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Neutrophil extracellular
traps-associated modification
patterns depict the tumor
microenvironment, precision
immunotherapy, and
prognosis of clear cell
renal cell carcinoma

Zhi-Hai Teng, Wen-Ce Li, Zhi-Chao Li, Ya-Xuan Wang,
Zhen-Wei Han and Yan-Ping Zhang*

Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
Background: Neutrophil extracellular traps (NETs) are web-like structures

formed by neutrophils, and their main function is antimicrobial defense.

Moreover, NETs have numerous roles in the pathogenesis and progression of

cancers. However, the potential roles of NET-related genes in renal cell

carcinoma remain unclear. In this study, we comprehensively investigated

the NETs patterns and their relationships with tumor environment (TME),

clinicopathological features, prognosis, and prediction of therapeutic benefits

in the clear cell renal cell carcinoma (ccRCC) cohort.

Methods: We obtained the gene expression profiles, clinical characteristics,

and somatic mutations of patients with ccRCC from The Cancer Genome Atlas

database (TCGA), Gene Expression Omnibus (GEO), and ArrayExpress datasets,

respectively. ConsensusCluster was performed to identify the NET clusters. The

tumor environment scores were evaluated by the “ESTIMATE,” “CIBERSORT,”

and ssGSEA methods. The differential analysis was performed by the “limma” R

package. The NET-scores were constructed based on the differentially

expressed genes (DEGs) among the three cluster patterns using the ssGSEA

method. The roles of NET scores in the prediction of immunotherapy were

investigated by Immunophenoscores (TCIA database) and validated in two

independent cohorts (GSE135222 and IMvigor210). The prediction of targeted

drug benefits was implemented using the “pRRophetic” and Gene Set Cancer

Analysis (GSCA) datasets. Real-time quantitative reverse transcription

polymerase chain reaction (RT-PCR) was performed to identify the reliability

of the core genes’ expression in kidney cancer cells.

Results: Three NET-related clusters were identified in the ccRCC cohort. The

patients in Cluster A had more metabolism-associated pathways and better

overall survival outcomes, whereas the patients in Cluster C had more
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1094248/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1094248/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1094248/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1094248/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1094248/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1094248/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1094248/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1094248&domain=pdf&date_stamp=2022-12-22
mailto:zyphbmu@126.com
https://doi.org/10.3389/fonc.2022.1094248
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1094248
https://www.frontiersin.org/journals/oncology


Teng et al. 10.3389/fonc.2022.1094248

Frontiers in Oncology
immune-related pathways, a higher immune score, and a poorer prognosis

than those in Cluster B. Based on the DEGs among different subtypes, patients

with ccRCC were divided into two gene clusters. These gene clusters

demonstrated significantly different immune statuses and clinical features.

The NET scores were calculated based on the ten core genes by the Gene

Set Variation Analysis (GSVA) package and then divided ccRCC patients into two

risk groups. We observed that high NET scores were associated with favorable

survival outcomes, which were validated in the E-MTAB-1980 dataset.

Moreover, the NET scores were significantly associated with immune cell

infiltration, targeted drug response, and immunotherapy benefits.

Subsequently, we explored the expression profiles, methylation, mutation,

and survival prediction of the 10 core genes in TCGA-KIRC. Though all of

them were associated with survival information, only four out of the 10 core

genes were differentially expressed genes in tumor samples compared to

normal tissues. Finally, RT-PCR showed that MAP7, SLC16A12, and SLC27A2

decreased, while SLC3A1 increased, in cancer cells.

Conclusion: NETs play significant roles in the tumor immunemicroenvironment

of ccRCC. Identifying NET clusters and scores could enhance our understanding

of the heterogeneity of ccRCC, thus providing novel insights for precise

individual treatment.
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Introduction

Renal cell carcinoma (RCC) is one of the most common

urological carcinomas (1). In 2022, the number of tumor cases and

cancer-associated deaths in China are expected to reach 7,410 and

46,345, respectively (2). Although the diagnosis and management

of RCC have improved (3), its incidence is expected to increase

globally. Moreover, approximately 30% of patients are diagnosed

with advanced ccRCC, develop distant metastases, and have a

poor prognosis due to the atypical symptoms in the early stage of

ccRCC (1). ccRCC is the most common subtype of RCC (4). Thus,

for better personal precision therapy and management,

investigating novel biomarkers is an urgent necessity.

