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Chemotherapy is widely used to treat patients with cancer. However, resistance to

chemotherapeutic drugs remains a major clinical concern. The mechanisms of

cancer drug resistance are extremely complex and involve such factors such as

genomic instability, DNA repair, and chromothripsis. A recently emerging area of

interest is extrachromosomal circular DNA (eccDNA), which forms owing to

genomic instability and chromothripsis. eccDNA exists widely in physiologically

healthy individuals but also arises during tumorigenesis and/or treatment as a drug

resistance mechanism. In this review, we summarize the recent progress in

research regarding the role of eccDNA in the development of cancer drug

resistance as well as the mechanisms thereof. Furthermore, we discuss the

clinical applications of eccDNA and propose some novel strategies for

characterizing drug-resistant biomarkers and developing potential targeted

cancer therapies.

KEYWORDS

cancer genetics, extrachromosomal circular DNA, drug resistance, chromothripsis,
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1 Introduction

Cancer is the leading cause of death in China, and chemotherapy is one of the main

treatments for cancer patients (1, 2). However, cancer patients frequently develop resistance

to chemotherapy during treatment. Drug resistance as one of the main reasons for clinical

chemotherapy failure is defined as the decline of drug effects during treatment (3). It can be

categorized as intrinsic resistance and acquired resistance (4). Intrinsic resistance predates

treatment and refers to the ability of a population of cells within a treatment-naive cancer to

survive initial therapy due to a preexisting genetic alteration or cell state, whereas acquired
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resistance develops by the acquisition of new mutations, metabolic

adaptations, and epigenetic changes in the original cancer (5). The

drug resistance in most cancer cells belongs to acquired drug

resistance, which is gradually produced in the process of

chemotherapy. As a result, the curative effect becomes worse and

most cancer patients have no available chemotherapeutics in their

late-stage treatments. Therefore, it is one of the most urgent problems

to be solved in treating malignant tumors. There are many

mechanisms that are involved in the drug resistance of cancer cells,

including genomic instability, DNA repair, chromothripsis, and drug-

target mutations (3, 6, 7). These factors involve a series of genetic

changes, and the formation of extrachromosomal circular DNA

(eccDNA) is closely related to these genetic factors (5, 8). Recently,

more and more studies have suggested that eccDNA is involved in the

resistance to cancer treatment (9, 10).

eccDNA refers to a type of single-stranded or double-stranded

circular DNA that originates from but is likely independent of

chromosomes, and its size varies from hundreds of base pairs (bp)

to several megabases (Mb) (11). According to different sizes and

sequences, eccDNA is further categorized into microDNA (100–400

bp), small poly-dispersed DNA (spcDNA) (100 bp–10 kb), telomeric

circles (t-circles) (multiples of 738 bp), and the largest

extrachromosomal DNA (ecDNA) (millions of bp). These DNA

molecules can carry oncogenic driver genes or increase the copy

number of genes to regulate cancer growth and drug resistance (11).

Some microDNA may be transcribed into some functional small

regulatory RNAs, including microRNAs and novel small interfering

RNAs, which can mediate cancer development or cancer drug

resistance by regulating gene expression patterns (12, 13). The
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generation of spcDNA is closely related to genomic instability,

which can cause genetic variation on a genome-wide scale (14).

These variations will give cancer cells the advantage of clonal

growth and genetic evolution and could ultimately cause

tumorigenesis. The t-circle can effectively lengthen telomeres

through rolling circle amplification and play an important role in

alternative lengthening of telomeres (ALT), affecting cancer cell

proliferation and cell-cycle progression (15, 16). The large ecDNA,

also known as the double minute chromosome (DM), can directly

encode some drug-resistant genes or increase the copy number of

genes to regulate drug resistance. Moreover, most studies suggested

that the large-size eccDNA, termed as ecDNA, is involved in drug

resistance, instead of the small-size eccDNA. Therefore, in this review

article, we will summarize the role of ecDNA in cancer drug resistance

and its molecular mechanism. Furthermore, we also propose its

clinical applications, which will provide new strategies for screening

drug-resistant biomarkers to improve targeted therapy effects.
2 The role of eccDNA in cancer drug
resistance

In recent years, with the rise of high-throughput sequencing

technology, the structure and genetic characteristics of eccDNA

have been gradually revealed. eccDNAs have been found in most

cancers, and their role in the drug resistance of many cancers has been

widely explored (17). The roles and identification methods of

eccDNA in the drug-resistant process of various cancers are

summarized in Table 1 by cancer types.
TABLE 1 Summary of eccDNA in chemotherapy drug resistance by cancer types.

