
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Lili Feng,
Harbin Engineering University, China

REVIEWED BY

Pooya Farhangnia,
Iran University of Medical
Sciences, Iran

*CORRESPONDENCE

Jin Zhang

Jeanzhang@zju.edu.cn

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Oncology

RECEIVED 07 November 2022

ACCEPTED 06 December 2022
PUBLISHED 20 December 2022

CITATION

Jin S, Zhang Y, Zhou F, Chen X,
Sheng J and Zhang J (2022) TIGIT: A
promising target to overcome the
barrier of immunotherapy in
hematological malignancies.
Front. Oncol. 12:1091782.
doi: 10.3389/fonc.2022.1091782

COPYRIGHT

© 2022 Jin, Zhang, Zhou, Chen, Sheng
and Zhang. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Mini Review
PUBLISHED 20 December 2022

DOI 10.3389/fonc.2022.1091782
TIGIT: A promising target to
overcome the barrier of
immunotherapy in
hematological malignancies

Shenhe Jin1, Ye Zhang1, Fengping Zhou1, Xiaochang Chen1,
Jianpeng Sheng2 and Jin Zhang1*

1Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University,
Hangzhou, China, 2School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
Immune evasion through up-regulating checkpoint inhibitory receptors on T

cells plays an essential role in tumor initiation and progression. Therefore,

immunotherapy, including immune checkpoint inhibitor targeting

programmed cell death protein 1 (PD-1) and chimeric antigen receptor T cell

(CAR-T) therapy, has become a promising strategy for hematological

malignancies. T cell immunoreceptor with immunoglobulin and ITIM domain

(TIGIT) is a novel checkpoint inhibitory receptor expressed on immune cells,

including cytotoxic T cells, regulatory T cells, and NK cells. TIGIT participates in

immune regulation via binding to its ligand CD155. Blockage of TIGIT has

provided evidence of considerable efficacy in solid tumors in preclinical

research and clinical trials, especially when combined with PD-1 inhibition.

However, the mechanism and function of TIGIT in hematological malignancies

have not been comprehensively studied. In this review, we focus on the role of

TIGIT in hematological malignancies and discuss therapeutic strategies

targeting TIGIT, which may provide a promising immunotherapy target for

hematological malignancies.

KEYWORDS
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Introduction

Hematological malignancy is a group of clonal malignant diseases of the hemopoietic

system with highly invasive potential and heterogeneity. Despite those treatments,

including chemotherapy and stem cell transplantation, improving survival, some

patients still experience disease relapse without long-term survival, partly due to

tumor evasion from immune recognition and killing by effector cells (1–3). In recent
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years, immune checkpoint blockade (ICB) therapy targeting

cytotoxic T lymphocyte-associated protein 4 (CTLA-4) or

programmed cell death protein 1 (PD-1), and chimeric antigen

receptor T cell (CAR-T) therapy utilizing genetic engineering to

alter T cells to produce transmembrane proteins on the cell

surface with an extracellular antibody fragment domain that

recognizes tumor antigen, brings a new direction for cancer

immunotherapy (4–6). Although anti-PD-1 monoclonal

antibodies (mAbs) and CAR-T therapies have been actively

applied in relapsed and refractory lymphoma, multiple

myeloma (MM), and leukemia, which also achieved

remarkable success in some cases, a part of patients still have

no response to these therapies (7–10). Therefore, in-depth

research on immune checkpoint molecules’ interaction

mechanisms and the discovery of novel target to overcome the

barrier of immunotherapy are necessary. In addition, immune

checkpoint inhibitor-related toxicity is another challenge. For

example, Quagliariello reported that nivolumab and

pembrolizumab would induce cardiotoxicity by increasing the

inflammat ion of card iomyocyte s (11 , 12) . T ce l l

immunoglobulin and ITIM domain (TIGIT), another

inhibitory immune checkpoint molecule, has emerged as a

potential target in cancer immunotherapy (13, 14). In this

review, we focus on the immunomodulatory role and

mechanism of TIGIT, discuss its potential as an immune

target in hematological malignancies.
TIGIT structure and its ligands

TIGIT, also named as V-set and immunoglobulin domain-

containing protein 9 (VSIG9), V-set and transmembrane do-

maincontaining protein 3 (VSTM3) and Washington University
Abbreviations: ICB, immune checkpoint blockade; CTLA-4, cytotoxic T

lymphocyte-associated protein 4; PD-1, programmed cell death protein 1;

