synthesis and metabolism (69), which may promote the

deprivation of these nutrients in the TME and thus, the

impairment of the effector functions of antitumor immune cells.
Glutamine
Glucose-derived pyruvate is recognized as the main anaplerotic

substrate for cell proliferation and homeostasis. However, when this

molecule is limited, other substrates such as glutamine fulfill this

requirement. Glutamine is the most abundant amino acid in the

blood and is involved in multiple biosynthetic pathways, such as the

production of precursors for synthesizing nucleic acids and
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maintaining the cellular redox state. Glutamate and ammonia are

used as substrates by the enzyme glutamine synthetase (GS) for the

intracellular synthesis of glutamine. However, glutamine is

considered a conditionally essential amino acid for highly

proliferative cells since internal synthesis is insufficient to fulfill

the increased demand in immune and tumor cells. It has been

reported that the loss or downregulation of GS turns ovarian cancer

and oligodendroglioma cells dependent on exogenous glutamine to

maintain their proliferation (70). To fulfill glutamine requirements,

tumor cells overexpress major glutamine transporters, such as the

alanine-serine-cysteine transporter 2 SLC1A5 (formerly known as

ASCT2) and SLC38A2 (SNAT2) (71). In the case of T cells, it has

been reported that in glucose deprivation, T cells increase

glutaminolysis to maintain the anaplerotic production of TCA

cycle intermediates and ATP,in an AMP-activated protein kinase

(AMPK)-dependent manner (72).

As a result of the increased glutamine consumption by

tumor and immune cells, glutamine availability is reduced in

the TME, which acts as a suppressive signal that inhibits

antitumor phenotypes while promotes pro-tumor phenotypes

on immune cells. The competition between immune and tumor

cells for glutamine is illustrated by the fact that T cells also

require the expression of transporter ASCT2 for proper

activation. Knockdown of this transporter dampens the

activation of CD4+ T cells and their differentiation toward

antitumor Th1 and Th17 phenotypes (73). In addition, it has

been reported that glutamine deprivation impairs T cell

proliferation and IL-2 and IFN-g production, and this effect is

dependent on kinase ERK (74). Likewise, NK cells require

glutamine to maintain c-Myc activation, which is necessary to

induce the metabolic switch and the production of IFN-g and

granzyme B (75). In fact, oral administration of glutamine has

been proposed as a therapeutic strategy that enhances NK cell

activity and reduces tumor growth in a fibrosarcoma rat

model (76).

Regarding macrophages, glutaminolysis may be associated

with the M2 phenotype. It has been reported that inhibition of

glutamine metabolism in BMDMs through the inhibition of GS

promotes M1 polarization by the accumulation of succinate and

the activation of HIF-1a, resulting in an enhanced ability of

macrophages to attract and activate T cells in vitro and in vivo

(77). By contrast, it has been shown that a-ketoglutarate derived
from glutaminolysis induces M2 gene expression through the

activation of the histone demethylase JMJD3, promoting an

open chromatin state at M2-specific gene promoters (78).

Glutamine deprivation in the TME, induced by glutamine-

addicted tumor cells, promotes IL-23 expression on Tumor-

Associated Macrophages (TAMs) through HIF-1a activation,

which is related to higher IL-10 and TGF-b production and

recruitment of Tregs (79). MDSCs also display an increased

glutamine uptake in the TME (80). In primary tumor and lung

metastasis murine breast cancer models, Oh et al. demonstrated

that glutamine antagonists reduce the number of MDSCs by
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inhibiting G-CSF expression, which promotes their

differentiation to a pro-inflammatory phenotype. Moreover,

inhibition of glutamine metabolism reduced the expression of

IDO in tumor cells, TAMs, and MDSCs promoting T cell

activation (81).

Therapeutic strategies that modulate glutamine metabolism

on tumor cells and recover glutamine availability in the TME may

act synergistically with other therapeutic options to inhibit tumor

progression and reactivate the antitumor immune response.
Tryptophan and kynurenines
Tryptophan is another critical metabolite whose availability

influences immune responses. About 95% of exogenous

tryptophan is metabolized via the kynurenine pathway by the

enzymes tryptophan-2,3-dioxygenase (TDO), regulating its

plasmatic concentrations, and IDO1 acting in peripheral

tissues. It has been proposed that IDO-mediated tryptophan

metabolism regulates T cell responses to maintain immune

privilege in the maternal-fetal interface (82). This process is

co-opted by tumors cells to maintain an immunosuppressive

environment since the overexpression of IDO has been reported

in multiple tumors (83). Moreover, the accumulation of the

IDO-derived metabolite l-kynurenine promotes the inhibition of

immune cells via activation of the receptor AhR (84). In fact,

AhR activation by microbiome-produced tryptophan catabolites

promotes the suppressor functions of PDAC TAMs, which

reduces tumor infiltration of CD8+ T cells (85).

IDO overexpression in tumors is associated to immune

evasion and poor prognosis in cancer patients (86). Early

studies indicated that IDO expression by tumor cells correlates

with little or null T cell infiltration, and mice immunized with

IDO1-expressing tumor cells fail to reject the tumor. Moreover,

treatment with IDO inhibitors promotes tumor rejection (84,

87–89). IDO-mediated tryptophan catabolism is regarded as a

powerful immunosuppressive mechanism. Culture in low

tryptophan and high kynurenine concentrations inhibit the

activity of T cells. T cells activated in these conditions display

lower proliferation and are more prone to Fas-mediated

apoptosis (90). CD8+ T cells co-cultured with IDO-expressing

DCs show lower expression of the CD3z chain, decreased

production of IL-2 and IFN-g, and are devoid of cytotoxic

activity. Regarding CD4+ T cells, reports indicate that cell

cu l tures in low tryptophan and high kynurenine

concentrations inhibit Th17 differentiation and promote Treg

cell phenotype with increased expression of IL-10 and TGF-b
(91, 92).

Overexpression of IDO has been reported in other cellular

components of the TME to exacerbate tryptophan deficiency

and accumulation of kynurenines. Both tumor cells and

melanoma-associated fibroblasts (MAFs) produce COX-2 and

IDO, inducing the expression of IL-10 in macrophages.

Consequently, the pharmacological inhibition of COX-2 and
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IDO reverts the suppressive phenotype in macrophages (93). In

addition, monocyte-derived macrophages induced by M-CSF

upregulate IDO in response to IFN-g or CD40L to deplete milieu

tryptophan and suppress T cell responses to maintain peripheral

tolerance (94). Although it has been suggested that monocyte-

derived macrophages display a specialized tryptophan uptake

system that may promote tryptophan deficiency in the TME

(95), more studies are required to identify the molecules

involved in this mechanism as possible therapeutic targets.

IDO expression has been widely reported in some

subpopulations of DCs (96, 97). This expression is induced via

interaction with Tregs, and IDO-expressing DCs can further

promote the differentiation of Tregs, thus creating an amplifying

immunoregulatory loop in the TME (96). In this regard,

differentiation of Tregs from naïve CD4+CD25-T cells is

promoted by IDO-derived kynurenine, and pharmacological

inhibition of IDO prevents pDC-mediated induction of Tregs

(98). Tryptophan deficiency in the TME may also impair the

antitumor functions of DCs. Tryptophan-deprived DCs show

decreased antigen uptake, decreased expression of the

maturation markers CD40 and CD80, and increased

expression of the inhibitory receptors ILT3 and ILT4. As a

result, DCs show a reduced ability to activate T cells, thereby

promoting Treg cell differentiation (99). Moreover, the

tryptophan catabolite 3-hydroxyanthranilic acid reduces the

phosphorylation of p38 and JNK, which prevents the

maturation of mouse DCs, based on the expression of CD80,

CD86, and CD40, and decreases the activation of T cells (100).

IDO expression in human and mouse melanoma tumors has

been associated with aggressive tumor growth that depends on

the recruitment of highly suppressive CD11b+Gr1int MDSCs

mediated by Tregs (101). Moreover, GM-CSF derived from

tumor cells has been reported to induce IDO expression on

MDSCs (102) and IDO-expressing MDSCs promote the

expansion of Tregs, that subsequently inhibit T cell

proliferation and the antitumor immune response (103–105).