Neutrophils are one type of affluent inflammatory cell in the

tumor microenvironment (TME). They could activate cancer cells

and desorbmodified DNA structures coated with cytoplasmic and

granular proteins (5). The web-like structures released by

neutrophils to trap microorganisms are termed neutrophil

extracellular traps (NETs) (6, 7). Commonly, NETs play critical

roles in infectious and non-infectious conditions, such as bacterial

and viral infections (5), cystic fibrosis (8), and psoriasis (9).

Recently, NETs have been reported to be involved in tumor

growth, metastatic spread (10, 11), and immunomodulatory

(12). Moreover, NET extrusion exerts a protective effect on the
02
tumor from NK cells and T cells (13). NETs can increase the

metastatic potential of circulating tumor cells through

augmentation of cell cycle progression (14). Hu et al. reported

that NETs could promote the dysfunction of glomerular

endothelial cells and pyroptosis in diabetic kidney disease (15).

NETs are closely associated with dirty necrosis in RCC (16).

Several recent studies have documented the scrutiny of NET-

related genes for head and neck squamous cell carcinomas (6),

non-small-cell lung cancer (17), and breast cancer (18); however,

few studies have focused on the functions of NETs in kidney

diseases, particularly kidney cancers. Therefore, it is meaningful to

explore new NET-related biomarkers to identify the molecular

characteristics of NETs in patients with kidney cancer.

Considering the previous findings, we performed a systemic

study on NET-related genes to investigate their roles in the

ccRCC cohort. In this study, we first screened the expression,

protein–protein network, and prognostic values in the TCGA-

KIRC dataset. Based on the expression of NET-related genes, we

classified ccRCC patients into three clusters. Patients were

further stratified into two gene clusters based on the

differentially expressed genes (DEGs) among the three NET

subtypes. We further constructed a scoring system to predict

overall survival (OS), which may form the basis for research on

ccRCC precision treatment.
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Methods

Data collection and processing

The RNA-sequencing dataset of 534 kidney renal clear cell

carcinoma (KIRC) samples, which contained mRNA and clinical

and survival data, were acquired from UCSC Xena (http://xena.

ucsc.edu/). The GSE29609 dataset, which contained 39 KIRC

samples, were downloaded from the GEO database. The mRNA

expression levels were transformed from counts to transcripts

per kilobase million (TPM) values. The batch effects of the two

datasets were eliminated by “ComBat” from the “sva” R package,

and principal component analysis (PCA) was performed to

demonstrate the before and aftereffects. Finally, 573 samples,

14,074 genes were enrolled into our after-batched cohort. The E-

MTAB-1980 dataset, which contained 101 patients with ccRCC,

was downloaded from ArrayExpress (https://www.ebi.ac.uk/

arrayexpress/).
Exploration of the genetics and
biological significance of NET
genes in KIRC

According to previous studies (19–22), we acquired a list of

published NET gene sets, which had 69 genes with NET initial

biomarkers. The mRNA expression and prognostic values of

NETs were based on the TCGA-KIRC dataset. The network of

69 genes was explored based on the GeneMANIA (http://

genemania.org/) website.
Unsupervised clustering analysis

The unsupervised consensus clustering algorithm was

applied to assess the variability and stability of clusters based

on NET-related and NET subtype-related genes from the

ConsensusClusterPlus (23) R package. Then Kaplan–Meier

survival analysis was performed to explore the prognosis

among different clusters based on the survival (24) and

survivor (25) R packages.
Gene set variation analysis

The 50 terms of the HALLMARK pathway, the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway, and

the Reactome pathway were downloaded from the Molecular

Signatures Database (MsigDB, http://software.broadinstitute.

org/gsea/msigdb/). Then, function enrichments for different

subtypes were performed using the GSVA (26) and

ClusterProfiler (27) R packages.
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The immune infiltration landscape of the
ccRCC cohort

The StromaScore, ImmuneScore, and ESTIMATEScore were

calculated with the “ESTIMATE” R package. The ImmuneScore

and StromalScore were the abundance of immune and stromal

components, respectively. The ESTIMATEScore was the total

values of ImmuneScore and StromalScore. The abundance of 23

kinds of infiltrating immune cells (28) was evaluated using the

ssGSEA method from the GSVA (26) R package.
Calculation of NET score (NET-scores)

