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Background: Radiotherapy (RT) is one of the most important treatments for

patients with colorectal cancer (CRC). Radioresistance is the crucial cause of

poor therapeutic outcomes in colorectal cancer. However, the underlying

mechanism of radioresistance in colorectal cancer is still poorly defined. Herein

we established a radioresistant colorectal cancer cell line and performed

transcriptomics analyses to search for the underlying genes that contribute to

radioresistance and investigate its association with the prognosis of CRC patients.

Methods: The radioresistant cell line was developed from the parental HCT116 cell

by a stepwise increased dose of irradiation. Differential gene analysis was

performed using cellular transcriptome data to identify genes associated with

radioresistance, from which extracellular matrix (ECM) and cell adhesion-related

genes were screened. Survival data from a CRC cohort in the TCGA database were

used for further model gene screening and validation. The correlation between the

risk score model and tumor microenvironment, clinical phenotype, drug treatment

sensitivity, and tumor mutation status were also investigated.

Results: A total of 493 different expression genes were identified from the

radioresistant and wild-type cell line, of which 94 genes were associated with

ECM and cell adhesion-related genes. The five model genes TNFRSF13C, CD36,

ANGPTL4, LAMB3, and SERPINA1 were identified for CRC radioresistance via

screening using the best model. A ROC curve indicated that the AUC of the

resulting prognostic model (based on the 5-gene risk score and other clinical

parameters, including age, sex, and tumor stages) was 0.79, 0.77, and 0.78 at 1, 2,

and 3 years, respectively. The calibration curve showed high agreement between

the risk score prediction and actual survival probability. The immune

microenvironment, drug treatment sensitivity, and tumor mutation status

significantly differed between the high- and low-risk groups.
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Conclusions: The risk score model built with five radioresistance genes in this

study, including TNFRSF13C, CD36, ANGPTL4, LAMB3, and SERPINA1, showed

favorable performance in prognosis prediction after radiotherapy for CRC.
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1 Introduction

Colorectal cancer (CRC) a common malignant tumor of the

digestive tract and the second leading cause of cancer death

worldwide, which is a serious threat to human health (1).

Radiotherapy is an important treatment for CRC and has become a

standard treatment regimen for stage II and III CRC. According to the

results of existing clinical trials, compared with preoperative

radiotherapy or surgical treatment alone, postoperative

radiotherapy has obvious advantages in tumor downstaging,

pathological response rate, and progression-free survival. NCCN

treatment guidelines have proposed preoperative radiotherapy

combined with surgery as the recommended treatment mode for

locally advanced CRC. However, preoperative radiotherapy for CRC

patients still has the problem of low sensitivity. A clinical study

showed that the pathologic complete response rate of preoperative

radiotherapy in CRC was only 8%. Therefore, improving the

radiotherapy sensitivity of CRC and identifying the mechanisms

associated with radioresistance remain challenges in CRC treatment.

The direct and indirect destruction of DNA double strands by

high-energy particle beams from irradiation and excess ROS

generation are the main mechanisms by which radiotherapy kills

tumor cells. However, at a limited radiation dose, tumor cells evolved

to develop multiple mechanisms, including DNA damage response,

cell cycle re-distribution, and ROS detoxification, to avoid the

cytotoxicity of ionizing radiation (2–4). The surviving tumor cells in

this process may develop a certain radioresistance, with great impact

on the prognosis of patients with CRC (5). Notably, in addition to

tumor cells themselves, the microenvironment of these cells, i.e., the

tumor microenvironment, also plays a crucial role in the efficacy of

radiotherapy. The tumor microenvironment is composed of multiple

components, including immune cells, fibroblasts, and extracellular

matrix. Studies showed that in the presence of abundant cytotoxic T-

lymphocyte (CTL) infiltration in the tumor microenvironment, the

radiation dose necessary to control tumor progression was

significantly reduced. Conversely, in the absence of CTL infiltration

in the tumor microenvironment, larger doses are required to inhibit

tumor growth, suggesting that the activation of the immune system

enhances malignancy responsiveness to radiotherapy.

However, despite the fact that radiotherapy could induce

immunogenic cell death to initiate anti-tumor immune response,

changes in other components in the tumor microenvironment and

their effects on tumor growth are still scarcely researched. The

extracellular matrix (ECM) is an integral part of the tumor

microenvironment, which is composed of multiple components,
02
including collagen, elastin, proteoglycan, and glycoprotein.