IL-2-activated NK cells in presence of l-kynurenine show

impaired expression of the activating receptors NKp46 and

NKG2D, lower production of IFN-g and TNF-a, and reduced

cytotoxicity against tumor cells (106). Furthermore, exposure to

l-kynurenine promotes apoptosis in NK cells through ROS

production (107). Controversially, kynurenine signaling

through the AhR has been reported to promote the expression

of the activating receptors NKp30, NKp46, perforin, and

granzyme B in NK cells (108), which is supported by the

observation that IDO1 inhibition impairs NK cell activity

against tumor cells (109).

IDO inhibitors are currently under research, alone or in

combination with ICIs. However, some clinical trials have

shown that IDO inhibition does not improve the benefits of

IC blockade alone. Several features have been proposed to

impact the efficacy of inhibiting tryptophan catabolism, such

as the participation of other enzymes, like TDO, the presence of
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multiple metabolites that drive AhR activation in the TME, and

the augmented expression of IDO as a resistance mechanism to

IC blockade (110).

Arginine
Arginine is synthesized from citrulline via the enzymes

arginosuccinate synthase (ASS) and arginosuccinate lyase.

Arginase is involved in the production of nitric oxide by the

enzyme nitric oxide synthase (NOS), an agent involved in tumor

development. Most solid tumors and leukemias lack the

expression of the critical enzyme for arginine synthesis, due to

methylation-induced transcriptional silencing, making them

dependent on exogenous arginine. In addition, repression of

the Argininosuccinate synthase 1 (ASS1) promoter by HIF-1a
has also been implicated (111, 112). As a consequence, arginine

deprivation induces cell arrest and tumor cell death (113). Thus,

a high arginine uptake is mandatory for tumor cells, which may

reduce its concentration in the TME and impair the antitumor

activity of immune cells.

Activated T cells rapidly metabolize intracellular arginine to

ornithine and citrulline, leading to enhanced CD4+ and CD8+ T

cell survival and improved antitumor activity (114). In arginine

deprivation, activated T cells fail to express cyclin D3 and cyclin-

dependent kinase (cdk4), leading to arrest in the G0–G1 phase of

the cell cycle (115). It has been shown that activated T cells that

do not express ASS1 are unable to adapt to arginine deprivation,

resulting in impaired metabolic processes due to reduced

chromatin accessibility (116). In the case of NK cells, arginine

deprivation impairs their proliferation, cytotoxic activity, and

expression of the activating receptors NKp30 and NKp46 (117).

Arginase derived from polymorphonuclear granulocytes

depletes local arginine, resulting in decreased proliferation and

IFN-g secretion by NK cells (118), a process that might be

supported by tumor cells.

Unlike T and NK cells, arginine deprivation does not affect

the phagocytic activity, expression of activation markers, or

cytokine production in macrophages (119). However, the

dichotomy between the M1/M2 phenotypes of macrophages is

mainly distinguished by their arginine metabolism. The

antitumor M1 phenotype produces iNOS to convert arginine

to nitric oxide (NO) and citrulline, while the M2 phenotype

produces arginase to convert arginine to ornithine and urea and

promotes immune evasion and tumor progression (120, 121).

Tumor-infiltrating MHC-II+/CD11b+/CD11chigh DCs

(TIDCs) have been reported to suppress CD8+ T cell

responses via the upregulation of arginase, inducing less

proliferation and CD3z chain expression on T cells upon

interaction (122). Moreover, arginine depletion in the TME

promotes the accumulation of CD11b+Gr1+ MDSCs that

suppress antitumor functions of T cells (123), and

pharmacological inhibition of arg-1 suppresses the activity of

G-MDSCs, restoring the production of IFN-g and granzyme B
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by T cells and reducing tumor growth (124). Interestingly,

arginine metabolites such as spermidine, produced by MDSCs,

induce IDO1 expression on DCs, promoting a crosstalk between

arginine and tryptophan metabolism that enhances

immunosuppression in the TME (125). Like glutamine, oral

arginine supplementation has been shown to reduce tumor

growth in a breast cancer mouse model by decreasing the

amount of tumor and splenic MDSCs. Moreover, arginine

supplementation promoted the accumulation of activated

macrophages, mature DCs, as well as activated CD4+ and

CD8+ T cells, which resulted in the inhibition of tumor

growth and enhanced survival of mice (126).

Adenosine
ATP is an ubiquitous intracellular molecule in cellular

bioenergetics (127). Depending on the type of cell death, ATP

is released from dying cells, and levels of extracellular ATP are

proportional to the number of irreversibly damaged cells.

Extracellular ATP is regarded as a DAMP that induces

immune responses to eliminate the insult that causes cellular

damage. To prevent exacerbated immune responses,

extracellular ATP is eventually degraded by ectonucleotidases

CD39 and CD73 to ADP and adenosine (128). Adenosine plays

a dual role in cell biology, depending on its localization.

Intracellular adenosine is involved in energy metabolism,

nucleotide synthesis, and the methionine cycle, while

extracellular adenosine acts as a signaling molecule related to

immunosuppression. In the TME, conditions such as hypoxia,

tissue disruption, inflammation, and overexpression of CD39

and CD73 promote adenosine accumulation, favoring the

immunosuppressive state of the TME (129).

Hypoxia induces the expression of CD39 and CD73 in both

tumor and stromal cells. In turn, adenosine signaling induces the

expression of CD39 and CD73 in T cells, creating a positive

feedback loop (130, 131). Interestingly, CD8+ T cells have been

reported to support adenosine production by releasing EVs

containing CD73, which degrade AMP and impair T cell

proliferation upon activation (132). High adenosine

concentrations inhibit different points of T cell activation. It

has been reported that adenosine prevents the expression of

high-affinity chain IL-2 receptor (CD25), the activation of kinase

ZAP70, as well as synthesis of IL-2, TNF-a, and IFN-g. In CTLs,

adenosine signaling through A2AR results in decreased

glycolytic activity and OXPHOS, which dampens essential

functions such as adhesion to target cells and expression of

effector molecules, such as Fas-L and perforin (133–135).

Concerning NK cells, adenosine has been reported to inhibit

their cytotoxic activity against tumor cells and their production

of TNF-a, IFN-a, and GM-CSF (136). This inhibitory effect is

reverted by blockade of CD39 and CD73 with antibodies, which

restores the cytotoxicity of NK cell against tumor cell lines (137).

Furthermore, depletion of the A2AR increases the percentages of
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mature NK cells with CD11b+CD27- phenotype in the TME,

resulting in reduced tumor growth (138).

Adenosine not only promotes the M2 phenotype in

macrophages by activating STAT3 and inducing arginase-1

and IL-10 expression (139), but also promotes the angiogenic

role of M2 macrophages by promoting VEGF production (140,

141). Moreover, adenosine accumulation in the TME promotes

the recruitment of TAM precursors that strengthen adenosine

production by expressing CD39 and CD73 and impair the

proliferation of T CD4+ cells (142). High concentrations of

adenosine also alter the antitumor activity of DCs. DCs exposed

to adenosine show lower production of TNF-a and CXCL10 and

higher production of IL-10, inhibiting their ability to induce the

Th1 phenotype in T cells (143). Similarly, it has been reported

that the selective deletion of A2AR in the myeloid lineage delays

tumor growth in mouse melanoma and lung cancer models. This

effect is associated with higher expression of class II molecules
Frontiers in Oncology 09
and IL-12 in TAMs and lower production of IL-10 in

macrophages, DCs, and MDSCs. As a result, NK cells and

CD8+ T cells increase the production of IFN-g and their

cytotoxic activity against tumor cells (144). Furthermore,

adenosine signaling through A2BR favors tumor growth by

supporting the recruitment of CD11b+Gr1+ MDSCs that

impairs tumor infiltration by CD8+ T and NKT cells and their

production of TNF-a, IFN-g, and granzyme B (145).