According to the mRNA expression of NET subtype-related

genes, 94 DEGs were used for further univariate Cox regression

analysis. Then the NET score was calculated as an enrichment

score (ES) by the ssGSEA method from the GSVA R package

based on the top ten genes with P <0.05 samples. The ccRCC

cohort was divided into high and low NET score groups based

on the optimal cutoff value.
Prognosis, enrichment analysis, genetic
alterations, chemokines, immune
exploration, and clinical feature analysis
based on NET-scores

The prognosis analysis between the high- and low-NET

score groups was tested using the log-rank method. The

correspondence among different groups, subtypes, and survival

outcomes was shown as Sankey diagrams by the “ggalluvial” R

package. The hallmark enrichment analysis between different

NET score groups was done using the GSVA R package and

genetic alterations by the “maftools” (29) R package. The mRNA

expression of chemokines between different NET score groups

was displayed using a heatmap. The clinical characteristics of

“survival outcomes,” “clinical grade,” “TNM,” and “clinical

stage” were selected to demonstrate the discrepancy in the

different NET score groups.
Expression levels of immune
checkpoints, immunotherapy response,
and drug sensitivity of patients in
different NET-score groups

Two immunotherapy-treated cohorts, the IMvigor210 cohort

(288 urological tumor patients treated with anti-PDL1) and the

GSE135222 cohort (27 lung carcinoma patients treated with anti-

PD-1/PD-L1), were collected to explore the immunotherapy

response ability of NET scores. The pRRophetic (30) package
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was implemented to predict the half-maximal inhibitory

concentration (IC50) of 138 antitumor agents.
Online analysis

mRNA expression, single nucleotide variation (SNV), copy

number variation (CNV), drug sensitivity, and methylation of

genes were analyzed by the GSCA database (http://bioinfo.life.hust.

edu.cn/GSCA/#/). The protein levels of core genes in human tumor

and non-tumor samples were acquired from the Human Protein

Atlas (HPA; https://www.proteinatlas.org/). The oncoplot of genes

was explored from cBioportal (https://www.cbioportal.org/).
Cell culture and RT-PCR

Human normal renal tubular epithelial cells (HK-2) and

kidney cells (Caki-1 and 786-O) were purchased from the ATCC

company. All cells were cultured in RPMI 1640 as previously

described (28). Total RNA from the cultured cells was extracted

using the Faster reagent (Invitrogen). Relative gene expression

was calculated by Eq. 2−DDCT, with GAPDH as an internal

control. The primers are as follows:
Fron
MAP7 gene 5 ’-TCATCATGCCCTACAAAGCTG-

3’(sense) and 5’-TGCCAGATGTGAGGAAGAGTA-

3’(antisense).

SLC16A12 gene 5’-TGCTTGCATCTACTGGACTCA-

3’(sense) and 5’-TGGCAATAGCTGGAGAGTAACA-

3’ (antisense).

SLC27A2 gene 5’-TGGCGCTCCTTATGGGTAACG-

3’(sense) and 5’-CTTGGCAGTATCTCTTCGACAG-3’

(antisense).

SLC3A1 gene 5’-CAGGAGCCCGACTTCAAGG-3’(sense)

and 5 ’ -GAGGGCAATGATGGCTATGGT-3 ’

(antisense).
Statistical analysis

All data were analyzed using R software (v4.1.1); a P-value

less than 0.05 was considered statistically significant. The

“limma” (31) R package was used to perform a difference

analysis. The Wilcoxon test was used for data that did not

accord with a normal distribution. A t-test was used for normally

distributed data. Univariate Cox regression analysis and the

Kaplan–Meier method were used to assess the prognostic

value of DEGs. The forest plot was achieved by “forestplot”

(32) R package. All heatmaps were performed via the R

“pheatmap” package.
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Results

Expression and prognostic values of
NET-related genes in the TCGA-KIRC

We identified 43 differential expression NET-related genes

in the TCGA-KIRC dataset, of which 20 are upregulated genes

and 23 are downregulated genes with a false discovery rate <0.05

and |log2FoldChange| >0.5 (Figures 1A, B, Supplementary

Table 1). Figure 1C shows the locations of the NET-related

genes. We then submitted the NET-related genes to

GeneMANIA for exploring their interaction network. The

results revealed the co-expression to be high (62.39%) and the

physical interaction to be 15.79% (Figure 1D).
Identification of NET-related gene
subtypes in the ccRCC cohort

The TCGA-KIRC and GSE29609 datasets were merged, and

PCA demonstrated the before and after batch effects (Figure

S1A). In the merged ccRCC cohort, we performed unsupervised

clustering and classification based on these NET-related genes.