Cancer Host
genes Drugs Samples Detection methods Reference

Glioblastoma EGFRvIII Erlotinib GBM39 cell Single-cell analyses (18)

Glioblastoma MDM2 Erlotinib GBM cell FISH, PCR, and Southern blot (18)

Glioblastoma ABCG2 Mitoxantrone SF295 cells FISH (19)

Neuroblastoma MYCN –
NB tumor biopsy
tissue

FISH and qPCR (20)

Cervical carcinoma DHFR Methotrexate HeLa S3 cell FISH and in situ Hi-C sequencing (7)

Cervical carcinoma DHFR Methotrexate HeLa cell FISH (21)

Colon cancer DHFR Methotrexate HT29 cell RT-PCR and FISH (22)

Human epidermal carcinoma MDR1 Vinblastine KB-V1 cell Electrophoresis of DNAs and gamma-irradiation (23)

Human epidermal carcinoma
MDR1,
MDR2

Colchicine KB carcinoma cell
Southern blot, Giemsa staining, and pulsed-field gel
electrophoresis

(24)

Hypopharyngeal squamous cell
carcinoma

RAB3B Cisplatin FaDu cell Circle-seq (25)

Oral squamous cell carcinoma MDR1 Vinblastine KB cell DNA electrophoresis and DNA probe (26)

Small-cell lung carcinoma DHFR Methotrexate
NCI-H249P,NCI-H187
cell

Dot blot hybridization (27)

Choriocarcinoma DHFR Methotrexate HCCM and CC1 cell Giemsa staining and Southern blot (28)

Breast cancer DHFR Methotrexate EMT-6 cell Pulsed-field gel electrophoresis (29)

chronic myelogenous leukemia DHFR Methotrexate HAP1 cell CRISPR-C; ddPCR (30, 31)
f
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2.1 The eccDNA in glioblastoma

Glioblastoma (GBM) is the most common and malignant primary

brain cancer in adults with a poor prognosis and high risk of

chemotherapy resistance (32). So far, the epidermal growth factor

receptor (EGFR) and ATP-binding cassette subfamily G member 2

(ABCG2) have been reported frequently as drug resistance-related

genes that are carried by ecDNA in GBM.

EGFR deletions and point mutations are often found in GBM, of

which 50% have EGFR gene amplification in ecDNA, but 30%–60% of

EGFR genes are mutated, and the most common mutation is

EGFRvIII (33). EGFRvIII activates the NF-kB (nuclear factor kB)
pathway and increases the aggressiveness of GBM, and cancer cells

expressing EGFRvIII are more sensitive to EGFR tyrosine kinase

inhibitors (TKIs) (34, 35). Nathanson et al. (18) used erlotinib to treat

GBM-loading mice; 80% of the mice had a reduction in cancers, but

cancer cells changed from predominantly high EGFRvIII expression

to low EGFRvIII expression, accompanied by a decrease in drug

sensitivity. The loss of ecDNA with EGFRvIII in erlotinib resistance

was specific, as these cells still contained abundant ecDNA that carry

other genes, such as murine double minute 2 (MDM2). In addition,

they also found that MDM2 gene amplification was also associated

with drug resistance during the study through fluorescence in situ

hybridization (FISH) and polymerase chain reaction (PCR). After

erlotinib treatment, the copy number of ecDNA with the MDM2 gene

was increased and remained elevated, even after drug withdrawal.

