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Cellular signaling pathways are intricately regulated to maintain homeostasis.

During cancer progression, these mechanisms are manipulated to become

harmful. O-glycosylation, a crucial post-translational modification, is one such

pathway that can lead to multiple isoforms of glycoproteins. The Tn (GalNAc-

O-Ser/Thr) and Sialyl Tn (STn; Neu5Ac-GalNAc-O-Ser/Thr) antigens resulting

from the incomplete synthesis of fully branched O-glycan chains on proteins

contribute to disease progression in the pancreas and other gastrointestinal

cancers. The tumor microenvironment (TME) is a major constituent of tumors

and a key modulator of their behavior. Multiple cellular and secretory

components of the TME dictate the development and metastasis of tumors.

Immune cells like macrophages, natural killer (NK) cells, dendritic cells, B and T

lymphocytes are a part of the tumor “immune” microenvironment (TIME). The

expression of the Tn and STn antigens on tumors has been found to regulate

the function of these immune cells and alter their normal antitumor cytotoxic

role. This is possible through multiple cell intrinsic and extrinsic signaling

pathways, elaborated in this review. Studying the interaction between Tn/STn

antigens and the TIME of gastrointestinal cancers can help develop better and

more robust therapies that can counteract immunosuppressive mechanisms to

sensitize these tumors to anticancer therapies.

KEYWORDS

Tn antigen, STn antigen, glycosylation, immune cells, tumor microenvironment (TME),
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1 Introduction

The advancement of proteomics and its different tributaries, like phospho-

proteomics, has facilitated the understanding of the structural and functional roles

of various proteins in cancer cells. Protein function is influenced by many cellular

signals and post-translational modifications (PTMs). Glycosylation is a ubiquitous and
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prominent PTM, with glycan structures found on secretory and

membrane-bound proteins. The reactions generating glycans

are catalyzed by enzymes called glycosyltransferases that reside

in the endoplasmic reticulum, Golgi apparatus, and some

extracellular spaces (1, 2). In humans, the two main

glycosylation pathways are N-glycosylation, in which a

monosaccharide is attached to the nitrogen atom of

Asparagine on proteins, and O-glycosylation, wherein the

linkage is via oxygen atoms on Serine or Threonine amino

acid residues in proteins (3). Not surprisingly, the pathogenesis

of cancer works hand in hand with important glycan

alterations on a variety of proteins. For example, N-glycan

modifications have been found to stabilize the PD-L1 immune

checkpoint and decrease cytotoxic T-cell activity (4). O-

glycosylation-based changes are very abundant in the

evolution of cancer. One of the most abundantly expressed

aberrant O-glycoforms is the Tn antigen and its derivative, the

STn antigen (5, 6). These antigens arise from incomplete O-

glycan synthesis, leading to a dearth of fully branched O-

glycans that can be used to the advantage of tumor cells. The

multitude of mechanisms that can lead to the presence of

aberrantly glycosylated proteins and important events altered

by these Tn and STn antigens to hijack tumor cell signaling in

gastrointestinal cancers like pancreatic ductal adenocarcinoma

(PDAC) and influence the infiltration of immune cells in the

tumor niche are discussed in this review.
2 What is the Tn/STn antigen?

The process of O-glycosylation is highly complex and

regulated by a series of enzymatic reactions catalyzed by

glycosyltransferases initiated in the Golgi apparatus. The

most exposed amino acid residues on a folded protein in the

Golgi are Serine (Ser) and Threonine (Thr). O-glycosylation

begins with the addition of an N-acetylgalactosamine

(GalNAc) residue using UDP-GalNAc by the enzyme

polypeptidyl a-GalNAc transferase (ppGalNAcT) to a Ser/

Thr residue to form a covalent bond at their hydroxyl group.

This structure is called the Tn antigen (GalNAc-a1-O-Ser/

Thr), also referred to as the Thomsen-nouveau antigen (7).

Further addition of a galactose (Gal) residue to Tn forms the T

antigen, also known as the Core 1 structure (Galb1-3-GalNAc-
a1-O-Ser/Thr) or the Thomsen-Friedenreich (TF) antigen.