Our results showed that k = 3 appeared to be an optimal

selection (Figures 2A–C). The Kaplan–Meier survival analysis

demonstrated that the prognoses of patients were significantly

different among these subtypes (log-rank test, P <0.001,

Figure 2D). Cluster A exhibited better survival better survival

advantage than other clusters. The PCA results showed

significant differences in NET-related gene expression among

the three clusters (Figure 2E). The clinicopathological features

among the different clusters also revealed significant differences

(Figure 2F). Moreover, most of the NET-related genes were

differentially expressed (Figure 2G).
Characteristics of TME in
different subtypes

Cluster A was significantly associated with cancer-related

and metabolism pathways, such as pancreatic cancer, renal cell

carcinoma, butanoate metabolism, histidine metabolism, fatty

acid metabolism, tryptophan metabolism, and beta-alanine

metabolism (Figure 3A). Cluster C was significantly enriched

in immune-activated pathways, including NK cell-mediated

cytotoxicity, antigen processing and presentation, allograft

rejection, autoimmune thyroid disease, T and B cell receptor

signaling pathways, and Toll-like and NOD-like receptor

signaling pathways (Figure 3A). To explore the roles of NET-

related genes in the TME of ccRCC, we calculated the TME score

using the ESTIMATE method. The results revealed that Cluster

C had higher stromal and immune scores than the other two
frontiersin.org
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clusters (Figure 3B). Analysis of three critical immune

checkpoints showed significance among three subtypes

(Figure 3C). Then, the ssGSEA method was applied to

calculate the infiltrating status of immune cells and explore the

differential patterns. The results revealed that the infiltration

levels of several cells, such as activated B cells, CD4 T cells, and

CD8 T cells, were significantly higher in Cluster C than in other

clusters (P <0.05, Figure 3D), which agreed with the results of the

TME score.
Identification of gene clusters based
on DEGs

To explore genes associated with our NET-related clusters,

differential gene analyses were performed to select the DEGs

among clusters A–C by using “limma” R packages (|logFC| >1.5

and P-value <0.05, Figure S1B). The DEGs of these results were

then combined, and 94 genes were enrolled for further analysis.

The GO enrichment of DEGs demonstrated that the NET
Frontiers in Oncology 05
subtype-related genes were significantly enriched in

transmembrane transport and transporter activity (Figure 4A).

The KEGG analysis revealed enrichment of immune response-

related diseases (such as coronavirus disease 2019 and systemic

lupus erythematosus) and cancer-related pathways (Figure 4B),

which indicated that NETs may play a critical role in

immunomodulation. Then, the univariate Cox method was used

to explore the prognostic values, and 89 genes were found to be

related to OS time (Supplementary Table 2). The top ten genes

(SLCA16A12, SLC3A1, TMEM27, GFPT2, NPR3, MAP7,

BBOX1, PDK4, SLC27A2, and CUBN) with the smallest P-

value were selected for further analysis (Figure 4C). Based on

these 10 prognostic genes, patients were divided into two clusters,

namely gene clusters A and B (Figure 4D). The Kaplan–Meier

curves demonstrated that patients in gene cluster B had poor OS,

whereas those in gene cluster A had favorable OS (P-value <0.001,

Figure 4E). In addition, the gene cluster A patterns were closely

related to the late TNM stage (Figure 4F). The expression profiles

of 10 hub genes were significantly different, consistent with the

expected gene clusters (Figure 4G).
A B

C D

FIGURE 1

The landscape of neutrophil extracellular trap-associated genes in the TCGA-KIRC. (A) Volcano plot and (B) heatmap of 69 NET-associated
genes in ccRCC and non-tumor samples. (C) The location of the NET-associated genes on different chromosomes. (D) GeneMANIA gene–gene
interaction network showed the correlation among different genes.
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A B C

D F

E

G

FIGURE 2

NET subtypes and clinicopathological features of three clusters. (A) Consensus matrix of ccRCC samples’ co-occurrence proportion for k = 3.
(B, C) Consensus clustering CDF for k from 2 to 9. (D) The Kaplan–Meier plot showed the overall survival differences among the three subtypes
in the ccRCC cohorts. (E) Principal component analysis of ccRCC samples grouped by clusters. (F) Heatmap showing the association of
subtypes with clinical characteristics and expression of neutrophil extracellular trap-associated genes. (G) The boxplot of neutrophil extracellular
trap-associated genes among different clusters. ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001.
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A