The ABCG2 gene is located on chromosome 4, and the protein it

encodes can efficiently transport a variety of chemotherapeutic drugs

(36). Rao et al. (19) detected DM carrying ABCG2 gene amplification

in the SF295 MX50 and MX100 sublines. They generated these

sublines by exposing SF295 cells belonging to GBM to

mitoxantrone. Interestingly, with the increase in mitoxantrone

concentration, fewer DMs were observed, but homogeneously

staining regions (HSR) that carried ABCG2 gene amplicons were

visible through FISH. Obviously, amplification of ABCG2 occurred

initially in the form of DM, followed by chromosomal reintegration of

the amplicon at multiple sites and producing stable genotypes

associated with drug resistance.
2.2 The eccDNA in neuroblastoma

Neuroblastoma is the most common solid extracranial neoplasm

in children, showing an appreciable heterogeneity in clinical

evolution. Amplification of the MYCN oncogene in this cancer is

detected in 20–30% of cases and is associated with non-effective

chemotherapy (37, 38). Through FISH and quantitative PCR analyses,

Valent et al. (20) found that the MYCN oncogene can be amplified by

ecDNA, especially in patients with advanced neuroblastoma who

were resistant to chemotherapy. The MRP gene encodes special

transmembrane glycoproteins, which can act as plasma membrane

drug-efflux pumps, discharge drugs from the cells, eliminate the

accumulation of drugs in cells, and make cancer cells acquire

tolerance to varieties of drugs (39, 40). In neuroblastoma, the

MYCN gene can be amplified with the help of ecDNA, which

increased the expression of this gene and then upregulated the
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expression of multidrug resistance genes, resulting in enhanced

resistance. Therefore, reducing the expression of MYCN may avoid

the occurrence of chemotherapy resistance. It was reported that

hydroxyurea induced the overexpression of MDR1 in cells to

reduce the expression of extrachromosomal MYCN (41, 42), which

provides a treatment target for the high-risk neuroblastoma in

clinical settings.
2.3 The eccDNA in cervical carcinoma

Cervical carcinoma is the most common female reproductive

system cancer in developing countries (43). Chemotherapy is

considered as the standard treatment for patients with advanced or

recurrent cervical cancer. Resistance to chemotherapy substantially

affects the efficacy of cervical cancer treatment. Michael et al. (44)

used FISH to analyze cervical cancer cells with methotrexate (MTX)

resistance and found that all cells could amplify the dihydrofolate

reductase (DHFR) gene via DMs. In addition, they found that

chromosome 5 fragmentation events could form HSR with the

DHFR gene. HSR could break again and produce fragments

because of its instability, then produce DMs. Then, in HeLa cells, it

was also confirmed that the defects in homologous recombination

(HR) could play a role in the amplification of extrachromosomal

DNA elements. HR-deficient cell lines had a significantly higher

frequency of gene amplification, and the clone frequency of all

MTX-resistant cells was higher than that of HeLa parental cells

(21). Recently, Shoshani et al. (7) also performed whole-genome

sequencing of clonal isolates developing MTX resistance, and the

results further identified chromothripsis as a major driver of DM

amplification in DMs and proved the amplification of DHFR genes in

DMs, which enabled HeLa cells to rapidly acquire tolerance to altered

growth conditions.
2.4 The eccDNA in colon cancer

Morales et al. (45) studied the resistance of colon cancer HT29

cells to MTX and the dynamic process of DHFR amplification. They

characterized the DHFR genome region at the cytogenetic and

molecular levels in HT29 cells treated with increasing doses of

MTX. HSRs were the main form of DHFR amplification in the

process of increasing the dose of MTX. DMs with the DHFR gene

appear in large numbers only after the cells have been exposed to

higher doses of drugs for 3 months, and cancer cell resistance to MTX

also increases. HT29 cells’ resistance was reduced after withdrawal of

the drug, and the sensitivity of these cells to MTX was restored. At the

same time, the DM carrying the DHFR gene also disappeared. Some

studies showed that the homologous recombination activity of MTX-

resistant cells containing DM was increased compared with MTX-

sensitive cells. With the silence of the key player BRCA1 in the HR

pathway, the attenuation of HR activity decreased the number of DMs

and DM-form-amplified gene copies (such as DHFR, ZFYVE16, and

MSH3) and increased the exclusion of micronuclei and nuclear buds

that contained DM-form amplification, which were accompanied by

increased MTX sensitivity (46). Similar studies had also reported that

non-homologous end joining (NHEJ) decreased MTX resistance and
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cell proliferation in MTX-resistant colon cancer cells, which was

related to blocking of the generation of DM and the exclusion of

DHFR. Therefore, the DNA repair pathway might represent a novel

target to reverse drug resistance and improve therapeutic outcome by

eliminating extrachromosomal amplification in cancer (22).
2.5 The eccDNA in human epidermal
carcinoma