Consequently, knockdown of CD73 diminishes GM-CSF in

PDAC tumors, resulting in decreased circulating MDSCs and

reduced tumor growth (146).

In summary, high nutrient consumption added to the

accumulation of catabolites by tumor and stromal cells inhibit

the activity of antitumor immune cells, while favors the

recruitment and skewing to pro-tumoral phenotypes. The

main alterations induced in tumor-infiltrating immune cells by

metabolic alterations are summarized in Table 1. In early stages
TABLE 1 Main alterations of tumor-infiltrating cells by metabolic alterations.

Effect on immune cells

Metabolic
alterations
in the TME

T cells NK cells Macrophages Dendritic Cells MDSCs

↓ Glucose Impaired
proliferation,
cytotoxicity, and
cytokine
production (31)
Tregs
accumulation (36)

Impaired IFN-g and granzyme B
production (48)

Polarization towards M2
phenotype (51)

Impaired DC maturation,
but strengthen T cell
activation at lymph nodes
(56–58)

Accumulation
and survival in
the TME (64)

↑ Lactate Decreased
motility,
decreased
glycolysis (33)
Decreased
cytotoxicity (29)

Decreased infiltration and IFN-g and
granzyme B production (49)
ROS-mediated apoptosis (50)

Inhibition of glycolytic
activity (53)
Polarization towards M2
phenotype (54, 55)

Inhibition of IL-12
production and change to
IL-10 (60)
Inhibition of type I
interferon production on
pDCs (61)

Promotes IL-6
and GM-CSF
induced MDSCs
differentiation
(66)

↓ Glutamine Inhibition of Th1
and Th17
phenotypes (73)
Impaired
production of
production of IL-
12 and IFN-g (74)

Impaired c-Myc activation
Impaired IFN-g and granzyme B
production (75)

Polarization towards M2
phenotype (78)
IL-23 production to
promote Tregs (79)

– Inhibition of IL-6
and GM-CSF-
induced MDSCs
differentiation
Inhibition of IDO
expression (81)

↓ Tryptophan/
↑ Kynurenines

Impaired
activation
Sensitization to
Fas-L induced
apoptosis (90)
Diminished
expression of
CD3z chain
Diminished T
CD8+ cytotoxicity
(91)
Skew towards

Impaired expression of activating
receptors NKp46 and NKG2D,
production of IFN-g and TNF-a, and
cytotoxicity against cancer cells (106)
ROS-mediated apoptosis (107)

Promotes inhibitory
functions of
TAMs against CD8 + T
cells (85)
Induced IL-10 expression
(93)

Impaired DC maturation.
Impaired ability to activate
T cells
Enhanced ability to
promote Treg phenotype
(99, 100)

Recruitment of
highly suppressive
MDSCs (101)

(Continued)
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of tumor development, available nutrients support proliferation

of the incipient tumor as well as the activation of an antitumor

immune response. However, as tumor cells increase their

nutrient consumption and secretion of by-products to

maintain their uncontrolled proliferation, a metabolically

hostile environment is gradually established. Tumor cells adapt

and take advantage of this conditions to signal antitumor

immune cells, such as M1 macrophages, NK, and T cells to

shut down their effector mechanisms and turn into

immunosuppressive/pro-resolving phenotypes, such as M2

macrophages and Tregs that favor tumor progression. Despite

the enormous efforts to elucidate the effect of local metabolic

alterations on immune cells, a deeper understanding is required

to unravel the crosstalk between metabolic and immune cells for

the development of more effective therapeutic strategies to

increase the survival of cancer patients.

The present review focuses on a better knowledge of the local

alterations driven by the metabolism of tumor and tumor-

associated stromal cells and how these local alterations disrupt

the antitumor mechanisms of immune cells in the TME.

However, processes such as aging and obesity that alter the

systemic concentrations of nutrients are of key importance and

must be addressed for the optimization of effective

antitumor therapies.
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Metabolic reprogramming drives the
expression of immune checkpoints

Cancer immunotherapy is a therapeutic strategy that aims to

reactivate the patient’s antitumor immune response against tumor

cells. These strategies include cancer vaccines, adoptive cell transfer,

and immune checkpoint blockade (ICB). Immune checkpoints

(ICs) are membrane proteins expressed mainly on immune cells

that act as co-stimulatory or co-inhibitory receptors of the immune

response, so that upon binding to their ligands, ICs can positively or

negatively regulate the function of immune cells. As amechanism of

immune evasion, tumor cells commonly induce the overexpression

of inhibitory ICs and their ligands in the TME (147, 148). Many ICs

have been described and new information is continuously reported

(149). In this study, we include information of the inhibitory ICs:

CTLA-4, PD-1, LAG3, TIM3, VISTA, and TIGIT (Table 2)

(150–171).
Glucose/lactate

Multiple studies have demonstrated that glucose deprivation

alone or combined with lactate exposure induces ICs expression
TABLE 1 Continued

Effect on immune cells

Metabolic
alterations
in the TME

T cells NK cells Macrophages Dendritic Cells MDSCs

Treg phenotype
(92)

↓ Arginine Arrest in the cell
cycle (115).
Metabolic activity
similar to
quiescent cells
(116)

Impaired mTOR activation
Impaired production of IFN- g (119)
Impaired cytotoxicity and expression of
the activating receptors NKp30 and
NKp46 (117)

Unaffected phagocytic
activity, secretion of
cytokines and expression
of activation markers (119)
Arginine metabolism
distinguishes between M1
and M2 phenotypes (120,
121)

Enhanced IDO expression
(125).
Upon interaction with T
cells diminish their
proliferation and
expression of the CD3z
chain (122)

Accumulation in
the TME (126)

↑ Adenosine Impaired TCR
and CD28-
mediated
activation of ZAP-
70
Impaired
production of IL-
2, interferon g and
TNF-a
Impaired
cytotoxicity
Tregs recruitment
(133–135)

Impaired cytotoxicity
Impaired production of TNF-a, IFN-a,
and GM-CSF (136)

Polarization towards M2
phenotype (139).
Promotes VEGF secretion
(140).
Accumulation of CD39
and CD73-expressing
TAMs (142)

Enhanced expression of IL-
10.
Impaired production of
TNF-a and CXCL10 (143)

Recruitment to
the TME (145,
146)

↑ High concentration; ↓ Low concentration or starvation.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1101503
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Benito-Lopez et al. 10.3389/fonc.2022.1101503
on immune cells. Although the PD-1/PD-L1 axis is the most

studied IC and the main therapeutic target of immunotherapies,

alterations in the concentration of metabolites in the TME

modulate the expression of many other ICs. Thus,

combinatorial therapies that simultaneously target tumor

glucose metabolism and the expression of ICs may restore the

antitumor state of tumor-infiltrating immune cells.

As mentioned above, a scRNA-seq analysis of breast cancer

patients has shown that tumor cells exhibit a gene signature

associated with elevated glucose metabolism compared to

normal epithelial cells. Interestingly, the highest glucose

uptake in TME is displayed by exhausted CD8+ T cells, which

displayed increased expression of the ICs PD-1, TIM-3, LAG3,

and TIGIT (25). In vitro, culture in low glucose concentration

induce the expression of PD-L1 on highly glycolytic PDAC cells

and PD-1 on co-cultured CD8+ T cells. Knockdown of the

enzyme phosphofructokinase-m (PFK-m) before tumor

engraftment on mice reverted PD-1 expression on CD8+ TILs

and the corresponding PD-L1 on tumor cells suggesting that this

phenomenon was mediated by the high glycolytic activity of

PDAC cells (26). Similarly, inhibition of glycolysis in renal

cancer cell lines by the knockdown of HIF-1a, PFKFB3, or
LDHA, or by culture under glucose deprivation induces PD-L1
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expression, and glucose supplementation reverses this effect.

Mechanistically, low glucose concentration promotes epithelial

growth factor receptor (EGFR) expression, which induces PD-L1

expression via the EGFR/ERK1/2/c-Jun signaling pathway and

PD-L1 stabilization through glycosylation (172, 173). Similarly,

soluble mediators secreted by tumor cells, such as hyaluronan

fragments, induce a metabolic shift toward aerobic glycolysis in

tumor-infiltrating monocytes. This metabolic change causes the

overexpression of the glycolytic enzyme PFKFB3, promoting the

signaling by NF-kB, which increases PD-L1 expression.