B C

D

FIGURE 3

The biological characteristics and landscape of immune status among different subtypes. (A) KEGG enrichment analysis of three NET subtypes. (B)
The ESTIMATE proportion of stromal score, immune score, and ESTIMATE score among the three clusters. (C) The gene expression profiles of three
common immune checkpoint genes, PDCD1, LAG3, and CD274. (D) The infiltration levels of 23 immune cell types among three subtypes. **p <
0.01, ***p < 0.001.
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Calculation of the NET scores, and
evaluation of TME and chemokines in
different risk groups

Based on the 10 core genes, we used the ssGSEA method to

calculate the NET scores of each patient in the ccRCC cohort. The
Frontiers in Oncology 08
patients were then divided into high (n = 337) and low (n = 236)

risk score groups based on the NET scores. Moreover, compared

with the low NET-score group, the high NET-score group had a

favorable OS (Figure 5A), which was also validated in E-MTAB-

1980 (Figures S1D–G). We observed a significant difference in the

NET scores among different subtypes, which are displayed in
A B

C D E

F G

FIGURE 4

The different expression genes (DEGs), enrichment pathways among different clusters, and consensus clustering based on DEGs. (A) The GO and (B)
KEGG enrichment of different subtypes. (C) The forest plot for ten core DEGs based on univariate Cox regression analysis. (D) Consensus matrix of
ccRCC samples’ co-occurrence proportion for k = 2. (E) Kaplan–Meier curves for the two gene clusters of ccRCC patients. The log-rank test shows
an overall p <0.001. (F) Heatmap showing the relationship among the clinicopathological characteristics of the gene clusters. (G) The boxplot of
gene expression of ten core genes between the two subtypes. ***p < 0.001.
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Figures 5B, C. Cluster C had the lowest NET scores, whereas Cluster

A had the highest, revealing that NET scores may be closely

associated with immune-infiltration status (Figure 3B). Figure 5D

shows the plots displaying the distribution of patients in three

clusters: two gene clusters and two risk score groups.

To investigate the relationship between the abundance of

immune cells and NET-scores, we performed the CIBERSORT
Frontiers in Oncology 09
algorithm to assess. As shown in the correlation matrix, the

NET-scores were positive for NK cells and neutrophils, and

negative for type 2 helper T cells (Figure 5E). The heatmap

showed that several chemokines, interleukins, interferons, and

their receptors were significantly overexpressed in the high

NET-score group (Figure 5F), indicating that NET scores may

provide novel targets for anti-tumor immunity.
A B C

D F

E

FIGURE 5

Construction of the NET-score system and clinical prognosis analysis in ccRCC patients. (A) Kaplan–Meier curves for high and low NET-score
ccRCC patient groups (log-rank test, P <0.001). Differences in NET scores among the three clusters (B) (P <0.001) and two gene clusters
(C) (P <0.001). (D) Alluvial diagram of NET-associated gene clusters in groups with different gene clusters, NET-score groups, and survival
outcomes. (E) The correlation matrix of all infiltrating immune cells. Some fractions of immune cells were positively related and are represented in
red, whereas others were negatively related and are represented in blue. p <0.05 was the cut-off. (F) Heatmap showing the relationship between
scoring groups and chemokines, interferons, and cytokines. *p < 0.05, **p < 0.01, ***p < 0.001.
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Clinical characteristics of the NET-scores
and functional enrichment between
different subtypes

To assess the effect of the NET scores on clinical

characteristics, we investigated the association between the NTE

scores and several critical features (overall survival status, grade,

stage, and TNM stage). The results demonstrated that patients

with higher NET scores were associated with a better survival

status (Figure 6A). Moreover, advanced tumor stages (Grades 3–4,

Stages III–IV) also displayed low NET scores (Figures 6B, C),

which were also observed in tumor size (Figure 6D), regional

lymph node status (Figure 6E), and metastasis (Figure 6F).