This is catalyzed by the enzyme T synthase (synonyms: core1

b3-galactosyltransferase, C1GALT1). T synthase is synthesized

in the endoplasmic reticulum (ER), and its proper folding is

ensured by a chaperone called COSMC (Core1-Specific-

Molecular-Chaperone). In cellular conditions devoid of a

functional T synthase, adding one sial ic acid (N-

acetylneuraminic acid or Neu5Ac or NANA) residue to the

GalNAc generates the STn antigen, a reaction catalyzed by the
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sialyltransferase ST6GalNAc-I (8). On the other hand,

elongation of the T antigen or Core 1 structure forms the

Core 2 O-glycan branching. Additionally, the Tn antigen can

be modified to create the Core 3 and Core 4 structures using a

different set of glycosyltransferases, all of which lead to

complex O-glycosylation-based branching in normal

cells (Figure 1A).
A

B

FIGURE 1

Formation of truncated O-glycans in tumors modulates cell-
intrinsic behavior and interactions with the tumor immune
microenvironment. (A). O-glycosylation in human cells involves
highly regulated sequential reactions catalyzed by
glycosyltransferases. (B). Mechanisms mediating loss of O-glycan
chain extension (mentioned in red) facilitate neoplastic
transformation, increase oncogenic signaling cascades, the
epithelial-to-mesenchymal transition process, and compromise
death receptor stability to evade apoptosis. The Tn/STn
antigens interact with macrophage-galactose lectin (MGL)
and CD206 (mannose receptor), expressing tumor-associated
macrophages (TAMs); natural killer (NK) cells; and monocytic
dendritic cells - preventing their maturation, leading to an
overall immunosuppressed microenvironment. [ppGalNAc-T,
polypeptide-GalNActransferase; C1GalT1, core1 b3-
galactosyltransferase; COSMC, Core1-Specific-Molecular-
Chaperone; C2GnT, core2 b1,6 N-acetylglucosaminyltransferase;
b3GnT6, b-1,3-N-Acetylglucosaminyltransferase; ST6GalNAc-1,
a2,6 sialyltransferase; ST3Gal-1, a2,3 sialyltransferase; PDAC,
pancreatic ductal adenocarcinoma].
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3 Molecular mechanisms leading
to generation of the Tn/STn
antigens in cancer

The aberrant overexpression of the Tn/STn antigens is

observed in many diseases and malignancies. Some of the

mechanisms that can mediate this process are as follows: (i)

Somatic mutations in COSMC can prevent proper folding of T

synthase (C1GALT1) and render it incapable of extending the

Tn structure (9); (ii) Epigenetic silencing of either COSMC or T

synthase transcription as identified in the “Tn syndrome” in

hematopoietic cells and pancreatic cancer (10); (iii) Aberrant

expression or subcellular localization of the ppGalNAcT

enzymes (11, 12); (iv) Loss of availability of the necessary

UDP-sugars to facilitate glycan chain extension post Tn/STn

antigen formation (13); (v) Elevated expression of the

ST6GalNAc-I enzyme that can outcompete T synthase

and promote the terminal generation of the STn antigen, in a

way that inhibits further addition of any sugar by the

glycosyltransferases (14) (Figure 1A).
4 Effect of the Tn/STn antigen on
cell signaling in cancer

Cancer models like cell lines have been used to study various

mechanisms that govern the pathogenesis of tumors. In one such

expedition, researchers studying the molecular basis of breast

cancer discovered the overexpression of the Tn/STn antigens in

this malignancy for the first time (15). The Tn/STn antigens

have since been established as members of the tumor-associated

carbohydrate antigen (TACA) group of cancer biomarkers due

to their overwhelming presence in various solid tumors (16).

Radhakrishnan et al. reported for the first time that pancreatic

cancer cells possess a hypermethylated promoter for the gene

encoding COSMC in about 40% of PDAC patients studied in

their cohort. This leads to the downregulation of T synthase and

heightened Tn/STn antigen expression. These cancer cells

exhibit a highly invasive and migratory phenotype due to

altered cell-cell adhesion structures that disrupt tissue

homeostasis and instigate tumorigenic processes (17). The Tn/

STn antigen’s tumor-promoting role was further validated in

robust cell line and orthotopic models of pancreatic cancer.