Inhibition of glycolysis by the glucose analog 2-deoxy-D-

glucose (2-DG) reversed this effect (174).

Consequently, the pharmacological inhibition of Akt in

esophageal cancer cell lines by ginsenoside Rh4 reduces the

expression of crucial glycolytic enzymes, such as GLUT1, HK2,

LDHA, PFKL, and PKM2, as well as the lactate production,

which results in lower PD-L1 expression (175). Moreover, it has

been reported that PKM2 is mandatory for PD-L1 expression in

tumor, immune, and stromal cells in the TME and lymph nodes

(176). Dimerization and nuclear translocation of PKM2, induced

by M2 TAMs-derived TGF-b, allows its interaction with the

nuclear factor STAT1 to promote the overexpression of PD-L1,

event that impairs NK cell-mediated antitumor immune
TABLE 2 Main ICs and their ligands expressed in the TME.

IC Biological roles Roles in cancer Ligands Ref.

CTLA-4
(CD152)

Negative regulator of naïve T cell activation
Enhances suppressive activity of Tregs
Competes with CD28 for its binding with CD80 and
CD86
Mediates transendocytosis of its ligands

Induces expression of IDO
Anti-CTLA-4 therapy depends on depletion of
tumor-infiltrating Tregs

CD80
CD86

(150–154)

PD-1
(CD279)

Ubiquitously expressed on immune cells
Highly stabilized by glycosylation
Impairs activation, proliferation, and cytokine
production of T and NK cells

Controls immune tolerance in the TME
Main target of ICB

PD-L1
(CD274)
PD-L2
(CD273)

(155–158)

LAG-3
(CD223)

Prevents TCR binding to MHC-II molecule
Promotes Treg-mediated immunosuppression
Key role in preventing autoimmune disorders

Promotes immune evasion of tumor cells
Skews CD4+ T cells toward Treg phenotype
Inhibits proliferation and maturation of DCs

MHC-II
molecule
Galectin-3
LSECtin

(159–161)

TIM-3
(HAVCR2)

Promotes Treg-mediated immune suppression
Inhibits activity of Mj and DCs

Marker of terminally exhausted T cells
Favors M2 polarization on Mj
TIM-3 is upregulated in response to anti-PD-1
therapy

Galectin-9
(Gal-9)
HMGB1
PtdSer
CEACAM1

(162–165)

VISTA Blocks early T cell activation
Able to form homophilic interactions
Mainly induced by hypoxia

Promotes induction of resting memory and
exhausted phenotype on T cells
VISTA is upregulated in response to ant-PD-1
therapy

VISTA
VSIG3
PSGL-1
Gal-9

(166, 167)

TIGIT Inhibits T cell activation
Induces tolerogenic DCs
Marker of terminally exhausted T and NK cells

Its expression is related to higher PD-1 expression
on TILs
Marker of specially suppressor Tregs
Inhibits differentiation of CD4+ T cells toward
Th1 and Th17 phenotype

PVR
(CD155)
PVRL2
(CD112)
PVRL3
(CD113)

(168–171)
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response (177). Concomitantly, lactate accumulation has been

reported to induce PD-L1 expression in lung cancer cell lines in

a dose-dependent manner. Lactate represses the activity of PKA,

allowing the interaction of TAZ with the transcription factor

TEAD, and their recruitment to the PD-L1 promoter (178).

Similarly, in absence of lactate, activation of NF-kB prevents the

transcription of the IC Galectin-9 (Gal-9) by binding to histone

deacetylase HDAC3 in head and neck carcinoma cell lines. Thus,

accumulation of PKM2-derived lactate induces the expression

and secretion of Gal-9 (179).

Although the main inductor of the IC VISTA is the hypoxic

microenvironment, lactate accumulation promotes VISTA-

mediated immunosuppression through the acidification of

the TME. VISTA suppresses T cell functions at physiologic

pH, but this suppression is improved at acidic pH. The

extracellular domain of VISTA is enriched with protonated

histidine residues at acid pH, which allows its binding to P-

selectin glycoprotein ligand-1 (PSGL-1), transmitting an

inhibitory signal to T cells (180).

Glutamine
A RNA-seq analysis has demonstrated that tumor cells

cultured in glutamine starvation express higher PD-L1 levels

and secrete this IC in exosomes. Deprivation of glutamine

inhibits the activity of Sarco/ER Ca2+-ATPase (SERCA),

since it is an essential amino acid for glutathione synthesis.

As a result, less Ca2+ is released from the endoplasmic

reticulum, which promotes the activation of the NF-kB that

induces PD-L1 expression. Therefore, inhibition of glutamine

transport or GLS enzyme induces PD-L1 expression (181). In

bladder and renal cancer cell lines, glutamine restriction

induces EGFR activation and PD-L1 expression through the

EGFR/ERK1/2/c-Jun signal ing pathway (182, 183) .

Conversely, in natural killer T cell lymphoma cell lines, PD-

L1 expression is reduced by overexpression of the glutamine

transporter SLC1A1 (184).

In comparison, glutamine deprivation prevents PD-1

expression in T cells, since cell culture in this restricted

conditions reduces PD-1 expression and promote IFN-g
production in CD8+ T cells (185). In fact, intravenous

glutamine supplementation has been reported to reduce PD-1

expression on CD4+ and CD8+ T cells and PD-L1 expression on

peripheral and splenic B cells and monocytes (186). In addition

to the PD-1/PD-L1 axis, the IC B7/H3 is prone to be regulated by

glutamine metabolism. Inhibition of glutamine uptake by an

antagonist of the amino acid transporter ASCT2 (SLC1A5)

promotes B7/H3 degradation through autophagy and ROS

production in breast cancer cell lines, favoring the activation

of tumor-infiltrating CTLs (187).

Tryptophan and kynurenines
As previously mentioned, overexpression of IDO in the TME

promotes tryptophan depletion and the concomitant
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accumulation of kynurenines plays a vital role in the

expression of ICs. Upon binding to kynurenines, AhR is

translocated to the nucleus and binds to AHR-specific

xenobiotic response elements (XREs). XREs are found in the

promoters, of PDCD1 (PD-1), Lag3, Tim3, Klrg1, Ctla4, Btla,

2B4, CD160, and TIGIT, which promote the expression of these

ICs (188). Thus, AhR activation by tobacco smoke induces PD-

L1 expression in lung cancer cell lines and mouse models (189).

In bladder cancer cells, IDO expression correlates with

epithelial–mesenchymal transition (EMT) and PD-L1

overexpression via the IL-6/STAT3 signaling pathway (190).

T cells increase tryptophan metabolism upon activation, and

its deprivation has been reported to induce PD-1 expression in

Jurkat cells and mouse T cells. The absence of tryptophan

prevents ubiquitylation and the subsequent degradation of the

transcription factor NFAT-1, which promotes PD-1 expression.

Consequently, the restoration of tryptophan concentrations or

inhibition of IDO block PD-1 expression (191). Moreover,

kynurenine produced by tumor cells induces PD-1 expression

in human and mouse CD8+ T cells through nuclear

translocation of the receptor AhR (192). Results from the

assay for transposase-accessible chromatin sequencing (ATAC-

seq) in human ovarian cancer cells revealed that exposure to

kynurenine promotes chromatin accessibility of PD-1 regulatory

regions, allowing AhR to induce its transcription (188). As

discussed earlier, low tryptophan and high kynurenine

conditions promote the differentiation of T cells toward a CD4

+CD25+Foxp3+ regulatory phenotype. Additionally, Tregs

exposed to low tryptophan and high kynurenine

concentrations upregulate CTLA-4 and BTLA (91). CTLA-4

overexpression has been reported in CD4+CD25+ T cells co-

cultured with IDO-expressing acute myeloid leukemia (AML)

cells, and this effect is completely abrogated by the IDO-

inhibitor 1-methyl tryptophan (1-MT) (193).