To further analyze the specific mechanism, common

functional enrichments were performed between the high and

low NET-score groups using the GSVA method. The hallmark

results indicated that high NET scores were associated with several

metabolisms and oxidative phosphorylation pathways, such as

fatty acid metabolism and xenobiotic metabolism (Figure 6G),

which were also identified in the KEGG enrichment results

(Figure 6H). Furthermore, the hallmark and KEGG enrichment

showed that the high NET-score group was associated with a

series of immune-related pathways, such as allograft rejection and

autoimmune thyroid disease (Figures 6G, H).
Evaluation of checkpoints and
immunotherapeutic benefit between the
high- and low-NET-score groups

We next investigated the expression profiles of three

checkpoints (PDCD1, LAG3, and CD274), immunophenoscores

(IPS), and immune-checkpoint therapy response. The results

demonstrated that PD-1 (PDCD1) and LAG3 were significantly

higher in the low NET-score group than the high NET-score

group, whereas the PD-L1 (CD274) level displayed a reverse

discrepant trend (Figures 7A–C). According to the above

results, we speculated that the PD-1 inhibitor is more reactive in

the low NET-score group and the PDL-1 inhibitor is more

effective in the high NET scores. IPS, as the novel method for

evaluating the potential clinical efficacy of immunotherapy, was

calculated to predict the immunotherapeutic benefit. The results

revealed that the high IPS with a positive CTLA-4 signature was

associated with high NET-scores (Figure 7D).

In the subsequent analysis, we included two public datasets,

GSE135222 and IMvigor210 to predict the immunotherapeutic

efficacy. Patients with low NET scores were more likely to benefit

from immunotherapy (Figures 7E, H). Compared to the high-

risk group, there was an increase in patients with responses in

the low-risk group (Figures 7F, I). Patients with low NET scores

showed significant immunotherapeutic benefits and favorable

survival (Figures 7G, J).
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Pathway activity and drug
sensitivity analysis

As chemotherapy is still a traditional therapy method for

ccRCC, particularly for advanced ccRCC, we investigated the

response of the two NET-score groups to common chemo-

drugs. As shown in Figures 8A–H, compared with the high

NET-score group, sunitinib (P-value = 3.6e−08) and rapamycin

(P-value <0.001) showed lower IC50 values in the low NET-

score group, whereas sorafenib (P-value = 1.2e−14), lapatinib

(P-value= 0.038), erotinib (P-value = 3e−09) and axitinib

(P-value =0.081) showed higher values in the low NET-score

group, suggesting that patients in the low NET-score group were

more likely to respond well to sunitinib, and poorly to sorafenib and

axitinib than those in the high NET-score group. Based on the

GSCA dataset, we first explored the activity pathways in the TCGA-

KIRC. As shown in Figure 8I, the NET scores were negatively

associated with apoptosis, cell cycle, andDNAdamage and positively

associated with PI3K/AKT and RTX pathways. This indicated that

the NET scores were more likely to play roles in apoptosis and cell

cycle by regulating PI3K/AKT and RTX pathways. The drug

sensitivity in the pan-cancer analysis of GDSCs and CTRP is

shown in Figures 8J–K. The results demonstrated that BRD-

A96377914, tubastatin A, BRD-K85133207, WZ8040, afatinib,

canertinib, ibrutinib, cetuximab, gefitinib, TGX221, CCT007093,

and RO-3306 were more likely to function well.
Genetic mutations of two NET-score
groups, landscape, and validation of
core genes

To investigate the mutation status between the two NET-

score groups, genetic mutations were analyzed using the

maftools (29) R package. The results revealed that the high

NET-score group had a higher mutation rate than the low NET-

score group (70.05% vs 58.4%). The top 10 most frequently

mutated genes are displayed in Figure S1C. Subsequently, the

landscape of 10 core genes was explored in the TCGA-KIRC.

The results demonstrated that only four genes (MAP7,

SLC16A12, SLC27A2, and SLC3A1) were DEGs in ccRCC

compared to normal samples (Figure S2A). Four genes had

more than a 1% mutation rate (Figure S2B). The 10 core genes

were significantly associated with DSS, OS, and PFS (Figure

S2C). Several genes were positively correlated with methylation

levels, whereas CUBN, MAP7, and SLC16A12 were closely

associated with copy number variation (CNV) levels (Figure

S2D). Most of the genes (9/10) were positively associated with

PI3K/AKT, RTK, and hormone AR activity and negatively

associated with apoptosis, cell cycle, and DNA damage (Figure

S2E). Considering only four genes were DEGs, we explored these

four genes in the CCLE dataset. The results revealed that the
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basal expression profiles of MAP7, SLC16A12, and SLC3A1

were high in kidney cancer cells (Figure S2F). The RT-PCR

showed that MAP7, SLC16A12, and SLC27A2 were decreased in

786-0 and Caki-1 compared with HK2, while SLC3A1 increased

(Figure S2G), which was consistent with the results of the

TCGA-KIRC (Figure S2A). The protein levels of HPA

demonstrated that MAP7 and SLC27A2 levels were lower, and

SLC3A1 levels were higher, in tumor tissues than in normal
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samples (Figure S2H), in accordance with the results of the