COSMC knockout led to tumor spread as it enhanced the

epithelial-to-mesenchymal transition (EMT), a critical

hallmark of cancer, and increased stemness markers, including

CD133 and CD44 in PDAC cells (18). In another study, Dong

et al. knocked out the gene encoding C1GALT1 in colorectal

cancer cells, which prevented the expression of the T-synthase

enzyme, leading to the expression of the Tn/STn antigen.

Markers like N-cadherin, Snail, and Slug were all elevated in

the C1GALT1 knockout cells demonstrating the higher EMT
Frontiers in Oncology 03
potential of these Tn/STn expressing cells as compared to the

counterparts expressing the C1GALT1 (Figure 1B) (18).

Additionally, the presence of the Tn/STn antigens on the

glycoprotein MUC16 increased aggressiveness in PDAC. Tn/

STn-MUC16 bound to the a4b1 integrin complex more

efficiently than its fully glycosylated counterpart, and

augmented integrin-linked kinase (ILK) and focal-adhesion

kinase (FAK) mediated cell signaling that increased cell

survival and migration (19). A brief description of mucin-

associated truncated O-glycans in the context of immune

evasion is described in a further section.

The death receptors (DR) 4 and 5 interact with ligands

TRAIL/Apo2L and stimulate programmed cell death. There exist

crucial conserved O-glycosylation sites on these death receptors,

and mutations in these sites lead to disrupted O-glycan presence

on the receptor ectodomains, making them ineffective in

inducing apoptosis (20). Jiang et al. showed that a similar

mechanism was prevalent in cancer cells deficient in COSMC,

expressing the Tn/STn antigen. Tn/STn expression attenuated

TRAIL-induced apoptosis in cancer cells - more specifically, by

impairing homo-oligomerization and structural stability of the

DR4/5 receptors. Treating these cells with the TRAIL/Apo2L

ligands rendered the cancer cells insensitive to cell death. Thus,

the Tn/STn antigens can facilitate the escape of tumor cells from

apoptosis (21). Expression of COSMC in such Tn-positive cells

via transfection facilitated the production of a functional T-

synthase, which enabled the extension of Core 1 and Core 2 O-

glycan structures. Treating the cancer cells now containing

functionally active COSMC/T-synthase with TRAIL ligand-

mediated their apoptosis and decreased neoplast ic

transformation (Figure 1B) (21, 22).
5 Tn/STn antigen-induced
immune modulation

5.1 Immune cells affected by the
Tn/STn antigens

O-glycosylation and its involvement in immune modulation

is a field that has seen immense scrutiny in the last three decades.

In 1992, Ogata et al. demonstrated the impact of the mucin

associated STn antigen on natural killer (NK) cells in colon

cancer. This mechanism was illustrated using ovine submaxillary

mucin (OSM), which is known to be aberrantly O-glycosylated

via the expression of the STn antigen. OSM significantly

inhibited NK cell activity when combined with ammonium-

based treatment, while removing the sialyl groups from this

mucin decreased such NK cell inhibition (Figure 1B) (23). Other

synonymous signaling pathways elicited by the Tn/STn antigens,

which result in immunosuppression and facilitate aggressive

tumor progression, are highlighted below.
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Mucins comprise a group of glycoproteins, some of which –

including MUC1 and MUC16, are highly upregulated in

gastrointestinal cancers. Escape from immune cell-mediated

killing is one of the potential mechanisms of “protection”

mucins offer to the tumor (24–27). Mucins and their O-

glycans are involved in macrophage-based tumor infiltration.

The mucin CA125 (MUC16) is highly overexpressed in multiple

solid tumors – and had been initially extensively studied in

ovarian cancer (28). Tumor-associated macrophages (TAMs)

isolated from ovarian cancer patients express the C-type lectin

mannose receptor (MR), also known as CD206. This MR on the

TAMs interacts with the STn-positive regions and MUC16 on

tumor cells, which leads to the production of the anti-

inflammatory cytokine IL-10 and a decrease in the T cell

attracting inflammatory chemokine CCL3, facilitating immune

suppression (Figure 1B) (29, 30). CD206 is also heavily

expressed by TAMs in PDAC and is found to mediate

immunosuppression, possibly through such Tn interaction,

and facilitate disease progression (31). An abnormally high

expression of the Tn antigen has also been reported in patients

with high-grade glioblastoma. As with most other cancers, the

expression of the Tn antigen is specific to these cancer cells and

does not appear in normal brain cell counterparts. The TAMs in

Tn-positive glioblastomas interact with the Tn antigen via the

macrophage-galactose lectin (MGL), which is also a C-type

lectin receptor. This further instigates the infiltration of PD-

L1-positive immunosuppressive macrophages (Figure 1B) (32).