CAR-T, chimeric antigen receptor T cell; mAbs, monoclonal antibodies; MM,

multiple myeloma; TIGIT, T cell immunoglobulin and ITIM domain; VSIG9,

V-set and immunoglobulin domain-containing protein 9; VSTM3, V-set and

transmembrane do-maincontaining protein 3; WUCAM, Washington

University cell adhesion molecule; IgV, immunoglobulin variable; ITIM,

immunoreceptor tyrosine-based inhibitory motif; ITT, immunoglobulin tail

tyrosine; NK, natural killer; Tregs, regulatory T cells; PVR, polio virus

receptors; DCs, dendritic cells; TCR, T cell receptor; IFNg, interferon-g; IL-

10, interleukin-10; Fgl2, fibrinogen-like protein 2; Th1, T helper 1 cells; ERK,

extracellular signal-regulated kinase; TNFa, tumor necrosis factor a; TILs,

tumor infiltrating lymphocytes; FL, follicular lymphoma; CLL, chronic

lymphocytic leukemia; IgHv, immunoglobulin heavy chain variable region;

cHL, classic hodgkin lymphoma; AML, acute myeloid leukemia; allo-SCT,

allogeneic stem cell transplantation; irAEs, immune-related adverse events;

LAG-3, lymphocyte activation gene 3; TIM-3, T-cell immunoglobulin-3;

HIF-1a, hypoxia-inducible factor 1-alpha.
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cell adhesion molecule (WUCAM), is a co-inhibitory molecule

belonging to the immunoglobulin superfamily that was first

discovered in 2009 (15–17). It consists of an extracellular

immunoglobul in var iab le ( IgV) domain , a type I

transmembrane domain and an intracellular domain with an

immunoreceptor tyrosine-based inhibitory motif (ITIM) and an

immunoglobulin tail tyrosine (ITT)-like motif (18). TIGIT is

exclusively expressed on natural killer (NK) cells and T cells,

including CD8+ T cells, CD4+ T cells, and regulatory T cells

(Tregs) (19, 20).

The relationship between TIGIT, its ligands, and competitive

receptors is complex. On the one hand, the immunoglobulin

variable domain of TIGIT shares sequence homology with

members of the polio virus receptors (PVR) family, including

CD155 (also named as Necl-5 or PVR), CD112 (also named as

Nectin-2 or PVRL2), CD113 (also named as Nectin-3 or

PVRL3), and Nectin-4 (PVRL4) (21, 22). CD155 is a member

of the immunoglobulin superfamily, mainly expressed on

dendritic cells (DCs), macrophages, and lymphocytes. CD112

belongs to single-pass type-I membrane glycoproteins, which is

expressed on DCs and monocytes. Interestingly, CD155 and

CD112 are over-expressed on different cancer cells as reported

recently (23–26). In addition, CD155 has a higher affinity than

CD112 to TIGIT, which became the primary ligand for TIGIT

(27). By interacting with its ligands, TIGIT participates in the

regulation of cellular immune function. On the other hand,

TIGIT shares these ligands with other receptors, including

CD226 (DNAM-1) and CD96 (TACTILE). As the

costimulatory receptor, CD226 competes with TIGIT for

binding to CD155 in spite of its lower affinity (27).