The report of Wu and Zhu illustrates the effect of IDO

expression and tryptophan metabolism on the inhibition of

antitumor functions of T cells and ICs expression. In vitro,

exposure to kynurenine inhibits IFN-g and TNF-a production

in CD8+ T cells; in vivo, IDO knockdown in colon carcinoma

cell lines before engraftment reduces the expression of the ICs:

PD-1, CTLA-4, and LAG3 in CD8+ TILs. Moreover, in

colorectal cancer patients, the expression of these ICs on

CD8+ T cells positively correlates with serum kynurenine

concentrations (194). In addition to PD-1, culture of CD8+ T

cells in kynurenine-enriched media derived from IDO-

expressing mouse cells induces the expression of the

inhibitory receptors KLRG1 and TIM-3 (188), so that

targeting the IDO pathway may prevent the expression of

multiple ICs.

The expression and secretion of the recently incorporated IC

HLA-G is also regulated by the availability of tryptophan and its

catabolites. Macrophages and DCs, derived from healthy donor

monocytes, and matured in the presence of tryptophan or its
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catabolites express high levels of HLA-G. Kynurenine is the

metabolite that induces the highest surface expression of HLA-G

in DCs, whereas 3-hydroxy anthranilic acid induces this same

effect in macrophages. Furthermore, kynurenine induces the

shedding of HLA-G by immature and mature DCs to impair T

cell proliferation (195, 196).

The effect of tryptophan and its IDO-derived catabolites on

IC expression opens the possibility for combinatorial therapies

that target this pathway to improve the efficacy of

immunotherapy or conventional therapies. In this regard, in a

mouse model of Lewis lung cancer, IDO inhibition by oral

administration of 1-MT synergizes with radiotherapy by

reducing the expression of PD-1/PD-L1, TIM-3, BTLA, and

Gal-9 to restore antitumor immune response and inhibit tumor

progression (197). With respect to VISTA, knockdown or

pharmacological inhibition of the AhR reduces VISTA

expression in melanoma cell lines. Interestingly, metformin

treatment inhibits AhR signaling and VISTA expression in

vitro and in melanoma mouse models (198).

Arginine
As was indicated earlier, metabolic alterations and the

induction of IC expression in immune cells are not only

mediated by tumor cells. Simultaneous expression of VEGF,

IL-10, and arg-1 on tumor cells induces TIM-3 expression on

BMDCs and tumor-associated DCs. The inhibition of these

molecules diminishes the induction of TIM-3 on DCs by

tumor cell-conditioned media (199). Cancer-associated

fibroblasts (CAFs) have been reported to inhibit antitumor

immune responses. CAFs inhibit T cell activation and CD8+ T

cell proliferation by expressing high levels of arg-1 enzyme,

and the ICs VISTA and HVEM. The inhibitory effects of

MAFs may be mediated by arginine depletion. MAFs-

conditioned media induces the expression of TIGIT and

BTLA on CD8+ T cells, and the inhibition of arginine

metabolism by knockdown or pharmacological inhibition of

arg-1 reverts this effect (200).
Adenosine

In addition to the direct suppression of the antitumor

functions of immune cells by adenosine accumulation,

especially due to the overexpression of CD39 and CD73, IC

expression is enhanced by adenosine signaling. In biopsies from

PDAC patients, CD73 expression on tumor and stromal cells

correlates with PD-L1 expression on tumor cells (201).

Additionally, in biopsies from NSCLC patients, CD39+ CAFs

positively correlate with PD-L1 expression on tumor cells (202).

Similarly, the activation of the A2AR induces PD-1 expression,

but not CTLA-4, on CD8+ and CD4+ FOXP3+ TILs in vitro,

and in a mouse model of colon adenocarcinoma. Consequently,
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CD8+ TILs from CD73 deficient mice show lower PD-1

expression compared to T cells from wild-type mice (203), and

deletion of the A2AR results in lower PD-1 expression in CD8+

TILs in a melanoma mouse model. Nevertheless, the deletion of

A2AR in T cells reduces their survival, resulting in enhanced

tumor growth (204).

By using mixed lymphocyte reactions with T cells and DCs

derived frommouse, it has been shown that A2AR activation by an

agonist reduces T cell proliferation, while inducing PD-1 and

CTLA-4 expression (205). Moreover, A2AR stimulation induces

the expansion of Tregs in the TME, which further increases

adenosine accumulation, since A2AR agonist-induced Tregs to

express CD39 and CD73. These A2AR-induced Tregs show high

expression of CTLA-4, which plays a crucial role in their inhibitory

activity (206). Contrary to the effect of adenosine on ICs

expression, ATP binds to its P2X7R on monocytes to inhibit the

shedding of soluble HLA-G (207). In the context of the TME,

adenosine accumulation due to overexpression of CD39 and CD73

ectonucleotidases may inhibit the stimulatory effect of extracellular

ATP, promoting an increased production of both membrane and

soluble HLA-G to limit antitumor immune responses.

Regarding combinatorial therapies that target adenosine

signaling to improve the response to immunotherapies, oral

administration of A2AR antagonists reduces PD-1 and LAG-3

expression on activated CD8+CD44+ T cells within tumor-

draining lymph nodes (dLNs) and Tregs infiltrating tumors in

a mouse melanoma model (208).
Immune checkpoints feedback the
metabolic alterations in the TME

PD-1/PD-L1

Metabolically, PD-1 signaling inhibits T cell activation by

altering metabolic reprogramming induced by TCR-mediated

antigen recognition. It has been demonstrated that, when

activation occurs in presence of PD-1 interacting with

recombinant PD-L1, T cells show diminished glucose uptake

and glycolytic capability due to a reduction in the expression of

Glut1 transporter and HK2. Furthermore, PD-1 inhibits T cell

capability of uptaking and utilizing amino acids such as valine

and glutamine while promoting FAO by enhancing the

expression of the carnitine pamitoyltransferase (CPT1A) and

desnutrin/adipose triglyceride lipase (ATGL) (209). Exposition

of PD-1 positive esophageal adenocarcinoma cell lines to the

anti-PD-1 pembrolizumab augments glycolytic reserve by

upregulating the expression of GLUT-1.

Similarly, PD-1 blockade increases GLUT1 expression on

CD8+ T cells from B cell lymphoblastic leukemia-bearing

animals. However, PD-1 blockade was insufficient to restore
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the antitumor functions of T cells, suggesting the existence of

additional immunosuppressive or compensatory mechanisms

that impair antitumor immunity (210). In this regard, it has

been reported that resistance to anti-PD-1 treatment is due to

increased lactic acid in TME, which promotes PD-1 expression

of Tregs in intrahepatic tumors. Furthermore, resistance to anti-

PD-1 treatment can be overcome by hindering lactate

metabolism through inhibition of LDHA or MCT1 on Tregs

(211). Moreover, knockdown of the glycolytic enzyme PKM2 in

PDAC cells promotes NK cell infiltration, production of IFN-g,
granzyme B, and NKp46, and response to anti-PD-1

treatment (177).

These results show that metabolic modulations in TME

improve the efficacy of ICIs, suggesting that IC blockade

induces metabolic changes that impact the use of combination

therapy. In addition, it has been suggested that PD-1

engagement impairs metabolic functions beyond glycolytic

activity. RNA-seq and Gene Ontology analysis revealed that

PD-1 signaling triggers a specific transcriptional program in

CD8+ T cells involved in altered amino acid, nucleotide, and

carbohydrate metabolism, as well as altered TCA cycle and

OXPHOS. Furthermore, PD-1 affects the expression of genes

involved in the structure and function of mitochondria, resulting

in reduced mitochondria number and cristae length (212).

Metabolic alterations driving T cell exhaustion after PD-1

engagement may be due to PD-1-mediated inhibition of the

peroxisome proliferator-activated receptor-gamma co-activator

(PGC)-1a, acting as a regulator of genes involved in energy

metabolism and mitochondrial biogenesis (213). Moreover, PD-

1 inhibitory signaling shifts metabolism away from aerobic

glycolysis and glutaminolysis and forces T cell to events of

anaplerotic input to the TCA cycle, mainly at acetyl-CoA and

succinyl-CoA, also preventing the de novo nucleoside phosphate

synthesis accompanied by decreased mTORC1 signaling (214).

