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Objective: This work aims to use machine learning models to predict gamma

passing rate of portal dosimetry quality assurance with log file derived features.

This allows daily treatmentmonitoring for patients and reduce wear and tear on

EPID detectors to save cost and prevent downtime.

Methods: 578 VMAT trajectory log files selected from prostate, lung and spine

SBRT were used in this work. Four machine learning models were explored to

identify the best performing regression model for predicting gamma passing

rate within each sub-site and the entire unstratified data. Predictors used in

these models comprised of hand-crafted log file-derived features as well as

modulation complexity score. Cross validation was used to evaluate the model

performance in terms of R2 and RMSE.

Result:Using gamma passing rate of 1%/1mm criteria and entire dataset, LASSO

regression has a R2 of 0.121 ± 0.005 and RMSE of 4.794 ± 0.013%, SVM

regression has a R2 of 0.605 ± 0.036 and RMSE of 3.210 ± 0.145%, Random

Forest regression has a R2 of 0.940 ± 0.019 and RMSE of 1.233 ± 0.197%.

XGBoost regression has the best performance with a R2 and RMSE value of

0.981 ± 0.015 and 0.652 ± 0.276%, respectively.

Conclusion: Log file-derived features can predict gamma passing rate of portal

dosimetry with an average error of less than 2% using the 1%/1mm criteria. This

model can potentially be applied to predict the patient specific QA results for

every treatment fraction.
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1 Introduction

Patient-specific quality assurance (PSQA) is an important

part of radiotherapy treatment for cancer patients. With

advances in treatment modalities and linear accelerators

technology, a more rigorous PSQA programme or method is

required to ensure that the increasingly complex treatment plans

are correctly delivered as planned (1). In recent years, the

numbers of works involving the application of machine

learning (ML) to PSQA has been increasing in order to better

model the complex relationship between mechanical and

dosimetric parameters (2). PSQA is usually performed by

comparing actual dose (either absolute dosimetry or relative

dosimetry) using dose measurement device with the planned

dose. EPID with portal dosimetry has been widely used for

PSQA as it is able to reduce the workload of quality assurance

while maintaining the quality of measurement (3). EPID

detector also has an additional advantage of being a high-

resolution detector with resolution being determined by the

pixel spacing, which is usually less than 500 microns. Without

the need for using film dosimetry protocol or additional

equipment set-up, portal dosimetry can be done efficiently and

accurately once it has been commissioned (4).

The analysis of log file has been suggested by various studies

as a complement to measurement based PSQA (5–7). Sun et al.

(6) concluded that machine log file has the ability to identify

errors during beam delivery and that errors in individual MLC

leaf can also be detected instead of being masked up by a

measurement-based approach. In the paper by Szeverinski

et al. (7) LINACWatch® (Qualiformed, La Roche-sur-Yon,

FRA) has the ability to detect small delivery errors and that

MLC shift errors is more sensitive to log files analysis compared

to ArcCHECK® detector (Sun Nuclear, Melbourne, FL)

measurement. In this work, we will attempt to predicting the

gamma passing rate of portal dosimetry using log file

information with four different ML algorithms. The modelling

involving log file and portal dosimetry has not been reported in

the literature before at the point of writing the manuscript.

Features input into the ML algorithm will be extracted from the

log file as we will be focusing on actual deviations from planned

machine parameters as well as complexity metrics. This model

will eventually serve as a virtual QA to be implemented by

collecting log file from each completed fraction. Even though the

log file data contain information of the mechanical and monitor

unit (MU) errors which could by itself, be used for PSQA, there

are several rationales behind our study for connecting the log file

errors to PSQA results. First, the gamma passing rate is a

familiar scalar quantity and most centres have developed years

of clinical experience with this metric and understand what kind

of threshold value is indicative of a poor plan (with disagreement

between planned and delivered dose). Second, there is currently

no consensus on how to best process the multi-parameters log

file data to indicate a failing plan especially with the many
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confounding variables such as treatment modality (VMAT vs