Abnormal expression of ECM components and remodeling of ECM

during tumor progression can promote drug tolerance and

transformation and metastasis of tumor cells. On the one hand,

cells can integrate signals from ECM to modify their functionalities

and behaviors. On the other hand, cells within the tumor

environment also remodel ECM by synthesizing and secreting

matrix macromolecules under the control of multiple extracellular

signals, which leads to the reformation of the biophysical and

biochemical properties of ECM (6). Radiotherapy can remodel

ECM by inducing loss of hyaluronic acid and collagen synthesis.

In turn, remodeled ECM can also improve the conditions of cell

growth, cell differentiation, and survival of tissues, which further

leads to radioresistance in tumor cells. However, the mechanism

underlying the reciprocal communication between tumor cells and

ECM is complex, and the hallmarks leading to radioresistance

and can predict CRC radiosensitivity and prognosis remain

poorly understood.

To further expand the study of the molecular mechanisms of

radioresistance and its impact on patient prognosis, we developed

radiation-tolerant CRC cell lines. Differential gene expression analysis

was performed on the RNA-seq data of tolerant and wild-type

controls to identify the genes associated with radioresistance; these

genes were then screened for association with ECM and with cell

adhesion, and analyzed using survival data from the TCGA-COAD

(Colon Adenocarcinoma) cohort in the TCGA database. Our results

show that the combined risk scores of the five marker genes identified

from the screening procedures can achieve a more accurate prediction

of prognosis after CRC radiotherapy, thereby acting as molecular

indicators in the field of CRC radiotherapy.
2 Materials and methods

2.1 Study design and data source

Differential gene expression analysis was performed using

sequencing data from the human colon cancer cells HCT-116

(purchased from the Shanghai Institutes for Biological Sciences,

Chinese Academy of Sciences, Shanghai, China), which consisted of

three wild-type (HCT116WT) and three radioresistant (HCT116RR)

cell lines, to identify genes associated with radioresistance. ECM and

cell adhesion-related genes were screened, and the survival data from

the COAD colon cancer cohort in the TCGA database were used for

analysis (Scheme 1).
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The TCGA-COAD cohort data were downloaded from the UCSC

Xena website (http://xena.ucsc.edu/). The data used in the analysis

included gene expression data from 471 tumor tissues, survival data

from 454 patients, clinical phenotype data from 478 patients, and

tumor mutation data from 399 patients. Risk scores were validated

using an external dataset, GSE40967 (7), which was designed to

validate whether analytically constructed risk scores could predict

prognostic risk in a separate cohort of patients. This dataset contains

survival and gene expression assay data for 562 patients.
2.2 Establishment of CRC radioresistant
cell line

HCT116 cells were exposed to a linear accelerator (Varian Clinic

21 ES; Varian Medical Systems, Crawley, UK), which generates high-

energy X-rays (6 MeV) at 0.99 Gy/min. Radioresistant cell lines

(HCT116 RR) were developed from the parental cell line (HCT116)

by increasing the X-ray dose of fraction irradiation stepwise from 0.5

to 2 Gy/day in vitro (2). Cells were initially exposed to 0.5 Gy/day of

X-rays for 5 days. Subsequently, the cells were exposed to 1 Gy/day of

X-rays for 10 days. Thereafter, the surviving cells were exposed to 1.5

Gy/day of X-rays for 15 days. Cells that could proliferate under

exposure to 1.5 Gy/day of X-rays were further exposed to 2 Gy/day of

X-rays. If these cells proliferated constantly under exposure to 2 Gy/

day of X-rays for more than 30 days, it was determined that a HCT116

RR had been obtained.
2.3 RNA extraction, library preparation,
and sequencing

Total RNA was extracted from the HCT116 cell line using

TRIzol® Reagent according the manufacturer’s instructions

(Magen). RNA samples were detected based on the A260/A280

absorbance ratio with a Nanodrop ND-2000 system (Thermo

Scientific, USA), and the RIN of RNA was determined by an

Agilent Bioanalyzer 4150 system (Agilent Technologies, CA, USA).

Only qualified samples were used for library construction.