TCGA-KIRC and RT-PCR.
Discussion

ccRCC, the most common subtype of RCC, is highly

associated with poor clinical outcomes (33). Emerging
A B C

D E F

G H

FIGURE 6

The correlation of NET-scores with clinic-pathological characteristics, hallmark and KEGG enrichment between high- and low-NET-score
groups. The boxplot of different survival status (A), clinical grade (B), clinical stage (C), tumor stage (D), regional lymph node status (E), and
distant metastasis (F). The hallmark (G) and (H) KEGG enrichment between high- and low-NET-score groups.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1094248
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Teng et al. 10.3389/fonc.2022.1094248
treatments such as targeted drugs and immunotherapy have

significantly enhanced the prognosis of patients with advanced

ccRCC; however, the effectiveness of these treatment strategies

still needs to be improved (34). Moreover, ccRCC has strong

immune-associated characteristics (35). Thus, reliable

biomarkers are urgently required to predict recurrence risk

and guide treatments. NETs and immune cell infiltrations
Frontiers in Oncology 12
have been reported to have critical roles in tumor progression

(36). Sivan et al. first described the association between NETs

and cancer (Ewing sarcoma) (12). Subsequently, there are

increasing studies on NETs and cancer. For example, NETs

drive the process of endothelial-to-mesenchymal transition (37).

Aldabbous et al. identified that NETs promote angiogenesis (38).

Moreover, NETs promote cancer-associated thrombosis via
A B C

D

E F G

H I J

FIGURE 7

The mRNA expression of immune checkpoint genes and immunotherapeutic benefits. The PDCD1 (A), LAG3 (B), and CD274 (C) expression
between different NET-score groups. The association between IPS and NET scores (D). The different immunotherapy responses between high-
and low-NET-score groups in GSE135222 (E–G) and IMvigor210 (H–J) datasets. *p < 0.05, **p < 0.01, ***p < 0.001.
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thrombin generation and the conversion of fibrinogen to fibrin

(39). Additionally, many prognostic signatures based on NETs

have been reported in human cancers (19, 20). However,

whether NETs are also involved in tumor prognosis and play

prognostic values in ccRCC has not been explored. Therefore, we

collected the expression profiles of NET-related genes and
Frontiers in Oncology 13
cl inical characterist ics from the TCGA, GEO, and

ArrayExpress datasets and comprehensively explored the

NET-related genes in the ccRCC cohort.

In the current study, we first examined the roles of NET-

related genes in the TCGA-KIRC and found that 43 of 69 genes

were significantly differentially expressed in the tumor samples
A B C D

E F G H

I

J K

FIGURE 8

The pathway activity, drug sensitivity in ccRCC cohorts and pan cancer. (A–H) The drug sensitivity of eight common targeted compounds. (I)
The associations of NET scores with activity pathways in the TCGA-KIRC dataset. (J) The correlation between gene expression and the
sensitivity of GDSC drugs in pan-cancer. (K) The correlation between gene expression and the sensitivity of CTRP drugs in pan-cancer.
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compared to non-tumor tissues. Moreover, most of the genes

were prognostic genes. Then, three NET-related subtypes

(Clusters A–C) were identified in the ccRCC cohort by

consensus cluster algorithms. It was found Cluster B had low

levels of NET-related genes and low abundance of immune cells

infiltration, whereas Cluster C had high levels of NET-related

genes and immune cell infiltration. Moreover, the three subtypes

had significantly different overall survival outcomes. The

differences in mRNA expression profiles among the three

subtypes were dramatically correlated with metabolism- and

immune-related biological pathways. We identified two gene

clusters, A and B, based on the DEGs among the three NET-

related subtypes. Our findings suggested that NETs act as a

predictor for clinical survival outcomes, targeted drugs, and the

immunotherapy response of ccRCC. Therefore, we established

the NET scores based on 10 hub genes by using the ssGSEA

method. Patients with low and high NET scores showed

significant discrepancies in clinical characteristics, prognosis,

immune cell infiltrations, immune checkpoints, and activity

signal pathways.