IMRT), number of treatment fields, beam energies and dose

prescription. Thirdly, our study aims to understand the

correlation between machine errors which are found in the log

file to familiar gamma passing rate in PSQA to help identify the

root cause for failure in PSQA. Lastly, replacing the actual portal

dosimetry measurement with our proposed “virtual QA” can

reduce wear and tear on electronic portal imaging device (EPID)

detectors which in our experience, can be expensive to replace

and may incur significant downtime.
2 Materials and methods

2.1 Data and measurement

In this study, trajectory log files were collected from a single

Varian TrueBeam (Varian Medical Systems, Palo Alto, CA)

equipped with Millennium 120 MLC retrospectively over a

period of six months from January 2021 to June 2021. The

inclusion criteria are SBRT and VMAT treatment as routine pre-

treatment PSQA are compulsory in this hypofractionated

treatment in our centre. The data are stratified into three

different sites - prostate, spine, and thorax. Patient specific QA

is performed using the aS1200 EPID and quantified using

gamma analysis with Portal Dosimetry module (Eclipse ver.

13.6). The EPID has an area of 43 x 43 cm2 and is set at a

distance of 140.0 cm away from the beam source (also known as

Source to Imager Distance). This distance is chosen as it is the

distance calibrated for clinical use. In the Eclipse’s portal

dosimetry module, a low-dose threshold of 10% was included

when calculating the global gamma passing rate (GPR) for

PSQA. This will ignore the large volume of dose points that

lies in the low-dose regions that might inflate the global GPR (1).

For the purpose of this study, gamma analysis was performed

using the 2%/2mm, 2%/1mm, 1%/2mm and 1%/1mm criteria in

absolute dose and results were collect using field by field

approach (8). The composite result can be obtained by

summing the portal doses per field; this can be easily

performed within the module.

Log files from TrueBeam are output during every treatment

or QA with both planned and actual machine parameters

recorded. The log files consist of a time series of machine

parameters recorded every 20 ms.
2.2 Handcrafted features calculated from
log file data

Table 1 shows the 13 features derived from the log file data

were used for ML modelling to predict for the global gamma

passing rate. They consist of average root mean square errors

(RMSE) of various VMAT delivery parameters with an
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additional plan complexity metric, Modulation Complexity

Score (MCS) (9) included in the features to identify how MLC

complexity of the plan affects the GPR of a treatment plan.

To calculate the RMSE of machine parameters, a general

formula is used:

RMSE   =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=0
xi − x̂ ið Þ2

s
, (1)

xi is the planned value for the parameter, x̂ i is the actual

value for the parameter (gantry angle and MLC positions) and N

is the number of time sampled point. In weighted MLC RMSE

parameters, they are weighted using the ratio of the MU at each

time point to the total MU, followed by multiplying the MLC

RMSE parameters between each time sample point. The formula

is as follow:

RMSEmu   =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=0

muj

oN

j=0
mu

xj −
cmuk

oN

k=0
cmu

x̂ k

0@ 1A2
vuuut , (2)

where xi is the planned value for the parameter, x̂ i is the

actual value for the parameter, muj and m̂uk are the actual MU

and planned MU respectively and N is the total sampling points.

A single RMSE is then calculated.

Correlation between different features and gamma passing

rates are analysed using Spearman’s correlation. The correlations

are calculated for different treatment sites individually as well as

all treatment site together. A two-sided P-value of less than 0.05

is regarded as statistically significant in this study.
2.3 Machine learning model

Four different regression ML algorithms are used in this

study: - LASSO Regression, Support Vector Machine Regression,

Random Forest Regression and XGBoost Regression. Regression

is a technique used for relating the relationship between features

and a continuous outcome. In this study, the features extracted

from the log files were used to train each ML model followed by

the prediction of the outcome which is the GPR for each plan.
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The use of ML model in regression problem enables the

modelling of the complex relationship between the features

and the GPR. The model building and evaluation pipelines are

shown in Figure 1. The same pipeline was utilised for all

algorithms and the model is evaluated using a ten-fold cross

validation method. In every fold, 10% of the data from all

treatment sites was assigned as a hold-out set (testing set)

while 90% of them were used as the train set. For each fold,

the hyperparameters are optimised using another inner nested

cross validation within the training set. The optimal model in

this fold is used to predict the GPR in the hold-out set. R2 and

RMSE evaluated on all the hold-out sets from the 10 folds are

used to quantify the generalizability of the model which

completes the model validation phase. A ten-folds cross

validation approach has an advantage of lesser bias compared

to a single train-test split for model validation. R2 and RMSE

metrics are also used to determine the best performing ML

algorithm for predicting GPR. The results obtained from the 10

different folds are then shown together with their standard

deviation according to their training models and data

stratification. In XGBoost Regression, a F score is calculated to

obtain the importance of the derived features (10). In this work,

all models are developed using Python programming language.