Paired-end libraries were prepared using a ABclonal mRNA-seq

Lib Prep Kit (ABclonal, China) following the manufacturer’s

instructions. The mRNA was purified from 1 mg of total RNA using

oligo (dT) magnetic beads followed by fragmentation carried out

using divalent cations at elevated temperatures in ABclonal First

Strand Synthesis Reaction Buffer. Subsequently, first-strand cDNAs

were synthesized with random hexamer primers and Reverse

Transcriptase (RNase H) using mRNA fragments as templates,

followed by second-strand cDNA synthesis using DNA polymerase

I, RNAseH, buffer, and dNTPs. The synthesized double stranded

cDNA fragments were then adapterligated for preparation of the

paired-end library. Adaptor-ligated cDNA was used for PCR

amplification. PCR products were purified (AMPure XP system),

and library quality was assessed on an Agilent Bioanalyzer 4150

system. Finally, the library preparations were sequenced on an

Illumina Novaseq 6000 (or MGISEQ-T7), and 150-bp paired-end

reads were generated.
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2.4 Identification of differentially
expressed genes

Raw data in fastq format were firstly processed through in-house

perl scripts. In this step, the adapter sequence was removed and low

quality reads were filtered out (the number of lines with a string

quality value less than or equal to 25 accounted for more than 60% of

the entire reading and the N ratio (i.e., base information could not be

determined) was greater than 5% of total reads) to obtain clean reads

that could be used for subsequent analysis. Then, the clean reads were

separately aligned to the reference genome in the orientation mode

using the HISAT2 software (http://daehwankimlab.github.io/hisat2/)

to obtain mapped reads. FeatureCounts (http://subread.sourceforge.

net/) was used to count the read numbers mapped to each gene. Then,

the FPKM of each gene was calculated based on the length of a gene

and the read count mapped to that gene. Differentially expressed

genes (DEGs) were identified using the “DESeq2” R package.

Adjusted p-value < 0.05 and |log2FC| > 1 were used as cut-off

points to identify DEGs for subsequent analysis.
2.5 Identification of DEGs associated with
survival and establishment of a prognostic
gene signature

The candidate genes were used to generate prognosis-related risk

scores. The patients in the TCGA-COAD cohort with both gene

expression information from tumor samples and complete survival

information served as the training set. Univariate Cox regression

analysis was used to screen for DEGs in the training set that were

strongly associated with patient survival, using a p-value < 0.05. Next,

LASSO regression was applied to further establish radioresistance-

related risk profiles. The prognostic risk score model was established

with the following formula: risk score = expression level of Gene1 ×

b1 + expression level of Gene2 × b2 +…+ expression level of Genen ×

bn (where b is the regression coefficient calculated by the LASSO

regression). Risk scores were calculated for each patient using a risk-

score model. The samples were assigned to high-risk or low-risk

groups according to the median risk score. Kaplan–Meier curves were

used to compare the differences in overall survival (OS) between the

high-risk and low-risk groups. ROC curves for the 1-, 3-, 5- and 7-

year OS were generated for the two groups. The established risk score

was evaluated in an external independent set, GSE40967, to assess its

performance in prognosis prediction.
2.6 Bioinformatics analysis for differentially
expressed genes

2.6.1 Functional enrichment of differential genes
We performed gene ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses and visualized the

results using the R package “clusterProfiler” (8) to determine the

functional role of differentially expressed radioresistance-related

genes. A p-value < 0.05 for GO terms or KEGG pathways was

considered statistically significant.
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2.6.2 Protein-protein interaction network
A protein–protein interaction (PPI) network for differential genes

was constructed using STRING v3.9.1 (http://string-db.org), a search

tool for studying gene interactions (9). The minimum interaction

score was set at greater than 0.4, and isolated nodes in the network

were removed.

2.6.3 Gene set enrichment analysis
GSEA is a method that uses genes from a pre-defined gene set to

assess distribution trends in a gene list ranked with phenotypic

relevance to judge their contribution to phenotype. The “GSEA” R

package was used to find the function and pathway associated with

the high- and low-risk groups.

2.6.4 Immune microenvironment analysis
Immune and stromal scores predict the amount of immune and

stromal components in a tumor or disease. The immune and stromal

scores of COAD samples were calculated using the ESTIMATE

algorithm available in the R package “ESTIMATE” (10). The

ssGSEA (Single Sample Gene Set Enrichment Analysis, ssGSEA)

algorithm (11) was used to assess the proportion of 28 immune cell

subtypes in the high- and low-risk groups.