In KB cells from human epidermoid carcinoma, the amplified

multidrug resistance (MDR) genes were contained in DM molecules;

cells were then treated with colchicine to analyze MDR amplification

events. As the concentration of colchicine increased, circular DNAs

(890 kb) harboring MDR dimerized to large DM structures (1,780 kb)

by intramolecular homologous recombination, which then dimerized

to form the larger DMs (3,560 kb). Their studies revealed that the

dimerization of circular amplicons was the crucial mechanism for

DM generation and MDR gene amplification. Colchicine exposure

also induced the mutation of the MDR1 gene. The mutated MDR

gene residing on an extrachromosomal DNA element underwent

random segregation at mitosis and then enhanced drug resistance to

cancer cells in KB cells (24). Joseph et al. (23) also revealed that DM

molecules contained the amplified MDR1 genes. Although there were

few DMs in each cell, there was a >100-fold amplification of the

MDR1 gene. MDR1 overexpression results in cross resistance to a

variety of lipophilic compounds, including anthracene-clines (e.g.,

doxorubicin) and vinca alkaloids (e.g., vinblastine). In addition,

Sanchez et al. (47) emphasized that fractionated ionizing radiation

obviously reduced the extrachromosomal copy number of MDR1 in

KB cancer cells, and this decrease was accompanied by a reduction in

multidrug resistance and in P-glycoprotein levels, which might help

to improve the efficacy of anticancer therapies.
2.6 The eccDNA in hypopharyngeal and oral
squamous cell carcinoma

Hypopharyngeal squamous cell carcinoma (HSCC) was an

aggressive form of head and neck squamous cell carcinoma

(HNSCC) that had a poor prognosis and was rapidly rising in

incidence (48). Cisplatin (DDP)-based chemotherapy was an

important factor impairing the effectiveness of chemotherapy for

HSCC (49, 50). Lin et al. (25) recently identified more than 10,000

eccDNA in DDP-resistant FaDu cell samples from HSCC and

amplified encoding genes (such as RAB3B and RAD54L) from

eccDNA (chr1circle 46219–52682 kb) that carried different gene

fragments. Furthermore, research found that RAB3B could promote

DDP resistance in hypopharyngeal squamous cell carcinoma by

inducing autophagy. However, loss of MDR1-carrying ecDNA

induced by hydroxyurea increased the sensitivity of vinblastine in

oral squamous cell carcinoma (OSCC), and the specific mechanism

by which hydroxyurea induced to acce l e ra te los s o f

extrachromosomal amplified genes is still unclear, one of which

may involve the formation of micronuclei. Hydroxyurea did not

deeply affect the synthesis of cell DNA and preferentially inhibited
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the replication of DNA outside chromosomes (26). These studies

suggest that eccDNA might play a significant role in cancer drug

resistance by amplifying related functional genes, and we need to

explore further the novel mechanisms of eccDNA in drug resistance.
2.7 The eccDNA in other cancers treated
with MTX

In cancer cells from a patient with small-cell lung carcinoma

(SCLC) who received MTX treatment, a large number of DMs were

discovered, and the DHFR gene was amplified and overexpressed.

During serial passages of this cell line in drug-free medium, the

number of DMs and the expression level of DHFR declined. The

results showed that cancer cells were more sensitive to MTX and

the prevalence of DMs in metaphase cells correlated with

the concentrations of resistant MTX (27). Amplification of the

DHFR gene on DMs led to an increase in mRNA and protein and

provided the MTX resistance of human choriocarcinoma cells (28). A

similar phenomenon was also observed in mouse EMT-6 cells from

breast cancer. The cells that had been irradiated and subjected to

stepwise increases in MTX concentration were detected as having

numerous DMs. These studies showed that ecDNA-mediated gene

amplification played an important role in the MTX resistance of

cancer cells. The DHFR genes on DMs were also amplified in a dose-

dependent manner (29). Recent studies used CRISPR-C, which is a

technology that uses Clustered Regularly Interspaced Short

Palindromic Repeats to generate extrachromosomal circular DNA

(30), to generate ecDNA containing the dihydrofolate reductase

(DHFR) gene in the HAP1 cell line of chronic myelogenous

leukemia in humans. In the absence of methotrexate, the cells

maintain their initial ecDNA copies. Then, the ecDNA copy

number of DHFR ecDNA rose in a strong, dose-dependent pattern

in response to MTX treatment (31).
3 Mechanism of eccDNA driving cancer
drug resistance

eccDNA can promote cancer drug resistance development in

various ways, and most of these ways are related to gene amplification.