Pylinac (11) is used to extract data from log files for calculations

and scikit-learn (12) library for model building and evaluation.

After the model training and evaluation phase, we will need a

final model that can be tested clinically. In data science, one of the

approaches of arriving at the final deployed model is by training

the ML pipeline on the entire datasets (include all train-validation-

test data). The performance of each model on the current dataset is

quantified again for completeness. It is important to note the

performance of this model in the overall dataset is not part of the

model evaluation process (since model evaluation must always be

quantified on a hold-out set which is unseen to the model) and

serve just as a soundness check for the final model.
3 Results

3.1 Data and measurement

This study was approved by the SingHealth institutional

review board. A total of 578 log files collected was used for

modelling in the study. They consist of 368 log files from

prostate, 106 log file from spine and 104 log files from thorax.

In Figure 2, the GPR for each site are plotted to show the

distributions. Across all plots, 1%/1mm has the biggest

interquartile range (IQR) while 2%/2mm has the smallest IQR.

In Figure 2C, we can see that 2%/2mm and 1%/2mm has a

spread so small that the IQR cannot be determined. A small

spread is not ideal as it is challenging to derive a robust cut-off

value for “passing” plan and could make it harder to differentiate

the quality of the plan (13).
TABLE 1 Table of handcrafted features from log file.

Derived Features

Field Opening RMSE MLC Acceleration RMSE

Gantry Position RMSE Weighted MLC Position RMSE

Gantry Velocity RMSE Weighted MLC Velocity RMSE

Gantry Acceleration RMSE Weighted MLC Acceleration RMSE

MLC Position RMSE MU/Arc

MLC Velocity RMSE MCS

Dose Rate
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3.2 Correlation between features

Figure 3 shows the correlation plots for features calculated

for all treatment sites, prostate, thorax and spine. Only the GPR

calculated at 1%/1mm criteria was included (here and in

further modelling) as the GPR for other criteria are not

significantly correlated with the features. Looking at the
Frontiers in Oncology 04
correlation plot for all treatment sites in Figure 3A, a weak

positive correlation is observed between gantry related

RMSE and the 1%/1mm GPR while MCS, MU/arc and

MLC related RMSE are also weakly negatively correlated.

In Figure 3B, for prostate treatment, a weak positive

correlation was observed between gantry position RMSE and

dose rate with 1%/1mm GPR. In Figure 3C, a positive
B

C D

A

FIGURE 2

GPR Plots for Log File. (A) GPR of all log files for 2%/2mm, 2%/1mm, 1%/2mm & 1%/1mm. (B) GPR of prostate log files for 2%/2mm, 2%/1mm,
1%/2mm & 1%/1mm. (C) GPR of spine log files for 2%/2mm, 2%/1mm, 1%/2mm & 1%/1mm. (D) GPR of thorax log files for 2%/2mm, 2%/1mm,
1%/2mm & 1%/1mm.
FIGURE 1

Schematic of workflow for this study.
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correlation between 1%/1mm GPR and weighted MLC related

RMSE, field opening and MCS can be observed for spine

treatment site. In Figure 3D for thorax treatment site, there

is a negative correlation between 1%/1mm GPR and weighted

MLC related RMSE while having a positive correlation with

MCS, dose rate and MU/arc.
3.3 Machine learning model

Table 2 shows the overall results of R2 across all the 10-fold

cross validation sets. LASSO and XGBoost regression represent

the worst-performing and best-performing ML algorithm

respectively in terms of goodness of fit. For models stratified

according to treatment site, the modelling of spine treatment site

has the worst fit. Similarly, Table 3 shows the overall result of

RMSE across all the 10-fold cross validation sets with both mean

and standard deviation. Again, XGBoost regression has the

smallest RMSE amongst all the ML algorithms used.
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In Figure 4, the predicted values of each model are plotted

against the true values using the final model. They are divided

according to unstratified treatment site, prostate, spine and

thorax treatment site. The ideal model is also plotted and is

shown as the theoretical 45-degree line where the predicted

values should be the same as the true value. Generally, all the

models are able to produce the correct trend (positive gradient)

except for the spine plans in LASSO regression model which

yields a negatively sloped best fit line. XGBoost algorithm has the

closest plot to the theoretical best fit line when compared across

all the four different plots.