2.6.5 Prediction of treatment sensitivity and
analysis of tumor mutation status in patients with
different risk scores

We compared the expression of 34 immune checkpoint genes and

23 HLA family genes between the high- and low-risk groups. The

potential patient response to immunotherapy was inferred from the

tumor immune dysfunction and rejection (TIDE). The “maftools” R

package was applied to analyze and visualize somatic mutation data

and to calculate the tumor mutation burden (TMB) score for

individuals in the TCGA dataset.
2.7 Construction and evaluation of
predictive nomograms

Independent prognostic factors selected by univariate and

multivariate Cox regression analyses were used to construct

nomograms to assess the probability of OS. Subsequently,

calibration curves were used to estimate whether the predicted

survival outcome was close to the actual outcome. DCA was

performed to confirm the clinical utility of the nomogram model.
2.8 Statistical analysis

Analyses were performed in the R software (R software, version

4.1.0). The R and package versions can be found in Supplementary

Figure S2. The Wilcoxon test was used for statistical comparisons

between two groups, the Kruskal–Wallis test for statistical

comparisons between multiple groups. The Bonferroni method was

used to correct for multiple comparisons. An adj.p-value < 0.05 was

regarded as statistically significant. Cox regression analysis
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was performed for outcomes adjusted with covariates for which the

p-value was <0.05 in a univariable Cox analysis. the Spearman

correlation coefficient for correlations between two continuous

variables, except for group comparisons specific to high-

throughput data.
3 Results

3.1 Identification of differential genes in the
radioresistant cell line HCT116RR compared
to HCT116WT

We first verified the radioresistance of the HCT116WT and the

HCT116RR cell line using clone formation assay (Supplementary

Figure S1). We first screened for DEGs using the HCT-116

radiotherapy-tolerant cell line HCT116RR and the HCT116WT cell

line as comparative samples. A total of 493 DEGs (RR vs. WT) were

identified, of which 259 genes were upregulated and 234 genes were

downregulated (Supplementary Table S1), using a p < 0.05 and |

log2FC|>1 as thresholds (Figure 1A). The top-15 upregulated and

downregulated genes were arranged according to the p-value and

visualized using a heat map (Figure 1B).

GO enrichment analysis (Figures 1C–E and Supplementary Table

S2) showed that the DEGs were mainly enriched in the biological

processes “extracellular matrix organization”, “extracellular structure

organization”, and “external encapsulating structure organization”. In

cellular the components and molecular function categories, the DEGs

were mainly enriched in the functions “collagen-containing

extracellular matrix”, “focal adhesion”, “cell-substrate junction”,

“extracellular matrix structural constituent”, and “extracellular

matrix binding”, which indicates that the differential genes

contribute the most to the functions of extracellular matrix

structural constituents and extracellular matrix binding.

Similarly, KEGG enrichment results (Figure 1F and

Supplementary Table S3) showed that the DEGs contained the two

pathways of focal adhesion and ECM-receptor interaction.

Combining the GO and KEGG enrichment results, we determined

that the DEGs were mainly enriched for cell adhesion and ECM-

related functions and pathways. Therefore, the cell adhesion and

ECM-related DEGs were screened as candidate genes for

subsequent analyses.

We cross-referenced the cell adhesion and extracellular matrix-

related genes with the above-mentioned DEGs by releasing all genes

containing the following annotations or their subdivisions:

GO:0031012 extracellular matrix; GO:0030198 GO:0031012

extracellular matrix; GO:0030198 extracellular matrix organization;

GO:1903053 regulation of extracellular matrix organization;

GO:0035426 extracellular matrix-cell signaling; GO:0007155 cell

adhesion; GO:0030155 regulation of cell adhesion; GO:0007160

cell-matrix adhesion; and GO:0050840 extracellular matrix binding.

A total of 94 overlapping genes from DEGs and ECM-related genes

were retained as candidate genes for subsequent analysis (Figure 1G).

For these 94 genes, the interaction network of the encoded proteins

was mapped using the STRING database (Figure 1H).
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3.2 Establishment and validation of
prognostic risk score

The relationship between candidate gene expression and the OS

of patients was analyzed using a one-way Cox regression model. Five

genes, TNFRSF13C, CD36, ANGPTL4, LAMB3, and SERPINA1, were

found to be associated with OS, as shown in Figure 2A. LASSO

regression analysis was performed using these five prognostic genes

(Figure 2B), and the best model parameter was l=0.001838643. The
linear combination of the five genes and their coefficients in the model

were used as the risk score, and the coefficients of the five genes are

shown in Table 1.
Frontiers in Oncology 05
Risk scores were calculated for patients in the TCGA COAD

cohort, and patients were divided into two groups based on the

median risk score: high and low risk (Figure 2C). The risk score

distribution and associated survival status implied that there were

more dead patients with an increase in the risk score. Furthermore,

survival analysis showed that there was a significant difference

between the low- and high-risk groups (p-value < 0.0001,

Figure 2D). After statistically testing whether there were differences

in risk scores among patients with different tumor stages and different

sexes, we found that patient risk scores increased significantly with

the stage of TNM, the key indicator of tumor progression (Figure 2E).