It is a common manifestation of genomic instability and plays an

important role in cancer progression and drug resistance (10).
3.1 eccDNA increases tumor heterogeneity

Cancers are not static entities: they start from a genetically normal

cell and end with billions of malignant cells that have accumulated a

large number of mutations in the process. Most of those occur during

chromosome replication in mitosis (51). Due to the accumulation of

these mutations, tumor heterogeneity is promoted, which is

characteristic of malignancies (52). The existence of eccDNA is an

important factor driving genetic heterogeneity in cancer. It can
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further enhance the heterogeneity of cancer cells, depending on its

unique genetic mechanism.

In cytogenetics, the inheritance of eccDNA is not the same as that

of chromosomes, which does not follow Mendel’s law of inheritance

(Figure 1). It is randomly distributed to daughter cells during mitosis,

making the number of eccDNA in daughter cells unequal (17).

Consequently, one of these daughter cells may have multiple

oncogene copies of eccDNA during each division, thereby gaining a

proliferation advantage. This approach enhances genomic diversity

and promotes tumor heterogeneity, which helps cancer adapt to

different environmental changes. It enables different cell subsets to

have different sensitivities to therapeutic agents.
3.2 eccDNA is involved in gene expression
associated with drug resistance

Early studies have proved that eccDNA is an important form of

oncogene amplification, and its contribution to oncogene expression

is mainly caused by the increase in gene copy number (10). eccDNA

has the same complete domain as chromatin, although it lacks the

higher-order compression state of chromosomes (53). Therefore,
Frontiers in Oncology 05
genes on eccDNA are more easily transcribed than those on

chromosomes. The enhancers carried by eccDNA molecules can

drive the transcription of their own genes and promote the

transcription of other eccDNA molecules and even genomic genes

(Figure 2) (54). We can speculate that both the increase in copy

number and the high transcriptional activity of eccDNA itself can

enable the overexpression of oncogenes. On the premise that ecDNA

may carry a variety of genes, including oncogenes and drug resistance

genes, ecDNA can make cancer cells resistant through gene

amplification. Andrew et al. detected copy number alterations in

4,577 human cancer samples representing nine different solid cancers

and discovered that cell-derived enhancers were co-amplified with

oncogenes in multiple solid tumors, including MYCN, which bore a

compact relationship with drug resistance in medulloblastoma (55).

Another significant study on ecDNA in GBM revealed the molecules’

function as mobile transcriptional enhancers, which were features of

widespread intra-ecDNA and genome-wide chromosomal

interactions. It was co-located in the same chromatin structure

region to regulate the transcriptional activity of specific genes.

These genes also included MYC and EGFR, which were closely

related to drug resistance, and there was mutual regulation between

ecDNA molecules derived from these genes (56). Therefore, ecDNA
FIGURE 1

Hereditary difference between chromosome and eccDNA. When the oncogene is on a chromosome, the two sister chromatids are separated by pulling
the centromere by the spindle during mitosis, and then they were equally distributed between the two daughter cells. This is a classic example of
Mendel’s Law. When the oncogene is located on eccDNA, eccDNA replicates with the chromosome during mitosis. Because eccDNA has no
centromere, the separation of eccDNA is not controlled by the spindle, resulting in the copied eccDNA being randomly assigned to daughter cells during
cell division. This unique genetic mode makes the number of eccDNA in each cell unequal, leading to heterogeneity of eccDNA in each cell subgroup.
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can make cancer cells acquire drug resistance through high expression

of drug resistance-related genes.
3.3 eccDNA is integrated into chromosome
to form HSR

The amplification of oncogenes or drug-resistant genes, which

plays a pivotal role in human cell malignant transformation, confers a

growth advantage to the cells through the overproduction of the

amplified gene product. In cytogenetic research, the amplified gene is

located in ecDNA or HSR (57).