Residual plots are shown in Figure 5 to show the distribution

of the difference between true and predicted values. In this case,

residuals from all models shows a Gaussian-like distribution for

the residuals other than Support Vector Machine regression. The

distribution of the residuals in Figure 5D are very narrow which

results in a “Dirac Delta-like” distribution in the figure. In

Figure 5B, the predicted values above 100% are outliers in the

residual plots. Also, in Figures 5A–C the distribution of residual

is biased towards the positive values.
B

C D

A

FIGURE 3

Correlation Plots for Log File. (A) Correlation plot for all log files. (B) Correlation plot for prostate log files. (C) Correlation plot for spine log files.
(D) Correlation plot for thorax log files.
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Further analysis was done to determine the individual

feature contribution towards GPR prediction for the best

model - XGBoost regression. The feature importance plot for

XGBoost is shown in Figure 6 to determine the most important

predictor in the model. In this case, dose rate was found to be the

most significant predictor in the final XGBoost model.
Frontiers in Oncology 06
4 Discussion

4.1 Correlation

A general observation seen across all the correlation heat

maps in Figure 3 was that gantry related RMSE has a weak or
TABLE 3 RMSE values across all 10-fold for each model.

RMSE All Prostate Spine Thorax

LASSO Regression 4.794 ± 0.013 5.801 ± 0.027 2.417 ± 0.116 1.674 ± 0.045

SVM Regression 3.210 ± 0.145 3.990 ± 0.193 0.651 ± 0.217 0.641 ± 0.170

Random Forest Regression 1.233 ± 0.197 1.502 ± 0.249 0.452 ± 0.108 0.474 ± 0.148

XGBosst Regression 0.652 ± 0.276 0.777 ± 0.372 0.267 ± 0.200 0.217 ± 0.062
f

B

C D

A

FIGURE 4

Linear Plot of Predicted and Theoretical GPR. (A) Linear plot of each site stratification vs. actual GPR for LASSO Regression model. (B) Linear plot
of each site stratification vs. actual GPR for Support Vector Machine Regression model. (C) Linear plot of each site stratification vs. actual GPR
for Random Forest Regression model. (D) Linear plot of each site stratification vs. actual GPR for XGBoost Regression model.
TABLE 2 R2 values across all 10-fold for each model.

R2 All Prostate Spine Thorax

LASSO Regression 0.121 + 0.005 0.024 + 0.009 -19.904 + 1.971 -0.853 + 0.101

SVM Regression 0.605 + 0.036 0.537 + 0.046 -0.681 + 0.971 0.700 + 0.149

Random Forest Regression 0.940 + 0.019 0.933 + 0.022 0.230 + 0.370 0.831 + 0.118

XGBoost Regression 0.981 + 0.015 0.979 + 0.018 0.602 + 0.577 0.965 + 0.017
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zero correlation with 1%/1mm GPR across all the four different

stratifications. This is essentially due to the perpendicular

composite dose measurement method where the detector is

always moving together with the beam (1).

Looking at MLC related RMSE, most correlations across all four

stratifications are found to be negatively correlated with GPR which

are to be expected as a larger RMSE value would means that a larger
Frontiers in Oncology 07
error is present during beam delivery and thus, a lower GPR will be

obtained. However, there is an anomaly for spine correlation. This

could possibly be attributed to the large variability in the selected

spine treatment plan as the treatment areas span C1 in the cervical

vertebrae all the way to S5 in the sacrum. This causes a large variation

in the treatment plan as different organ-at-risk will needs to be

avoided for different location along the spine. We reckon a better

approach to achieving higher performance in spine plan will be to

further stratify the plans based on the spine positions. This, however,

cannot be done currently in our datasets as there are insufficient log

files within the spine site to accommodate further stratification, which

could lead to an unreliable model with large prediction interval.