Studying the glycosylation landscape of tumors has been

deemed important in validating immunotherapies for cancer

(33). A recent study investigating the glyco-code of PDAC and

its role in immune modulation found that ligands (namely, the

Tn antigen on PDAC cells) for the MGL receptor are highly

expressed on both epithelial and mesenchymal cells of the tumor

in PDAC patients. Simultaneous activation of the MGL receptor

(by the Tn antigen) and the DC-SIGN receptor (by fucosylated

antigens) on tumor-associated macrophages (TAMs) triggered

the generation of IL-10 with a concomitant decrease in IL-6,

leading to a “tolerogenic tumor microenvironment”, incapable

of mounting a potent anti-PDAC response (Figure 1B) (33, 34).

The MGL receptor is also expressed on dendritic cells (35).

MUC1 is highly overexpressed in PDAC and is correlated with

poor prognosis (26). Napoletano et al. showed that MUC1-

associated Tn antigen (Tn-MUC1) binds the MGL receptor on

immature monocyte-derived dendritic cells (imDCs). Once

bound, the Tn-MUC1 glycopeptide is internalized and

processed through the HLA class I and II pathways. This

proves that the Tn-MUC1 antigen is a potent immunogen that

can be presented to the immune system via dendritic cells.

Interestingly, the non-glycosylated MUC1 protein was incapable

of binding to the MGL receptor, which further highlights the

importance of tumor cell surface glycan modifications (36). The

main component of the antigenic Tn-MUC1 that facilitates such
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imDC-expressing MGL-based antigen presentation is the

terminal GalNAc residue. A specific YENF motif in the

cytoplasmic domain of the human MGL receptor present on

dendritic cells is essential for binding to the terminal GalNAc

and promoting the endocytosis of the Tn-MUC1 glycopeptide

(37). Hence, through this mechanism, the Tn antigen can

increase the infiltration of T cells via antigen presentation

through dendritic cells and result in antitumor cytotoxicity. In

another study, bladder cancer cells expressing the STn antigen

were found to have higher tumorigenic properties than STn-

negative cells and bound imDCs more strongly. However, such

STn-mediated interactions prevented dendritic cell maturation

leading to a lack of antigen presentation and subsequently

induced tolerance, evidenced by reduced antitumor Th1 cells

and increased regulatory T cell populations, demonstrating

cancer-/context-dependent mechanisms elicited by these

antigens (38).

Recently, Cornelissen et al. demonstrated how the Tn antigen

modifies the immune landscape in colorectal cancer (CRC) model

using the MC38 cell line with the C1GALT1 gene knocked out. The

subsequent high Tn antigen-expressing tumors were more

aggressive, and expression of the Tn antigen correlated with a

decrease in CD8+ cytotoxic T cell infiltration and an increase in the

myeloid-derived suppressor cells (MDSCs), the latter of which is

accruing more interest with researchers investigating

immunosuppressive cells in the tumor niche (39). Another study

in a CRC model demonstrated a positive correlation between the

expression of the Tn antigen and a mismatch repair deficient state

(MMRd) in CRC cells, along with a “cold” or immunosuppressed

microenvironment (40).
5.2 The interaction between STn antigen
and sialic acid binding lectins (Siglecs)
modulates immune cell functions