HSR was initially detected in Chinese hamster cells resistant to

MTX in 1976. Moreover, HSR are longer segments of chromosome

than any single band in the karyotype. The staining intensity of HSRs

in G-band staining was medium, rather than the normal pattern of

alternating dark and light bands in the rest of the chromosome (58).

ecDNA and HSR could be converted to each other and are

homologous sequences (59). The structure of ecDNA is unstable.
Frontiers in Oncology 06
ecDNA can be integrated into the chromosome arm, where it

efficiently initiated the breakage-fusion-bridge cycle (BFB) that

generated HSR (10). As described above, the ABCG2 gene carried

by ecDNA in GBM (19) and the DHFR gene carried by ecDNA in

HeLa cells resistant to MTX (44) were integrated into a certain site of

the chromosome to form HSR and produce a stable condition, so that

the drug resistance of cancer cells was more stable. There is evidence

that, compared with oncogenes or drug resistance genes amplified on

ecDNA, HSR-amplified oncogenes or drug resistance genes located in

chromosomes are not easy to eliminate from cells (60).
3.4 Dynamic regulation of gene expression
by eccDNA

Previously, it was reported that EGFR derived from adult GBM

was often mutated to produce a constitutively active oncogenic

variant, EGFRvIII (18, 61). EGFRvIII amplification on ecDNA can

provide growth advantages for cancer cells and make cancer cells
FIGURE 2

ecDNA promotes gene transcription. Due to the different fragments carried by ecDNA, it promotes gene transcription and expression in different ways.
There are mainly three methods shown in the figure: (A) Enhancer1, located on ecDNA, can promote the expression of gene 1; (B) Enhancer1, located on
ecDNA, can promote the expression of gene 2 on chromosomes; (C) the enhancer 1 on the ecDNA can promote the expression of gene 1 on another
ecDNA, and the enhancer 3 on this ecDNA can also promote the expression of gene 1.
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more sensitive to TKI treatment (34, 62). After stopping TKI

treatment, the amount of ecDNA carrying EGFRvIII may increase

again, suggesting that ecDNA deletion of EGFRvIII leads to TKI

resistance, allowing cancer to adapt to its growth environment and

evade treatment against oncogenes maintained on ecDNA (18). This

suggests a highly specific dynamic mechanism, in contrast to cancer

cells amplifying resistance genes through ecDNA to improve drug

resistance, highlighting the diversity and complexity of ecDNA-

promoting resistance mechanisms.
4 Clinical application prospect for
eccDNA

The relationship between eccDNA and cancer has been studied

for decades. With the development of next-generation sequencing

(NGS) and the completion of human genome sequencing, the clinical

application of eccDNA became an area of intense research interest

(Figure 3). However, in the same patients, studies had identified that

the average length of human ovarian cancer eccDNA was slightly

longer than that of normal tissue, and the circulating eccDNA of

patients after tumor resection was usually shorter than before

operation (63). This phenomenon has also been confirmed in lung

cancer (63). In acute myeloid leukemia (AML), the amount of

eccDNA in cancer cells far exceeds that in normal cells. The

average number of eccDNA gradually increased as primitive cells
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differentiated into terminal cells, and multiple recurrent and specific

eccDNA were also identified in abnormal and normal cells (64). If the

enrichment of eccDNA, especially the change of sequence, can predict

the development of benign diseases into malignant cancers (such as

hepatitis into liver cancer), eccDNA should be exhibited as a

promising biomarker for cancer monitoring and prognosis.

Amplification of oncogenes and drug resistance genes in ecDNA

promotes tumorigenesis and drug resistance. Many studies in recent

years have confirmed that ecDNA is highly opened and contains

enhancer sequences. These characteristics have improved its

transcriptional activity (53, 54). These findings revealed a new

understanding of eccDNA. Furthermore, when used as an immune

stimulus, the circular nature of eccDNA can endow immune cells,

such as dendritic cells and macrophages, with super immune capacity.