Furthermore, CD226 also competes with TIGIT and CD112R

(PVRIG) for binding to CD112 (28, 29). Therefore, CD226 also

plays an essential role in immune regulation (Figure 1).
Function and mechanism of TIGIT in
immune regulation

Through complex interaction with ligands, TIGIT family

receptors transfer inhibitory signals to immune cells,

contributing to innate and adaptive immunity regulation (30–

32). On the one hand, TIGIT inhibits the activity of T cells

intrinsically. Firstly, TIGIT binds to CD155 and transmits

intracellular inhibitory signals, directly suppressing T cell

receptor (TCR) expression and signaling. Engagement of TIGIT

induces down-regulation of the TCRa chain and molecules that

comprise the TCR complex, as well as reduction of TCR-induced

p-ERK signaling and interferon-g (IFNg) production in CD8+ T

cells (33, 34). Secondly, TIGIT possesses a higher affinity of

CD155 when competing with its costimulatory counterpart

CD226, which impaires T cell function by either directly

disrupting homodimerization of CD226 or decreasing

expression of T-bet and production of IFNg (35, 36).
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On the other hand, TIGIT can exogenously enhance the

immunosuppressive functions of Treg cells. TIGIT is enriched

in Treg cells, which is associated with the suppressive capacity of

effector T cells. Conversely, CD226 inhibits the expansion of Treg

cells and promotes the secretion of IFNg and other effector

cytokines (37, 38). TIGIT expression on Treg cells also

suppresses the proliferation of effector T cells via increased

production of interleukin-10 (IL-10) and fibrinogen-like protein

2 (Fgl2), as well as the response of pro-inflammatory T helper 1

(Th1) and Th17 cells, but not Th2 cells (39). Besides, TIGIT can

suppress T cell activation through DCs andmacrophage-mediated

cytokines disturbance. TIGIT interacts with CD155 expressed on
Frontiers in Oncology 03
DCs, and induces phosphorylation of CD155 through

extracellular signal-regulated kinase (ERK) signaling,

consequently increasing the production of anti-inflammatory

cytokine IL-10 and decreasing pro-inflammatory cytokine IL-12,

which inhibits T cell function (40). TIGIT also enhances the

secretion of IL-10 and reduces the secretion of IFNg and tumor

necrosis factor a (TNFa) via c-Maf nuclear translocation, which

switches macrophages from M1 to anti-inflammatory M2

phenotype (41). In addition, TIGIT also directly induces

exhaustion of tumor-infiltrating NK cells with lower expression

of IFNg and TNF or indirectly contributes to exhaustion of CD8+

T cells, impairing anti-tumor immune response (42) (Figure 2).
FIGURE 1

The interaction of TIGIT family receptors and ligands. TIGIT, CD226, CD96 and CD112R are expressed on T cells and NK cells. The ligands
CD155, CD113, CD112 and PVRL4 are expressed on tumor cells or APCs. TIGIT delivers inhibitory signals by binding to CD155, CD113, CD112
and PVRL4, with highest affinity for CD155. CD226 and CD96 compete with TIGIT for binding to CD155, but with lower affinity than TIGIT.
CD226 delivers activating signals. However, whether CD96 triggers inhibitory or activating signals remains to be determined. CD112R and
CD226 also competitively binding to CD112, with higher affinity with CD112R. APCs, antigen presenting cells.
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TIGIT expression and prognostic
role in hematological malignancies

Increasing evidence has demonstrated that TIGIT was highly

expressed on tumor-infiltrating lymphocytes (TILs) in different

hematological malignancies, resulting in tumor progression and

poor outcomes. Josefsson reported that TIGHT expression was

significantly higher in T cells of follicular lymphoma (FL) than in

healthy controls. Besides, up-regulation of TIGIT was associated

with the advanced disease stage (34, 43). Yang also reported that

TIGIT expression was increased on TILs in FL, and TIGIT+ T

cells predicted worse treatment response and inferior survival

(44). Likewise, CD4+ TIGIT+ T cells were increased in chronic

lymphocytic leukemia (CLL) patients, which was also correlated

with unmutated immunoglobulin heavy chain variable region

(IgHv) and advanced stage (45).

Furthermore, TIGIT was similarly up-regulated in classic

Hodgkin lymphoma (cHL) and Sezary syndrome (46, 47). In

acute myeloid leukemia (AML) patients, elevated TIGIT

expression on CD8+ T cells was observed. High TIGIT
Frontiers in Oncology 04
expression was associated with primary refractory disease and

relapse after allogeneic stem cell transplantation (allo-SCT) with

poorer survival (48, 49). TIGIT was also reported to be increased

on gd T cells and NK cells, which became an independent risk

factor for prognosis (50–52). In addition, increasing frequency of

TIGIT on CD8+ T cells was reported in mice models of newly

diagnosed and relapsed multiple myeloma, which positively

correlated with tumor burden (53, 54). These studies indicated

a negative role of TIGIT in anti-tumor immunity. Therefore,

targeting TIGIT may be an effective approach for ICB therapy in

hematological malignancies.
Immunotherapy targeting TIGIT in
hematological malignancies

To date, immunotherapy targeting TIGIT has shown

significant anti-tumor effects in several pieces of research.