However, patient risk scores were independent of sex.
B

C D

E F

G H

A

FIGURE 1

Identification of differentially expressed genes in radiotherapy-tolerant cell lines RR and WT compared to those in WT in HCT-116 cells. (A) Volcano plot
of differential gene expression analysis. (B) Heat map of differentially expressed genes. (C) Differentially expressed gene enrichment results: GO biological
processes. (D) Differentially expressed gene enrichment results: GO cellular components. (E) Differentially expressed gene enrichment results: GO
molecular functions. (F) Differentially expressed gene KEGG enrichment results. (G) Candidate gene screening Wayne diagram. (H) Candidate gene
protein interactions network.
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Then, the performance of the risk scores for predicting the

prognostic risk of patients was validated using an external

independent validation set. We divided patients into high-risk and

low-risk groups based on the median risk score as the cut-off point

(Figure 3A). The Kaplan-Meier survival curve results showed that

patients with lower risk scores exhibited higher survival (Figure 3B),

and there was a significant difference between the high- and low-risk

groups (p=0.0054).
3.3 GSEA analysis between high- and
low-risk groups

To further investigate the differences in functions and pathways

between the tumors of the high- and low-risk groups, we performed

gene set enrichment analysis on the data. The pathways represented
Frontiers in Oncology 06
by different lines of red are molecular pathways or functions that were

significantly activated in the tumor tissues of patients in the high-risk

group, while the pathways represented by different lines of blue are

molecular pathways or functions that were significantly activated in

the tumor tissues of patients in the low-risk group.

Regarding biological processes, samples from the high-risk group

were enriched in “Collagen fibril organization,” “antigen processing

and presentation of peptide or polysaccharide antigen via MHC class

II,” and “B cell receptor signaling pathway.” The samples from the

low-risk group were enriched in “mitochondrial gene expression” and

“mitochondrial respiratory chain complex assembly” (Figure 4A).

Cellular Component analysis showed that “collagen trimer”, “protein

complex involved in cell adhesion”, and “collagen containing

extracellular matrix” were enriched in high-risk samples, whereas

“large ribosomal subunit”, “small ribosomal subunit”, and “organellar

ribosome” were enriched in low-risk samples (Figure 4B).

Regarding molecular functions, the high-risk group mainly

showed enrichment in “collagen binding” and “extracellular matrix

structural constituent”, while “oxidoreductase activity acting on

NADPH”, “RNA binding”, and “oxidoreduction driven active

transmembrane transporter activity” were enriched in the low-risk

group (Figure 4C). Meanwhile, the KEGG gene sets showed

enrichment in “ECM receptor interaction”, “focal adhesion”, and

“cell adhesion molecules cams” in the high-risk group, while

“ribosome”, “aminoacyl tRNA biosynthesis”, and “peroxisome”

were enriched in the low-risk group (Figure 4D).
TABLE 1 Gene coefficients of model genes.

Model genes Gene coefficient

TNFRSF13C 0.238733819

CD36 0.174308895

ANGPTL4 0.218230164

LAMB3 0.21302476

SERPINA1 –0.210615904
B

C D

E

A

FIGURE 2

Screening for prognosis-associated genes. (A) Prognosis-associated gene Hazard Ratio display. (B) LASSO regression analysis. (C) TCGA COAD cohort
risk score distribution. (D) KM curves for high- and low-risk groups in the TCGA COAD cohort. (E) Risk score distribution of patients at different TNM
stages and different genders.
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3.4 Risk score associated with the
immune microenvironment after
radiotherapy for CRC

The R package “ESTIMATE” was used to analyze the correlation

between immune/stroma scores and risk scores. The results showed that

both the immune score (Figure 5A) and stroma score (Figure 5B) were

significantly higher in the high-risk group than in the low-risk group

(both p<0.05). In addition, the ssGSEAmethod was used to estimate the

infiltration of 28 immune cell species in samples from the high- and low-

risk groups. The infiltration of 18 immune cell species significantly

differed between the high- and low-risk groups (Figure 5C).
3.5 Predicting treatment sensitivity in
patients with different risk scores

We also compared the expression of 34 immune checkpoint

genes and 23 HLA family genes between the high- and low-risk
Frontiers in Oncology 07
groups and found that the expression of 22 immune checkpoints and