As discussed above, the generation of the STn antigen is

catalyzed by the enzyme ST6GalNAc-I to form a sugar chain

terminating in a sialyl group. Overexpression of this enzyme has

been observed in a plethora of cancers, leading to hyper-

sialylated O-glycan structures (41). This has aroused a lot of

research to evaluate the role of Siglecs (Sialic-acid binding

immunoglobulin superfamily lectins) in these cancers. Siglecs

are membrane-bound proteins that contain carbohydrate-

binding domains. Humans have a total of 14 distinct

functionally dynamic Siglecs. Of these, Siglec-1, Siglec-2,

Siglec-4, and Siglec-14 are highly conserved. The other

receptors belonging to this family include Siglecs – 3, -5, -6,

-7, -8, -9, -10, -11, 15, and -16. Of the 14 known Siglec receptors,

9 contain ITIM (immunoreceptor tyrosine-containing

inhibitory motif) or ITIM-like domains in their cytoplasmic

signaling tails and can mediate immunosuppressive mechanisms
frontiersin.org
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(42). Interestingly, these four Siglecs contain ITIM and ITIM-

like domains in their signaling components. The text below

highlights the function of Siglec family receptors in modulating

immune suppression in gastrointestinal cancers.

The STn antigen is recognized by Siglec-6, expressed in the

placenta and the uterine endometrium, and is thought to play a

role in labor (43). In mast cells isolated from colon cancer

models, Siglec-6 was one of the immune inhibitory receptors to

be upregulated. Upon binding colon cancer cell-associated

ligands, Siglec-6 mediated attenuation of mast cell

degranulation/cytotoxicity. Such a mechanism was further

elevated in a hypoxic environment, frequently observed in

solid tumors like colon cancer (44).

Along with ovarian cancer, the mucin MUC16 is highly

overexpressed in more than 60% of PDAC tumors and

significantly worsens disease progression in this highly lethal

malignancy (27). Siglec-9, another ITIM and ITIM-like domain-

containing receptor, is expressed in monocytes, NK cells, and B

cells. Monocytic and NK cell Siglec-9 was found to strongly

interact with STn antigen containing MUC16 to mediate

immunosuppression in ovarian cancer and exacerbate

prognosis (Figure 2) (45). Interestingly, alpha2,3 sialic acid

expressing MUC1 was also found to bind Siglec-9 expressed

on myeloid cells and mediate TAM phenotypes and cancer

immunosuppression (46). Given the high expression of both

these mucins in PDAC and other solid tumors, this highlights
Frontiers in Oncology 05
the important role of truncated O-glycan-bearing mucins in

mediating immune evasion in cancers. Another study showed

that glycan sialylation was high in PDAC tumors. Interaction

between Siglecs-7/9 on monocytes with the PDAC tumor

(specifically alpha2,3 and alpha2,6 sialic acid, i.e., STn antigen)

drove their conversion to TAMs that ultimately promoted tumor

progression (47).

While studying the TME of hepatocellular carcinoma (HCC),

Xiao et al. found a high proportion of Siglec-10 expressing

macrophages in patient specimens with poor survival outcomes.

These Siglec-10high TAM bearing tumors showed increased anti-

inflammatory immunosuppressive markers, including PD-1,

CTLA-4, and TIM-3. A mAb targeting Siglec-10 was able to

reverse such immunosuppression in HCC by downregulating the

immune checkpoints and increasing IFN-y and IL-2 secretion to

ultimately augment CD8+ cytotoxic T cells (Figure 2) (48).

Siglec-15 is an evolutionarily conserved receptor that

recognizes the STn antigen (49). A recent study demonstrated

that TAMs in PDAC express Siglec-15 and can bind the alpha2,6

sialic acid STn antigen (along with alpha2,3 sialic acid)

expressing domains on tumor cells. Such interactions promote

Siglec-15 mediated Syk signaling and immunosuppressive M2

polarization of the macrophages. Furthermore, sialidase

treatment and subsequent loss of terminal alpha2,3 and

alpha2,6 sialic acids rendered the macrophages less susceptible

to being polarized to M2-like tumor-promoting TAMs (50).
FIGURE 2

Tumor cell STn-specific interactions with immune cells. Cancer cells overexpress the STn antigen and interact with Siglec receptors on immune
cells and activate their intracellular ITIMs (immunoreceptor tyrosine-based inhibitory motifs). Siglec-9 on NK cells (and monocytes, not shown
here) bind with STn antigens present on PDAC and ovarian tumor cells and cause disruption of NK cell-mediated tumor cytotoxicity. Siglec-10
expressing tumor associated macrophages (TAMs) bind the STn antigen on hepatocellular carcinoma cells, leading to upregulation of immune
checkpoints and overall immune suppression in the tumor microenvironment (TME). Siglec-15 expressing TAMs in the PDAC TME bind STn
antigen on the tumor and such Siglec-15: STn binding overrides the immunoreceptor tyrosine-based activation motif (ITAM) based signaling via
Siglec-15 and instead mediates M2-like macrophage polarization, bringing about heavy immunosuppression.
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Siglec-15 has been shown to be a potent blocker of CD8+ T cells,