Catakovic reported that blockage of TIGIT by recombinant

TIGIT-Fc would reduce CLL viability in vitro due to
FIGURE 2

Mechanism of inhibitory role of TIGIT in immunoregulation. (1) Interaction of TIGIT with CD155 transmits intracellular inhibitory signals, which
directly suppressed TCR signal and effector T cell function. (2) TIGIT inhibits CD226-induced T cell activation by disrupting CD226
homodimerization and decreasing IFNg production. (3) TIGIT directly induces NK cell exhaustion, contributing to inactivation of CD8+ T cell. (4)
TIGIT enhances Tregs mediated dysfunction of effector T cell by increased IL-10 and Fgl2, as well as inhibition of Th1 and Th17 cells. (5) TIGIT
promotes macrophage switching from pro-inflammatory M1 to anti-inflammatory M2 phenotype through increased IL-10 and decreased IFNg
and TNFa. (6) TIGIT inhibits T cell function by DCs-mediated abnormal secretion of cytokines. IFNg, interferon-g; IL-10, interleukin-10; Fgl2,
fibrinogen-like protein 2; Th1, T helper 1 cell; Th17, T helper 17 cell; TNFa, tumor necrosis factor a; DCs, dendritic cells; NK, natural killer.
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decreasing production of pro-survival cytokines IL-10 (45). In

AML, TIGIT expression inhibited cytokine production and

induced apoptosis of CD8+ T cells. Knockdown of TIGIT by

siRNA could restore T cell function via decreasing susceptibility

to apoptosis, simultaneously increasing production of TNFa and

IFNg. Besides, blockage of TIGIT significantly increased IFNg
production and NK cell degranulation, contributing to NK cells

mediated anti-leukemia effects (52, 55).

Similarly, high TIGIT expression promoted T cells

exhaustion, leading to myeloma progression. Conversely, the

anti-TIGIT treatment prevented T cells exhaustion, decreased

growth rate of tumor cells, and prolonged survival of MM mice

(53). Guillerey also reported that either TIGIT deficiency or

blockage by mAbs restored the immune function of anti-MM

CD8+ T cells and improved survival in vivo (54).

In addition, dual blockade of TIGIT and PD-1 showed

potential synergistic immune killing effects. On the one hand,

Wang observed a higher frequency of TIGIT and PD-1 dual

expression in AML patients, which was associated with a higher

frequency of FLT3-ITD mutation and a lower remission rate

(56). Studies showed that 68-84% of T cells had co-expression of

TIGIT and PD-1 in hodgkin lymphoma (HL) (46, 57). A high

frequency of TIGIT and PD-1 dual expression was also observed

in CLL and FL (34, 58). On the other hand, Zhang reported that

blockage of TIGIT alone only up-regulated TNFa in TIGIT+
Frontiers in Oncology 05
CD4+ T cells and IFNg, TNFa in TIGIT+ CD8+ T cells.

However, combined inhibition of TIGIT, PD-1, and Tim-3

significantly up-regulated IL-2, IFNg, and TNFa in both CD4+

and CD8+ T cells, which may enhance anti-leukemia immune

responses (59). Based on the remarkable efficacy of anti-TIGIT

mAbs in solid tumors and potential immune-killing effects

mentioned above in preclinical research, human anti-TIGIT

mAbs are being tested in phase 1/2 clinical trials either as a

monotherapy or, in most studies, in combination with anti-PD-

1/PD-L1 antibodies or chemotherapies for the treatment of

malignant lymphoma and multiple myeloma (Table 1). In

summary, these researches supported the progress of

i mmun o t h e r a p y t a r g e t i n g t h e T I G I T a x i s i n

hematological malignancies.
Toxicities of TIGIT blockage

Even though therapeutic strategy targeting TIGIT has

provided evidence of encouraging efficacy in hematological

malignancies, the immune-related adverse events (irAEs)

mediated by over-activated T cells may result in multiple

organ dysfunction and poor prognosis. Phase 1 study of the

anti-TIGIT antibody vibostolimab reported that two patients

suffered irAEs, including one adrenal insufficiency and one
TABLE 1 Ongoing clinical trials targeting TIGIT in hematological malignancies.