14 HLA family genes significantly differed between the two groups

(Figures 6A, B). Among them, the top-three immune checkpoint

genes and HLA family genes with the most significant differences

were CD134, FOXP3, GEM, B7H5, CD134L and HLA-DQAZ, HLA-

DMA, HLA-F, HLA-DMB, HLA-DPA1, respectively. To determine

the potency of the risk score as a biomarker for predicting drug

response in radiotherapy-tolerant patients with CRC, we assessed the

drug-sensitivity of patients in the high- and low-risk groups to

different antitumor drugs. The results show that a total of

44 drugs showed significant differences in sensitivity between the

two groups. Among them, The ten most sensitive drugs in the high-

risk group were Bortezomib, Epothilone B, Elesclomol, BEZ235,

CGP-60474, Gemcitabine, QL-VIII-58, AZD7762, rTRAIL,

and MG-132 (Supplementary Table S4). In terms of response

to immunotherapy, patients in the low-risk group had lower

TIDE dysfunction scores (Figure 6B); however, TIDE exclusion

scores did not significantly differ from those in the high-risk

group (Figure 6D).
B

C D

A

FIGURE 4

GSEA analysis between high- and low-risk groups. (A) Risk score GSEA: GO biological processes. (B) Risk score GSEA: GO cellular components. (C) Risk
score GSEA: GO molecular functions. (D) Risk score GSEA: KEGG pathway.
BA

FIGURE 3

Validated risk scores for the GSE40967 dataset. (A) Risk score distribution of GSE40967 patients. (B) KM curves for high- and low-risk groups of GSE40967 patients.
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3.6 Analysis of tumor mutation status in the
high- and low-risk groups

To investigate the mechanisms associated with poor prognosis in

radiotherapy-tolerant CRC, we analyzed somatic mutations of all

genes in the TCGA database. As shown in the waterfall figure

(Figure 7A), APC, TP53, and TTN were the three most mutated

genes in the COAD cohort. KRAS andMUC16 were also identified as

mutated genes in high-risk samples (Figure 7B). FAT4 and OBSN

were representative mutated genes in low-risk samples (Figure 7C).

When comparing the mutation frequencies between the low- and

high-risk group samples, more somatic mutations were observed in

the high-risk group, but there was no significant difference (p=0.92)

between the two groups (Figure 8A). The mutation frequencies of the

26 genes differed between the high- and low-risk groups (Figure 8B).

Additionally, we visualized the mutation distribution of the five

model genes; among them, LAMB3 was the most mutated gene in

the sample, and missense mutations were the most commonmutation

classification (Figure 7D).
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3.7 Clinical prognostic model construction

Risk score, age, and TNM stage were identified as significant

predictors of prognosis, using univariate and multivariate Cox

regression analyses (Figure 9). To predict the prognosis of each

patient, a forest plot was created by integrating the risk score, age,

and TNM stage, and we found that the hazard ratio of the risk score

was higher than that of the T and N stages (Figures 9A, B). The

calibration curve showed a high agreement between the risk score

prediction and actual survival probability (Figures 9C–E). Next, we

plotted ROC curves to examine the specificity and sensitivity of this

prognostic model (Figures 9F–H). The time-dependent ROC curve

showed that the AUC of the resulting prognostic model (based on the

five-gene risk score and other clinical parameters, including age, sex,

and tumor stages) was 0.79, 0.77, and 0.78 at 1, 2, and 3 years,

respectively. The calibration curve showed high agreement between

the risk score prediction and actual survival probability. In addition,

the net benefit of this prognostic model was high, as shown by the

DCA curve (Figures 9I–K).
B

C

A

FIGURE 5

Risk score and tumor microenvironment. (A) Correlation of risk score with ESTIMATE immune score. (B) Correlation of risk score with ESTIMATE stromal
score. (C) Heat map of immune cell infiltration.
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4 Discussion

Radiotherapy is one of the most important treatments for patients

with CRC (12). Radioresistance is the crucial cause of poor

therapeutic outcomes in colorectal cancer. However, the underlying

mechanism of radioresistance in colorectal cancer is still poorly

defined. Therefore, there is an urgent need to identify genes

associated with radioresistance that can accurately predict the

therapeutic effect and prognosis of patients with CRC. Herein, we

established a radioresistant colorectal cancer cell line and performed

transcriptomics analyses to search for the underlying genes that

contribute to radioresistance and investigate its association with the

prognosis of CRC patients.