and hence, such siglec-mediated immunosuppression is a crucial

regulator of tumor progression (Figure 2) (51).
6 Antibodies targeting the
(S)Tn antigen

Antibodies are crucial components of our response against

pathogens. They bring about cytotoxic effects by various

mechanisms: (i) Antibody-dependent cellular cytotoxicity

(ADCC); (ii) Complement-mediated cytotoxicity (CDC); (iii)

Blocking receptors on the surface of cancer cells that lead to

dampening of tumor-promoting signaling. In 1981, the first

monoclonal antibody (mAb) against the Tn antigen (B72.3) was

generated in mice challenged with membrane fractions isolated

from human breast cancer samples (52). One of the epitopes

recognized by B72.3 is a mucin-like glycoprotein TAG-72, which

is routinely used to assess the presence of the Tn antigen in

research. As TAG-72 is an antigen that binds Tn/STn targeting

antibody, this protein was purified and then administered to

mice, which led to the generation of another mAb called CC49,

which also reacts with the Tn and STn antigens (53). The CC49

mAb has been tagged with a radiolabel Lutetium-177 and

subsequently tested in clinical trials in combination with

interferon-a and paclitaxel for the treatment of ovarian cancer

(54). Many other mAbs that react with the Tn and STn antigens

have since been developed for cancer screening and therapy. One

such antibody, TKH2, targeted the STn antigen and was used to

coat polymeric nanoparticles loaded with cisplatin. Targeted

delivery of this compound increased gemcitabine sensitivity to

STn-high PDAC tumors (55). NC318 is another mAb in phase I/

II clinical trials (NCT03665285) that blocks Siglec-15 and is

being employed as a therapeutic strategy for metastatic solid

cancers, including CRC, cholangiocarcinoma and more.

Preclinical studies with NC318 demonstrated its ability to

alleviate tumor burden and immunosuppression, partly by re-

establishing T cell cytotoxicity (56). Gatipotuzumab is another

mAb used in phase I/II clinical trials for solid tumors

(NCT03360734, NCT01222624) that binds to STn-bearing

MUC1 and prevents its interactions with siglec-9, to instigate

ADCC against the tumor cells (57, 58).
7 Conclusions and perspectives

The role of the Tn and STn antigens in the pathogenesis of

gastrointestinal malignancies discussed in this review is

manifold. These antigens are expressed on multiple proteins,

especially mucins, through various molecular mechanisms that

affect the activity of the T synthase, COSMC, and/or

ST6GalNAc-I enzymes. Mostly, the expression of these
Frontiers in Oncology 06
aberrant O-glycoforms leads to tumor-promoting mechanisms.

These mechanisms are initiated through a wide range of cell

signaling cascades that tumor cells use for their own benefit. In

recent literature, the focus has been directed on the role of Tn/

STn antigens in affecting components of the tumor

microenvironment. The role of the Tn/STn antigens in

modulating the behavior of immune cells has ramifications

that need to be combated to boost anti-cancer treatment

strategies in Tn-high tumors. These antigens predominantly

mediate multiple immunosuppressive schemes that facilitate

the development of what we now know as an “immune cold”

tumor. Fortunately, many targeted therapies are being developed

to attenuate such pro-tumor immune escape strategies. This area

of glycoproteomic research has seen relatively slower growth

because of factors like the low availability of suitable model

systems until the last two decades to monitor the immune

fraction and issues met with the development of potent

molecules like antibodies to detect the Tn/STn antigens. The

challenges associated with these therapies have been

acknowledged, and further research to dissect the exact

mechanisms involved in disease resistance is being

avidly conducted.
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