NCT number Agent Treatment Tumor type Phase

NCT05315713 Tiragolumab Combined with mosunetuzumab ± atezolizumab (anti-PD-L1 mAb) r/r-DLBCL r/r-FL Phase 1/2

NCT04045028 Tiragolumab
Monotherapy
Combined with rituximab
Combined with daratumumab ± atezolizumab

r/r-B-NHL
r/r-MM

Phase 1

NCT05267054 Ociperlimab (BGB A1217)
Combined with rituximab
Combined with tislelizumab (anti-PD-1 mAb)

r/r-DLBCL Phase 1/2

NCT04150965 BMS-986207 Combined with pomalidomide and dexamethasone r/r-MM Phase 1/2

NCT05005442 Vibostolimab (MK7684A) Combined with pembrolizumab (anti-PD-1 mAb)
r/r-HL
r/r-B-NHL
r/r-MM

Phase 2

NCT04354246 COM902
Monotherapy
Combined with COM701 (anti-PVRIG mAb)

MM Phase 1

NCT04254107 SEA-TGT
Monotherapy
Combined with sasanlimab (anti-PD-1 mAb)

cHL
DLBCL
PTCL-NOS

Phase 1

NCT04772989 AB308 Combined with zimberelimab (anti-PD-1 mAb)
DLBCL
MM

Phase 1

NCT05289492 EOS-448
Monotherapy
Combined with iberdomide ± dexamethasone

r/r-MM Phase 1/2

r/r-DLBCL, relapsed or refractory diffuse large B cell lymphoma; r/r-FL, relapsed or refractory follicular lymphoma; r/r-B-NHL, relapsed or refractory B cell non-hodgkin’s lymphoma;
r/r-MM, relapsed or refractory multiple myeloma; r/r-HL, relapsed or refractory hodgkin’s lymphoma; PTC-NOS, peripheral T-cell lymphoma, not otherwise specified; cHL, classical
hodgkin’s lymphoma.
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severe skin reaction (60). Another phase 1 study of anti-TIGIT

antibody ociperlimab in combination with anti-PD-1 antibody

tislelizumab in advanced solid tumors showed that 15 of 26

patients suffered irAEs, including three severe irAEs (grade≥3)

(61). CITYSCAPE trial also reported that 69% of patients

experienced irAEs after treated with anti-TIGIT antibody

tiragolumab and anti-PD-L1 antibody atezolizumab, in which

skin rash was the most common, followed by pancreatitis,

hypothyroidism, colitis and diabetes mellitus (62). Therefore,

clinicians should pay more attention to the immune toxicity of

anti-TIGIT therapy.

Conclusion

The immune checkpoint molecule TIGIT plays an inhibitory

role in anti-tumor immunity by inactivating immune effector

cells. Up-regulation of TIGIT has been reported in various

hematological malignancies, which predicts poor outcomes.

Preclinical research has demonstrated that blocking TIGIT

alone or combined with PD-1 improves anti-tumor immune

responses. The clinical evidence of its efficacy in ongoing clinical

trials, especially synergized with other immune checkpoint

inhibitors, for example PD-1, lymphocyte activation gene 3

(LAG-3) and T-cell immunoglobulin-3 (TIM-3), is eagerly

awaited. Furthermore, simultanously blockade of TIGIT and

hypoxia-inducible factor 1-alpha (HIF-1a) may also become a

potential treatment strategy (63). In the future, a comprehensive

understanding of the intricate immunoregulatory network

among TIGIT family members and other immune checkpoint

molecules may provide more effective options for patients with

hematological malignancies.
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