Aside from T cells, PD-1 signaling causes metabolic

dysfunctions in monocytes and macrophages. Monocytes isolated

from Chronic Lymphocytic Leukemia (CLL) show diminished

glucose uptake and lactate production. As discussed above, M1

Macrophages rely on aerobic glycolysis for their antitumoral

functions. CLL monocytes show enhanced PD-1 expression

compared to healthy donors, and ligation with recombinant PD-

L1 diminishes monocytes switch to aerobic glycolysis, while anti-

PD-L1 blockade reverts this effect, promoting phagocytosis of

tumor cells (215). Interestingly, it is known that PD-1 expression

on TAM of the TME can be induced by CAFs (216). In addition to

PD-1-mediated metabolic alterations described in T cells and

monocytes, in a melanoma mouse model it has been shown that

PD-1 knockout reduces the accumulation of granulocyte and

monocyte precursors, as well as the immunosuppressive activity

of MDSCs, in part throughmetabolic alterations. In PD-1 knockout

tumor-bearing mice, glucose uptake and mitochondrial biogenesis

were elevated in myeloid progenitors, and it was suggested that, in

PD-1 deficiency, glycolytic activity is progressively switched to
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mitochondrial metabolism. PD-1-deficient myeloid progenitors

display increased metabolic intermediates of glycolysis, PPP, TCA

cycle, and elevated cholesterol, resulting in enhanced differentiation

toward effector monocytic/macrophage and DCs, thus promoting

antitumor responses (217). Whereas PD-1/PD-L1 axis-mediated

immune suppression is commonly attributed to PD-1 signaling,

PD-L1 is known to mediate intracellular signaling that promotes

cancer progression, immune escape, and metabolic

reprogramming (218).

In patients with NSCLC, 2-Deoxy-2-[fluorine-18] fluoro-D-

glucose (2-FDG) uptake has been reported to be higher in

tumors with high PD-L1 expression, suggesting an interplay

between PD-L1 expression and glucose uptake. Moreover, it has

been suggested that an elevated glycolytic metabolism might be

used as a prognostic biomarker for ICI treatment (219). In

cervical cancer cell lines, it has been reported that PD-L1

promotes glucose metabolism and lactate secretion by

interacting with integrin b4 (ITGB4), and suppressing SIRT3,

resulting in the augmented expression of glycolytic enzymes

HK2 and LDHA and of transporters GLUT1 and GLUT4 (220).

Similar results have been reported in AML cell lines, where genes

and the corresponding proteins associated with glucose

metabolisms, such as ALDOA, PGK1, LDHA, and HK2, are

highly expressed when PD-L1 is overexpressed (221). In a mouse

model of sarcoma, it has been shown that monoclonal antibody

blockade of CTLA-4, PD-1, or PD-L1 augments glucose

availability in the TME and glycolytic metabolism in T cells by

restoring mTOR-mediated signaling, as well as the activity of the

enzyme glutamate dehydrogenase (Glud1). PD-L1 knockdown

and antibody blockade diminish glucose metabolism and Akt/

mTOR signaling in tumor cells without affecting proliferation in

vitro or tumor growth in RAG-/- mice. These results suggest that

ICIs might revert metabolic alterations in tumor cells, allowing

an enhanced nutrient availability in the TME to restore the

functionality of antitumor immune cells (222). Mechanistically,

PD-L1 might promote glycolysis by enhancing the expression of

the glycolytic enzyme PFKFB3 since PD-L1 knockdown by a

small interfering RNA also diminishes the expression of this

enzyme (172).

As discussed earlier, lactate accumulation in the TME also

impairs immune cell function and response to immunotherapy.

For instance, lung cancer cells A549 exposed to high lactate

concentration inhibit IFN-g production and induce apoptosis of

co-cultured Jurkat T cells. Interestingly, treatment with PD-L1-

blocking antibody reverses the indicated effects (178), suggesting

that anti-PD-L1 treatment modulates the inhibitory effect of

tumor-derived lactate on immune cells. In addition, the

inhibition of glutamine metabolism by a competitive

antagonist of transmembrane glutamine flux or a GLS

inhibitor, in combination with anti-PD-1 or anti-PD-L1

antibodies, has been shown to reduce tumor growth in breast

and colon cancer mouse models to a greater extent than

monotherapies (181, 187).
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Interestingly, IDO-mediated tryptophan metabolism in the

TME has been proposed as a major mechanism for resistance to

ICIs. High IDO expression in macrophages and endothelial cells

in TME are related to anti-PD-1 non-responsiveness in

metastatic renal cell carcinoma and sarcomas patients

undergoing anti-PD-1 treatment with pembrolizumab or

nivolumab antibodies (223, 224). As mentioned earlier, the

accumulation of IDO-derived kynurenine in the TME is

associated with the upregulation of multiple immune

checkpoints that may contribute to anti-PD-1 resistance (188).

Combined checkpoint blockade therapy is becoming

increasingly important, especially regarding cancers in

advanced stages or associated with poor prognosis. For

instance, a recent study in HER2-overexpressing cancers

showed that using a bispecific antibody, simultaneously

targeting PD-1 and HER2, represents a new promising

approach for treating late-stage metastatic HER2-positive

cancers (225).
CTLA-4

One of the first relationships reported between ICs and

metabolism was the influence of CTLA-4 on IDO expression

(226, 227). In vitro stimulation of DCs with recombinant CTLA-

4 showed an increased tryptophan metabolism to kynurenine,

and IDO inhibitor 1-MT reversed this effect. Moreover, CTLA-4

stimulation induces IDO expression in DCs similarly to IFN-g
(228). Consequently, mice with a Treg-specific CTLA-4

knockdown show reduced IDO expression in CD11c+

mesenteric DC and reduced kynurenine production by spleen-

isolated DCs (229). In the context of the TME, CTLA-4

expressing Tregs induced by metabolic alterations, may

promote IDO expression in tumor-infi ltrating DCs,

reinforcing immune suppression. In T cells, CTLA-4 signaling

inhibits glycolysis without inducing FAO; in contrast to PD-1

signaling, the authors suggest that CTLA-4 does not induce

metabolic alterations related to T cell exhaustion but preserves

the metabolic profile of unstimulated T cells (209). In addition,

IDO activity in the peripheral blood of melanoma patients

increases PD-L1 expression in circulating CTLs. This IDO

activity is associated with a CTLA-4 increase in Tregs. This

IDO/PD-L1/CTLA-4 interplay is associated with a negative

prognosis of cancer patients, showing that the expression of

IDO, PD-L1, and CTLA-4 is strongly interconnected (230).

Regarding ICIs, ipilimumab-mediated CTLA-4 blockade

promotes immune cells metabolic fitness and infiltration.

Moreover, ipilimumab treatment induces the functional

destabilization of tumor-infiltrating Tregs by impairing cell

glycolysis and CD28 signaling (231). It has been reported that

anti-CTLA-4 monotherapy produces durable responses in many

cancers, mainly in melanoma (232). However, combining anti-

CTLA-4 antibodies with other therapeutic strategies, such as
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chemotherapy or radiotherapy, increases their efficacy (233–

236). In fact, the modulation of TME by propranolol increases

tumor T cell infiltration and the efficacy of anti-CTLA-4

treatment (237).

Research is still in progress to enhance anti-CTLA-4 therapy

response. Notably, the modulation of the metabolic conditions

in the TMEmay enhance response to ICIs in cancer patients. For

instance, PD-1 or CTLA-4 inhibition has been reported to

synergize with the blockade of adenosine metabolism to

inhibit tumor growth in colon cancer and sarcoma mouse

models. Targeting adenosine production by CD73 blockade

combined with PD-1 or CTLA-4 inhibition promotes tumor

regression in a manner dependent on IFN-g and CD8+ T

cells (203).
LAG-3

LAG-3 expression has been reported to impair the metabolic

shift of mouse T cells toward glycolysis, and its deficiency has

been shown to augment metabolic fitness by promoting oxygen

consumption and glycolytic activity. Conversely, LAG-3

expression in CD4+ T cells impairs mitochondrial biogenesis

by altering the AMPK/Sirt-1 pathway, resulting in a diminished

proliferation of CD4+ T cells and high IL-7 dependence (238).