Focusing on the correlation involving field opening RMSE, all

treatment sites show a negative correlation with GPR, spine

treatment site shows a positive relationship while the last two

stratifications show no significant correlation. MCS’s correlation

with GPR also shows similar trend as field opening RMSE. This can

be attributed to the field opening being one of the factors in the

calculation of MCS. Overall, no conclusive correlation is observed

between MCS and GPR. This agrees with the paper by M. C. Glenn

et al. which mention complexity metrics have limited predictive

utility in assessing plan performance (14).
B

C D

A

FIGURE 5

Residual Plot for Different Model. (A) Residual plot for LASSO Regression Model. (B) Residual Plot for Support Vector Machine Regression. (C)
Residual Plot for Random Forest Regression. (D) Residual plot for XGBoost regression model.
FIGURE 6

Importance F-Score for XGBoost Regression.
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4.2 Machine learning model

XGboost regression was found to be the best performing ML

model for predicting GPR. It has a R2 value of 0.981 ± 0.015

which indicates a good fit when compared to a theoretical perfect

value of 1. The RMSE also shows a value of (0.652 ± 0.276)%.

XGBoost regression shows the lowest average RMSE value across

the 10-folds which agrees with the R2 results in Table 2.

From Tables 2, 3, we can see that LASSO regression

and support vector regression do not perform as well in terms

of R2; spine plan even shows a negative R2 value. In LASSO

regression, the relationship between the variables and response

are assumed to be linear which might not always be the case. On

the other hand, support vector machine does not filter the

features that are input into the model. This might result in

introducing noise into the model which affects the

decision model.

In the plot of predicted against true values of GPR in

Figure 4, all the models are able to produce the expected

relation between the predicted and true values of GPR except

for spine treatment plans in LASSO model. For LASSO

regression, a single point of outlier which predicted a value of

above 100% for GPR can be seen. This might have resulted in an

anomalous negative trend in the spine treatment site. The best

performing model, XGBoost regression, has the greatest number

of points lying close to the line which accounts for the high R2

value and also low RMSE value where data points are on

average closer.

In the residual plot in Figure 5, the residuals of LASSO

regression, Support Vector Machine regression and Random

Forest regression is skewed towards the positive value which

indicates that the model predicts a higher value than actual. This

is not ideal as the model favours false negative. In clinical setting,

false positive is preferred over false negative as it is better to

predict a lower GPR for “passing plan” than a higher GPR for

“failing plan”.

In the case of feature importance for XGBoost regression,

dose rate is found to be the strongest predictor of GPR in the

model. This can be explained by examining the correlation plot

in Figure 3A which shows a highly statistically significant

positive correlation between dose rate and MU per arc. The

high MU is indicative of higher leakage and could lead to a lower

GPR. This is substantiated by the negative correlation between

MUs per arc and the 1%/1mm GPR in Figure 3A. This result

agrees with the work by Wu et al. which mention that the higher

the number of fields and MUs in each field will affect the

treatment efficiency and quality assurance passing rate (15).

Higher MU also implies relatively smaller segments and higher

modulation in treatment plans.

There are several limitations which can be found in this

study. In ML modelling, the final model is commonly tested for

generalisability across data. In this case, external testing data,
Frontiers in Oncology 08
which is absent, should be used for evaluation of the model. Also,

although there is a large number of log files used in this study

(when comparing across the sample size used in PSQA-related

ML studies), the number of unique patients is limited. Future

study involving a larger patient sample size will need to be

conducted. Also in this study, GPR is obtained using only portal

dosimetry method. Despite the ability of portal dosimetry to

identify various modes of delivery errors (16), there are other

complementary PSQA tools in the commercial market. This

work can be potentially extended to examine the prediction of

GPR from other PSQA tools.
5 Conclusion

In this study, ML is able to predict the familiar GPR metric

of treatment plans using log files. This can be helpful as PSQA

could potentially be expanded to all treatment fractions and

allows physicist to monitor LINAC consistency throughout

treatment and intervene when needed. The reduction of wear

and tear of the EPID can also saves cost and reduce downtime

of machines.
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