We found significant differences in mRNA between the

HCT116RR and HCT116WT cell lines. GO enrichment analysis

showed that the candidate genes were mainly enriched in

extracellular matrix structural constituents and extracellular matrix

binding, and KEGG enrichment analysis showed that the candidate
Frontiers in Oncology 09
genes were mainly enriched in focal adhesion and ECM-receptor

interactions. The ECM-receptor interaction pathways were the most

upregulated gene-enriched signaling pathways. ECM is a non-cellular

component of tissues that supports cell adhesion, which is composed

of different insoluble structural components such as collagen, elastin,

proteoglycan, and glycoprotein (13). ECM can interact with a variety

of receptors on tumor cells to regulate biological processes such as

tumor shedding, migration, adhesion, and intercellular

communication (14, 15). Radiotherapy can trigger cells within the

tumor microenvironment to release enormous amounts of cytokines

and chemokines to remodel the ECM, leading to tumor cells

developing radioresistance (16). For colorectal cancer, studies have

demonstrated the critical role of the ECM-receptor regulatory

network in tumor development and metastasis (17). Therefore,

high-quality prognostic indicators may be screened for in the ECM-

receptor interaction pathway.

In further searches for key genes whose regulation affects CRC

prognosis, we identified five signature genes, TNFRSF13C, CD36,
B

C D

A

FIGURE 6

Predicted treatment sensitivity in patients with different risk scores. (A) Differential expression of immune checkpoint molecules. (B) Differential
expression of HLA molecules. (C) Risk score versus immune disorder score. (D) Correlation between risk and immune rejection scores.
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ANGPTL4, LAMB3, SERPINA1 using the one-factor Cox-LASSO

method. Among them, SERPINA1 is a protective factor for CRC,

while CD36, LAMB3, ANGPTL4 and TNFRS13C are all risk factors for

CRC. These results are consistent with those of previous studies

showing that the upregulation of these genes promotes proliferation

and metastasis properties of CRC (18–20). Radiation-induced

inflammation could trigger the overexpression of CD36. Previous

studies have found that CD36 promotes CRC metastasis by

upregulating MMP28 and increasing E-calmodulin cleavage, which

may be an important reason for the stronger invasion and metastasis

ability of radioresistant cells (20). Similarly, it has also been shown

that the overexpression of LAMB3 in CRC is associated with tumor

metastasis and poor prognosis, of which the mechanism is mainly

through the AKT–FOXO3/4 axis to the pro-tumorigenic role (19).

Moreover, ANGPTL4 is associated with tumor metastasis and

angiogenesis, and can promote CRC progression and metastasis by
Frontiers in Oncology 10
activating STAT1 and promoting trans activation of NOX4 (18, 21).

Taken together, these studies demonstrate that these signature genes

induced by irradiation may contribute to the development and

progression of CRC after radioresistance by regulating cancer cell

migration and invasion.

On this basis, we established a risk model using the signature

genes to classify patients with CRC into high- and low-risk groups

and performed survival analysis. Our results showed that the risk

model was able to predict the prognosis of CRC patients.

Subsequently, we performed GSEA on the high- and low-risk

groups. GSEA is a method that uses genes from a pre-defined gene

set to assess distribution trends in a gene list ranked with phenotypic

relevance to judge their contribution to phenotype. We found that the

high-risk group was mainly involved in the cell adhesion- and

extracellular matrix-related pathway, while the low-risk group was

mainly involved in the ribosome- and oxidoreduction-related
B
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FIGURE 7

Analysis of tumor mutation status in high- and low-risk groups. (A) Top-20 mutation gene waterfall. (B) Top-20 mutation gene waterfall in the high-risk
group. (C) Top-20 mutation gene waterfall in the low-risk group. (D) Model gene waterfall.
BA

FIGURE 8

(A) The difference of tumor mutation burden between low- and high-risk group. (B)Comparison of risk for differentially mutated genes.
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pathway. These pathways are widely discussed in other reviews,

especially the enrichment of “collagen containing extracellular

matrix” in high-risk groups, which highlights that the remodeled

ECM is an important contributing factor to malignant progression

and resistance-to-therapy of tumors (22).

Fibrillar collagen is the main component of ECM. Cells embedded

into fibrillar collagen interact with it through their surface receptors

to exchange information with the outside world. Recent studies

indicated that fibrillar collagen is upregulated in many cancers and

that specific collagen fiber organization patterns are associated with

disease stage, prognosis, treatment response, and other clinical

features (23, 24). In colon tumor tissue, the expression of type 1

collagen is significantly higher than in normal tissue, and patients

with a high density of type 1 collagen generally have a poor prognosis

(25). Studies showed that type 1 collagen binds to integrins, such as
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a1b1, a2b1, a10b1, and a11b1, to enhance the stemness of colon

carcinoma cells and promote CRC progression and metastasis (26).