Similarly, LAG-3 deletion in mouse BMDCs has been reported

to increase their glycolytic activity and FAO, which can be

counteracted by IL-10. This enhanced metabolic switch in

LAG3-/-BMDCs increases their ability to induce Th1-like

responses, promoting antitumor immunity (239).
TIM-3/Gal-9

In Jurkat T cells, TIM-3 overexpression has been reported to

diminish glucose consumption and lactate production. TIM-3

expression downregulates Glut-1, while TIM-3 knockdown has

the opposite effect. Interestingly, TIM-3 did not affect glutamine

consumption, glutamate release, mitochondrial mass, ROS

production, or membrane potential (240). Conversely, in

Tregs, TIM-3 induces a metabolic shift from OXPHOS toward

glycolysis while decreasing mitochondrial mass and membrane

potential. TIM-3 expression in Tregs promotes tumor

progression and exhaustion of CD8+ T cells enhancing their

suppressive activity and IL-10 production (241).

Regarding myeloid cells, Gal-9 or antibody-mediated TIM-3

stimulation in THP-1 cells has been reported to induce mTOR

phosphorylation, HIF-1a expression, as well as enhanced

glycolytic activity and VEGF secretion by activating the PLC-

1/PI3K/mTOR signaling pathway (242). Conversely, stimulation

with a TIM-3 agonist in a mouse macrophage cell line has been

reported to inhibit glucose uptake and lactate production by

inhibiting HK2 expression, resulting in diminished production
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of TNF-a and IL-1b (243). As mentioned earlier, macrophages

depend on glycolysis to differentiate into the antitumoral M1

phenotype, and TIM-3 expression may prevent M1

differentiation and promote the pro-tumoral M2 phenotype.
TIGIT

In CD8+ T cells, the downregulation of GLUT1, HK1, HK2,

GAPDH, PKM2, and HIF-1a metabolism-associated genes

correlates with the expression of TIGIT. In addition, CD8+ T

cells expressing TIGIT show reduced activation of the Akt/

mTOR signaling pathway. Co-culture of gastric cancer cells

with CD8+ T cells induces TIGIT expression and metabolic

impairment, while the blockade of the TIGIT/CD155 axis

restores normal metabolic functions in T cells and promotes

antitumor immune response (244). Similarly, T cell dysfunction

in colorectal cancer has been related to diminished glucose

metabolism since TIGIT expression, and metabolic alterations

induced by colorectal cancer cells are restored by antibody-

mediated TIGIT blockade (245). Anti-TIGIT monotherapy has

shown encouraging results in the treatment of diverse cancers,

and combining TIGIT blockade with the inhibition of adenosine

production, restores NK cell-mediated AML cell killing, which

might enhance treatment efficacy (246).
Targeting the crosstalk between
metabolic reprogramming and ICs

Since the middle of the last century, metabolic inhibitors

have represented a promising therapeutic alternative for treating

several cancers, including brain, lung, breast, skin, and

hematological cancers. However, the administration of

metabolic inhibitors as monotherapy is insufficient since most

tumors do not rely on a single metabolic pathway to meet their

energetic demands (247). Additionally, the administration of

these compounds represents a challenge due to off-target effects

and toxicity in non-tumoral cells, narrowing the therapeutic

index. Despite these hurdles, it seems promising that

administering metabolic inhibitors in combination with

chemotherapy, targeted therapy, or immunotherapy could

circumvent the challenges of treatment failure. In this setting,

as we discussed previously, the feedback established between

metabolic reprogramming and immune checkpoint molecules

represents a potential target to treat cancer and enhance the

outcome of patients. In the present section, we discuss the

current knowledge regarding the combination of both

treatment options.

As mentioned above, tumor and stromal cells increase the

expression of the enzyme IDO1, which metabolizes tryptophan

into the immunosuppressive kynurenine. Several studies report

that increased levels of IDO1 expression correlate with altered
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function of immune cells or accumulation of cells with

immunosuppressive activity, which is associated with poor

survival (248–251). Due to these therapeutic implications,

several IDO inhibitors have been developed, showing

promising results in pre-clinical models. For example, studies

have reported that small-molecule IDO inhibitors synergize with

immunotherapy based on the administration of monoclonal

antibodies against ICs. To support this notion, administration

of epacadostat in co-cultures conformed of human allogenic

lymphocytes with DCs and tumor cells showed an increase in the

number and activity of T and NK cells and a reduction in the

proportion of immunoregulatory cells (252). Recent evidence

from clinical trials demonstrates that epacadostat in

combination with ICIs against PD-1 resulted in a well-

tolerated combination regimen and improved progression-free

survival/overall survival (253). In addition, a phase II trial

reported that a combination of IDO inhibitor indoximod plus

anti-PD1/PDL-1 antibodies pembrolizumab, nivolumab, and

ipilimumab resulted in increased progression-free survival and

a better response in patients with advanced melanoma (254).

Despite these promising results, further clinical trials should be

undertaken to conclude the efficacy of the combination therapy

using IDO and ICIs.

However, IDO expression is not only responsible for

consuming essential amino acids, such as tryptophan. As

mentioned in previous sections, the tumor cell catabolism of

glutamine and arginine starve tumor-infiltrating immune cells,

causing a disruption in their activation and promoting their

demise or differentiation into immunosuppressive subsets. For

example, recent evidence from Varghese et al. demonstrates that

the inhibition of glutaminase with telaglenastat improved the

tumor-killing capacity of autologous patient-derived T cells

against melanoma. Interestingly, authors reported that, in

mice, combination of telaglenastat with immune checkpoint

inhibitors against PD-1 or CTLA-4 increased the number of

tumor-infiltrating T cells and the expression of genes associated

with IFN-g signaling (255). In the case of arginine, a recent study

employing co-cultures of the Lewis cell line reported that

administration of OAT-1746, an arginase inhibitor, restores

CD4+ and CD8+ T cell activation by increasing CD3z chain

expression. In addition, in vivo assays showed that the

combination of OAT-1746 with anti-PD-1 antibody slightly

increased the survival of mice compared to groups treated

with the immune checkpoint inhibitor alone (256). In support

of these findings, Pilanc et al. reported that, in a mouse model of

glioma, this novel small-molecule arginase inhibitor in

combination with immunotherapy also reduced tumor growth

(257). Currently, no clinical trials evaluate the efficacy and safety

of combining glutaminase or arginase inhibitors with immune

checkpoint inhibitors in human cancer patients. These findings

highlight the need for further clinical trials to evaluate the effect

of combining glutaminase or arginase inhibitors with ICIs and to

test tolerability and response in cancer patients.
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In addition, to deplete and consume essential amino acids,

tumor cells also catabolize glucose via aerobic glycolysis to

produce lactate by the action of the LDH enzyme. To avoid

the accumulation and acidification of the cytoplasm, tumor cells

overexpress MCT transporters, specifically MCT1, on their

surface to promote lactate extrusion into the TME. As was

mentioned above, lactate accumulation in the TME favors the

outgrowth of tumor cells and, more importantly, acts as an

immunosuppressive metabolite disrupting the activity of

immune effector cells and favoring the recruitment of MDSCs

(258). For this reason, the inhibition of lactate transport into the

TME represents an attractive strategy to restore the antitumor

immune response. In a recent study, Babari et al. reported in a

mouse xenograft of Raji cells that the administration of the

MCT1 inhibitor AZD3965 inhibited tumor growth and

promoted its infiltration by NK and monocyte-derived DCs

cells. Interestingly, these tumor-infiltrating immune cells

displayed high expression of PD-L1, suggesting the induction

of an immunoregulatory phenotype (259). These findings

suggest that combining MCT1 inhibitor AZD3965 with

monoclonal antibodies against PD-L1 might be a promising

therapeutic alternative to decrease tumor growth and restore the

antitumor immune response. Currently, one orally bioavailable

MCT1 inhibitor is under study in a phase I clinical trial showing

promising results (260). For this, further clinical trials are

required to test our proposal.