The level of cytokines induced by eccDNA is far higher than that of

linear DNA, which will help us better understand the pathogenesis of

some inflammation-related tumors (65). As a result, combining gene

therapy with immunotherapy can improve the efficacy of traditional

anticancer drug therapy while also providing a new idea for the

development of new anticancer drugs.

Kristen et al. performed whole-genome sequencing on 17

different cancer types, revealing that the frequency of ecDNA varies

with cancer type (66). This phenomenon has almost never been found

in normal cells, indicating that eccDNA in the blood of cancer

patients may be used as a promising tool to track and determine

the source and type of cancer. Although there are few studies on the
FIGURE 3

Clinical implications of eccDNA. eccDNA may be used as a biomarker for tumor surveillance, prognosis, metastasis, and recurrence. In addition, the
development of target drugs may also provide a new strategy for the treatment of cancer in clinical setting.
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role of eccDNA in tumor recurrence at present, a study on

neuroblastoma demonstrated that cancer cells with an invasive

phenotype of DM might be the source of tumor recurrence, which

largely depends on the internal heterogeneity of tumors (67). The

latest study by Cen et al. also reported the important role of eccDNA

in tumor metastasis. They explored the eccDNA profile in high-grade

serous ovarian cancer (HGSOC) by circle-sequencing analysis and

found that the expression of DNMT1circle10302690-10302961 (identified a

novel eccDNA) was significantly downregulated in metastatic

HGSOC tumor tissues and its reduction was associated with poor

prognosis in HGSOC patients (68). Moreover, eccDNA can express

functional small regulatory RNAs, including microRNA (miRNA).

These miRNAs would regulate the downstream signal pathway (12),

such as miR-145 (69), miR-191 (70), and miR-126 (71), by promoting

tumor angiogenesis through related kinase signal transduction and

transcriptional activation. In addition, the coding of oncogenes by

eccDNA has been widely confirmed, such as c-myc (cellular-

myelocytomatosis viral oncogene). C-myc promoted the expression

of S100A4 (S100 Calcium Binding Protein A4) in prostate cancer cells

by affecting downstream signaling molecules, which played an

important role in tumor metastasis (72). Another example is EGFR,

which promotes the invasion and metastasis of GBM by regulating

the expression of matrix metalloproteinase-9 (MMP-9) (73).

However, the exact mechanism of eccDNA directly mediating

tumor metastasis remains to be studied.
5 Conclusion

EccDNA is widely found in various tumor tissues. Its unique

genetic characteristics allow the number of oncogenes or drug-

resistance genes in cells to increase sharply, resulting in a higher

level of gene expression in cancer cells and providing tumor

heterogeneity, which will contribute to cancer progression and

resistance to chemotherapy. In addition, the diversity of somatic

mutations in human cancer genomes also promoted the evolution of

eccDNA. Some scholars attributed these mutations to the activity of

the APOBEC3 (Apolipoprotein B mRNA Editing Catalytic

Polypeptide-like) enzyme, which is a cytosine deaminase in cells.

APOBEC3 can treat circular ecDNA as foreign viruses and try to limit

or cut them. In this process, APOBEC3 induces the formation of

mutation clusters within a single ecDNA molecule, which in turn

plays a key role in accelerating cancer evolution and possibly leading

to drug resistance (74). Here, we propose the following prospects

regarding the regulation of eccDNA in drug resistance: (1) The

particular molecular mechanism of resistance mediated by eccDNA

in cancers needs to be investigated further. (2) According to the

synthesis of microDNA mimics and its transcription in vitro and in

vivo, microDNA can be transcribed into the functional, small

regulatory microRNAs, which can regulate the expression of drug

resistance genes (12). This synthesis might be a potential method to
Frontiers in Oncology 08
investigate the relationship between eccDNA and the regulation of

gene expression. (3) The interactions between the multiple drug

resistance genes on eccDNA and multitarget drugs can be deeply

explored. (4) Most studies of eccDNA in tumor drug resistance are

currently limited to the cell and animal level, and further population

study should be conducted to improve the clinical significance of

eccDNA as a biomarker. In a word, research on many scientific issues

about eccDNA has revealed a new mechanism of cancer progression

and regulation of chemotherapy resistance. Targeting specific genes

and regulatory elements of eccDNA will hopefully become a

therapeutic strategy for clinical cancer treatment.
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