Furthermore, the receptor tyrosine kinases discoidin domain

receptors DDR1 and DDR2 are also involved in type 1 collagen-

mediated invasion and metastasis of colon carcinoma (27, 28). In

addition, collagen levels and organization changes can also lead to

several pathological consequences. Studies showed that aligned

collagen increases stromal density and intra-tumor fluid pressure,

which may impede the transport of therapeutic agents to tumor

targets (29). This suggests that genes associated with “collagen fibril

organization”, which were enriched in the high-risk group, may

interfere with tumor cell metastasis after radiotherapy by affecting

the density of collagen in the tumor. However, the question of how

these ECM-associated proteins contribute to radiotherapy tolerance

in colorectal cancer still needs to be further explored.
B
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FIGURE 9

Clinical prognostic model construction. (A) Prognosis-related clinical indicators. (B) Forest plot of multifactorial Cox model. (C–E) 1-, 2-, and 3-year
survival calibration curves, respectively. (F–H) Calibration curves for 1-, 2-, and 3-year survival rates, respectively. (I–K) ROC curves for 1-, 2-, and 3-year
survival rates, respectively.
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The ESTIMATE algorithm scores immune and stromal cells of

tumor tissues. A higher ESTIMATE score indicates a higher tumor

heterogeneity in the corresponding fraction. We found significant

differences in ESTIMATE immune scores between the high- and low-

risk groups, indicating that there was a higher tumor heterogeneity and

higher degrees of malignancy in the high-risk group. In addition, we also

estimated the difference of 28 immune cells infiltrated in samples from

the high- and low-risk groups. Our results showed that there was a

significant difference in the infiltration of 18 immune cell species between

the two groups, including activated B cells, activated dendritic cells,

gammadelta T cells,macrophages,myeloid-derived suppressor cells, and

natural killer T cells. Studies show that the composition and number of

immune cells in tumor tissue have a significant impact on tumor

progression. An abnormal number of immune cells is significantly

associated with poor prognosis in patients with CRC (30). Moreover,

the paucity of immune cells also contributes to tolerance against

immunotherapy and radiotherapy (31, 32). Thus, we hypothesized that

radioresistance genes may also affect the prognosis of CRC.

We further analyzed the different responses to immunotherapy

between the high- and low-risk groups. We observed significant

differences in the expression of 22 immune checkpoints, and 14 HLA

family genes significantly differed between the high- and low-risk groups,

suggesting that the use of different immune checkpoint inhibitors may be

appropriate for patients in different risk groups. The TIDE score is used to

evaluate immune dysfunction and rejection within tumor tissue and can

be used as a predictor of immunotherapy response. A higher TIDE

prediction score represents a higher probability of immune escape.

Therefore, studies on the correlation between risk score and TIDE can

analyze the association between risk scores and the tumor

immunotherapy effect. In our study, we found that patients in the

high-risk group had higher TIDE dysfunction scores, indicating that

patients in the high-risk group were less likely to benefit from

immunotherapy, while patients in the low-risk group were more likely

to respond to immunotherapy. Subsequently, we analyzed tumor

mutations in the COAD cohort. The tumor mutation burden (TMB)

has been identified as a biomarker of immunotherapy response, and a

higher TMB predicts higher benefits of immunotherapy. In our study, we

found that a total of 26 genes showed differences in mutation frequency

between the high- and low-risk groups, whichmay be themain reason for

the poor prognosis in the high-risk group. Furthermore, we investigated

the potential mechanisms by which the characteristic genes regulate

radioresistance in CRC. The clinical distribution of risk scores was

analyzed, and we found that the patients’ risk scores were independent

of sex but increased significantly with progressing TNM stages.

Taken together, we screened genes associated with radioresistance

using sequencing data from HCT-116WT and HCT-116RR cells, and

built a risk score model with five radioresistance genes, including

TNFRSF13C, CD36, ANGPTL4, LAMB3, and SERPINA1. This risk

score model showed favorable performance in prognosis prediction

after radiotherapy for CRC. It also revealed the relevant mechanisms

by which radioresistance genes regulate the prognosis of CRC. These

results provide an important theoretical basis for subsequent

biomarker research or drug target development.
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