Another attractive point of metabolic inhibition is the

enzyme IDH, which catalyzes the conversion of isocitrate into

a-ketoglutarate depending on NADP. Reports indicate that

isoforms (IDH1 and IDH2) of this enzyme are often mutated

in some cancers, gaining a new function that results in the

production of the immunosuppressive D-2-hydroxyglutarate

(D2HG) (261). Currently, two IDH inhibitors approved by the

FDA for treating AML and second-generation inhibitors are

under clinical trials for treating gliomas (247). In the last case, a

recent study reported in a mouse glioma that administration of

AGI-5198, an IDH inhibitor, induced immunogenic cell death

accompanied by increased expression of PD-L1 (262).
Metabolic alterations at systemic level

Once we have analyzed current immunometabolism studies

that comprehend the local impact of metabolic reprogramming on

the antitumor immune response, it is important to highlight that

systemic alterations of nutrients availability may also modify the

functions of immune cells and impact the effectiveness of

immunotherapies. Aging and obesity are two processes in which

the systemic availability of nutrients is modified, and the normal

functions of immune cells may be altered in consequence. For

instance, aging has been related to changes in blood concentrations

of amino acids and lipids (263), while obesity is related to metabolic

alterations such as hyperglycemia, dyslipidemia, and insulin
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resistance (264). In fact, both aging and obesity have been

reported to involve a low-grade chronic inflammation that alters

the anti-tumor innate and adaptive immune responses (265).

Excellent reviews have addressed the metabolic impact of these

conditions on immune cells (266, 267).

Aging is a physiological process in which the biological

functions of an individual slowly deteriorate with age.

Immunosenescence is the term that describes the alterations on

the immune system related to aging that impair its ability to

respond against pathogens and cancer cells. Alterations on the

metabolism and effector functions of multiple immune cells that

may alter the antitumor response have been related to aging (266).

For instance, a predisposition toward myelopoiesis has been

suggested in aged mice, while lymphopoiesis is reduced (268).

Regarding the metabolic changes related to immunosenescence,

an increased glycolytic metabolism has been reported on

monocytes, macrophages, and T cells from elderly mice. This

effect is mediated by ROS accumulation that drives HIF-1a and

NF-kB activation (269, 270). In addition, in adipose tissue

macrophages from elderly mice it has been shown a decrease in

FAO, driven by decreased PPARg expression, which promotes an

increased secretion of proinflammatory factors (271).

Systemic changes in the availability and metabolism of

amino acids have also been related with aging, which may

impair the antitumor immune responses as discussed above.

On the one hand, the concentration of glutamine is reduced with

ageing, while accumulation of ROS impairs the activity of

glutamine synthetase (272).On the other hand, ageing

increases IDO activity, which is reflected in increased

kynurenine and reduced tryptophan concentrations in elderly

(273). Additionally, the expression of the asparagine transporter

SLC7A2 has been reported to decrease in macrophages from

elderly mice (274).

Similarly, obesity-induced inflammation has been regarded

as an important risk factor for cancer development, and

secondary conditions such as insulin resistance, hyperglycemia

and dyslipidemia have been related to tumor growth (264).

Paradoxically, obesity has been related to enhanced response

to ICB in tumor-bearing mice and cancer patients (275).

At the metabolic level, the two main adipokines altered in

obesity display opposing roles in the activation of T cells. On the

one hand, leptin is necessary for normal T cell proliferation,

glycolytic metabolism, and production of IFN-g, and IL-2 (276),

and it has been reported to promote M1 polarization on

macrophages, reduce MDSCs, and increase the effectiveness of

ICB (277). On the other hand, adiponectin has been reported to

impair the glycolytic metabolism of Th1 and Th17 cells (278). In

addition, a mouse model revealed that diet-induced dyslipidemia

impairs mTOR1 signaling in Tregs, which results in reduced

glycolytic metabolism and increased FAO (279). Moreover, high

fat diet consumption has been related to induction of an

exhausted phenotype on T cells from the white adipose tissue,

and overexpression of the IC BTLA (280).
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At the TME, high fat diet has been reported to alter the

expression of activation markers on T cell, probably related to a

reduction on GLUT1 expression, while promoting fatty acid

metabolism on tumor cells (281). This effect may be due to

adipocyte derived leptin that impairs glycolytic metabolism and

promotes FAO on TILs through activation of STAT3. In fact,

tumor-infiltrating CD8+ T cells from obese breast cancer patients

display lower expression of granzyme B compared to T cells from

lean patients (282).

Concluding remarks and perspectives

In incipient tumors, immune cells are recruited to an

environment rich in nutrients and inflammatory stimulus,

such as tumor antigens, DAMPs, and inflammatory cytokines.

This environment strongly resembles immune responses against

external pathogens. In the course of removing an insult, immune

cells consume available nutrients and produce a spectrum of by-

products that gradually change the surrounding milieu. As a

result, the removal of the inflammatory stimulus, together with

reduced nutrient availability and accumulation of by-products,

signal immune cells to interrupt their pro-inflammatory

programs and shift their phenotype toward anti-inflammatory

programs, initiating the resolution phase of inflammation.
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In cancer, the uncontrolled tumor cell proliferation and the

activation of the antitumor immune response deplete local

nutrient availability, combined with the by-products, resulting

in a microenvironment similar to that of the resolution phase of

the inflammation, perceived by immune cells as a signal to enter

into a pro-resolution program. In this sense, despite tumor cells

and antigens are maintained, immune cells in the TME

terminate their effector programs or reprogram their activity

to show regulatory function, promoting tumor progression.

Moreover, the imbalance in nutrient availability and the

accumulation of by-products induce the expression of immune

checkpoints (ICs) and their ligands. Furthermore, the

overexpression of ICs is linked to exacerbated metabolic

alterations, which results in a positive feedback loop that

strengthens the regulatory role of tumor-infiltrating immune

cells. See Figure 1.

Multiple gaps remain to be elucidated. For instance, whether

metabolic alterations are sufficient to drive exhaustion and

senescence on T cells and if this relationship can be targeted

by the combination of metabolic inhibitors and ICIs to restore

the antitumor functions of TILs. Similarly, little is known about

the effect of systemic metabolic alterations on the functions and

phenotype of tumor-infiltrating immune cells. For this reason, it

is necessary to deepen the understanding of the role that local
FIGURE 1

Metabolic shifting in the TME and its relationship with immune checkpoints. In early stages of tumor development, tumor and immune cells are
immersed in a milieu enriched in nutrients such as glucose and amino acids. High nutrient availability allows antitumor immune cells to exert
their effector functions, such as the production of soluble mediators against immunogenic and susceptible tumor cells. However, some tumor
clones are able to resist the attack of immune cells and continue their uncontrolled proliferation. As a result of the sustained proliferation of
tumor cells and the activation of the immune response, nutrients are gradually consumed, and metabolic by-products are accumulated in the
TME. These metabolic alterations signal antitumor immune cells to end their effector mechanisms, as well as promote the recruitment and
activation of immune cells with tumor-promoting phenotypes. Moreover, metabolic alterations establish a positive feedback loop with the
expression of immune checkpoints and their ligands that strengthens the immunosuppressive state at the TME. See the text for detailed
information. CTL=Cytotoxic T Lymphocyte, DC= Dendritic Cell, MDSC= Myeloid Derived Suppressor Cells, NK=Natural Killer cell, Th=T helper
cell, Treg=Regulatory T cell, ⊥=Inhibition. Created with BioRender.com.
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and systemic metabolic alterations play on the functions of

immune cells, as well as their crosstalk with ICs in the TME.

Forthcoming knowledge derived from these aspects will aid the

development of more efficient therapeutic strategies that

improve the outcome of cancer patients.
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