As for the 10 core genes, MAP7, SLC16A12, SLC27A2, and

SLC3A1 were significantly different in patients with ccRCC

when compared to non-tumor samples. MAP7, Microtubule-

associated protein 7, functions as a regulator of microtubule

bundling and dynamics. Several studies had reported MAP7

involved in cell cycle progression (40) and autophagy pathway in

cancers (41). SLC16A12, SLC27A2, and SLC3A1 belonged to the

solute carrier group of membrane transport proteins (42). Liu

et al. reported that decreased expression of SLC16A12 mRNA

levels was associated with a poor prognosis for ccRCC (43).

Upregulation of SLC27A2 could inhibit the proliferation and

invasion of RCC via a CDK3-mediated pathway (44). SLC3A1,

the cysteine carrier, has been reported to promote breast cancer

tumorigenesis via AKT signaling (45). In our study, we found

MAP7, SLC16A12, and SLC27A2 in kidney cancer cells when

compared with normal kidney cells, which agreed with the

results of the TCGA-KIRC. Generally, the results indicated

that MAP7, SLC16A12, SLC27A2, and SLC3A1 could be the

biomarkers for the complement system of ccRCC.

Immunotherapies, particularly immune checkpoint

inhibitors (ICIs), have transformed the treatment of several

advanced carcinomas (46–49). Although clinical benefits have

been achieved when patients with ccRCC receive ICIs, the

responses demonstrated personal heterogeneity (50). Thus,

looking for markers to predict the responses of ICI treatment

is highly important. In our study, we observed higher expression

levels of PD1 and LAG3 in Cluster C and low NET scores.

Moreover, we found that the NET scores were significantly lower

in patients responding to ICIs, which identified their predictive

effects. These results suggested that patients with low NET scores

and higher expression levels of PD1 and LAG3 are more likely to
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respond to ICI treatment. Considering that targeted therapy

remains the recommended treatment for patients with advanced

ccRCC, we evaluated eight common drugs based on the GDSC

dataset. The results showed that a low-NET-score group might

be likely to acquire benefits from sorafenib, axitinib,

gemcitabine, and lapatinib treatments. The above results

indirectly suggested the use of NET modifications for

predicting clinical benefits from ICI and targeted therapy.

Although in the present study we identified three NET

clusters, established a NET-score system, and provided a novel

perspective for precise immunotherapy and targeted therapy for

ccRCC, several limitations should be addressed. First, all

analyses were performed on data obtained from public

datasets; thus, the analysis results might be influenced by an

intrinsic case selection bias. Large-scale prospective studies and

cell and animal experimental research are necessary to confirm

our findings.

In conclusion, our study expansively displayed the

relationship between NET modification patterns and TME,

clinical characteristics, and prognosis. We also assessed the

treatment sensitivity prediction of NETs in ICI and targeted

treatments. Finally, we constructed a NET-score system for

quantifying the NET patterns of patients with ccRCC and

validated the expression of core genes. Thus, the findings of

the present study might facilitate our understanding of ccRCC

and provide ideal strategies for individual treatment.
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SUPPLEMENTARY FIGURE 1

The PCA differential, mutation analysis in different groups, and validation
of E-MTAB-1980. (A) Principal component analysis of before and after
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removing batch effects in TCGA-KIRC and GSE29609 cohorts. (B) The
volcano plot for differential analysis between different clusters. (C) The
waterfall plot for high and low NET-scores in TCGA-KIRC. (D) Consensus
matrix, (E) consensus clustering CDF, and (F-G) Kaplan–Meier curves for

different clusters, and NET scores for ccRCC samples in E-MTAB-1980.

SUPPLEMENTARY FIGURE 2

The expression profiles, mutation, and survival analysis of cores genes.
The differential analysis (A), mutation (B), survival analysis (C), correlations
between mRNA expression and CNV, methylation (D), pathways activity
(E) based on TCGA-KIRC dataset. ThemRNA expression of four differential

expressed cores in CCLE dataset (F). RT-PCR validated the mRNA

expression of four differential expressed cores (G). The expression
profiles of differential expressed cores in HPA dataset. Notes: SLC16A12

cannot be found in HPA.

SUPPLEMENTARY TABLE 1

The differential expression results of NET-related genes in TCGA-
KIRC dataset.

SUPPLEMENTARY TABLE 2

The results of univariate Cox regression for 94 DEGs in ccRCC cohort.
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