
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Jinzhuang Dou,
University of Texas MD Anderson
Cancer Center, United States

REVIEWED BY

Shaolong Cao,
Biogen Idec, United States
Minglei Yang,
Department of Medical Genetics,
Sun Yat-sen University, China

*CORRESPONDENCE

Zaixiang Tang

tangzx@suda.edu.cn

Ke Lu

sgu8434@sina.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Genetics,
a section of the journal
Frontiers in Oncology

RECEIVED 07 November 2022

ACCEPTED 19 December 2022
PUBLISHED 10 January 2023

CITATION

Shen J, Li H, Yu X, Bai L, Dong Y,
Cao J, Lu K and Tang Z (2023)
Efficient feature extraction from
highly sparse binary genotype data
for cancer prognosis prediction
using an auto-encoder.
Front. Oncol. 12:1091767.
doi: 10.3389/fonc.2022.1091767

COPYRIGHT

© 2023 Shen, Li, Yu, Bai, Dong, Cao, Lu
and Tang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 10 January 2023

DOI 10.3389/fonc.2022.1091767
Efficient feature extraction
from highly sparse binary
genotype data for cancer
prognosis prediction using
an auto-encoder

Junjie Shen1,2, Huijun Li1,2, Xinghao Yu2,3, Lu Bai1,2,
Yongfei Dong1,2, Jianping Cao4, Ke Lu5*† and Zaixiang Tang1,2*†

1Department of Biostatistics, School of Public Health, Medical College of Soochow University,
Suzhou, China, 2Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric
Diseases, Medical College of Soochow University, Suzhou, China, 3Center for Genetic
Epidemiology and Genomics, School of Public Health, Medical College of Soochow University,
Suzhou, China, 4School of Radiation Medicine and Protection and Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China,
5Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
Genomics involving tens of thousands of genes is a complex system

determining phenotype. An interesting and vital issue is how to integrate

highly sparse genetic genomics data with a mass of minor effects into a

prediction model for improving prediction power. We find that the deep

learning method can work well to extract features by transforming highly

sparse dichotomous data to lower-dimensional continuous data in a non-

linear way. This may provide benefits in risk prediction-associated genotype

data. We developed a multi-stage strategy to extract information from highly

sparse binary genotype data and applied it for cancer prognosis. Specifically,

we first reduced the size of binary biomarkers via a univariable regression

model to a moderate size. Then, a trainable auto-encoder was used to learn

compact features from the reduced data. Next, we performed a LASSO

problem process to select the optimal combination of extracted features.

Lastly, we applied such feature combination to real cancer prognostic

models and evaluated the raw predictive effect of the models. The results

indicated that these compressed transformation features could better improve

the model’s original predictive performance and might avoid an overfitting

problem. This idea may be enlightening for everyone involved in cancer

research, risk reduction, treatment, and patient care via integrating

genomics data.
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1 Introduction

Modern omics technologies can generate large-scale

molecular data, such as genomic, transcriptomic, proteomic,

and metabolomic data, inducing the opportunity to build more

accurate predictive and prognostic models (1, 2). These data

have been used to provide tailored healthcare and precision

medicine for many individuals (3). However, such data also

present computational and statistical challenges because the

complexity of the algorithms grows fast with the number

of variables.

The underlying representation of many real processes is

often sparse. It is of benefit to be able to efficiently eliminate

features in a pre-processing step. From the perspective of data

dimension reduction, it can be classified into feature selection

and feature extraction. Most existing work on feature selection

are based on a variant of l1-norm penalty due to its sparsity-

induced property, strong theoretical guarantees, and great

empirical success in kinds of applications (4). The paper about

the least absolute shrinkage and selection operator (LASSO) has

had an enormous influence (5).

Count data are ubiquitous in genetic risk studies, where it is

highly possible to observe excessive zero counts in rare mutation

loci. In the face of mass mutation loci, many penalty methods

have been adopted in GWAS analyses to select key genetic loci

(6–8). For example, Yang et al. detected genetic risk factors

among millions of single-nucleotide polymorphisms (SNPs) in

ADNI whole genome sequencing data via the LASSO method

along with the EDPP screening rules (9). Another solution lies in

reducing the number of markers before employing a shrinkage

method in genetic model such as (10). “Clumping and

thresholding” is a two-step method that is often used to derive

polygenic risk score (PRS) from results of GWAS studies (11).

Genetic variation is considered associated with cancer

prognosis. However, there is little literature on the use of

genetic omics data to predict cancer outcomes. As a matter of

fact, it is well documented that a large number of genetic

markers and generally the small size of their effects make
Abbreviations: LASSO, least absolute shrinkage and selection operator;

GWAS, genome-wide association; SNPs, single-nucleotide polymorphisms;

ADNI, Alzheimer’s Disease Neuroimaging Initiative; EDPP, enhanced dual

polytope projections; PRS, polygenic risk score; ANNs, artificial neural

networks; ReLU, rectified linear unit; SNR, signal-to-noise ratio; MNIST,

Mixed National Institute of Standards and Technology; MSE, mean squared

error; MCE, mean cross-entropy; TCGA, The Cancer Genome Atlas; NCI,

National Cancer Institute; NHGRI, National Human Genome Research

Institute; SNV, simple nucleotide variation; GDC, Genomic Data

Commons; BRCA, breast cancer; OV, ovary cancer; OS, overall survival;

RSF, random survival forest; ROC, receiver operating characteristic; AUC,

area under the curve; CI, credible interval; CNV, copy number variation;

COSMIC, catalogue of somatic mutations in cancer; lncRNA, long noncoding

RNA; fMRI, functional magnetic resonance imaging.
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much of the heritability hidden, as a mass of variants with

weak effects on disease usually fail to reach the prespecified

thresholds of significance (12). It is always an interesting issue

how to aggregate these small effects. To better utilize big data in

reasoning systems, feature extraction rather than feature

selection may allow for discovery of new pathways and

principles (13). We identified the auto-encoder as a promising

tool. The auto-encoder is a derivative of artificial neural

networks (ANNs), with the aim of learning compact and

efficient representations from the input data (14). Usually,

these representations have a much lower dimension. Departing

from supervised ANNs whose performance depends on the

quality of gold standards, the auto-encoder directly uses

unlabeled data, i.e., the input data itself is the target of

reconstruction. Compared to commonly used feature

extraction approaches like principal component analysis or

independent component analysis that linearly map input to

features, the auto-encoder extracts features into non-linear

space and work much better as a tool to reduce dimensionality

of data (13).

To sum up, we identified that the auto-encoder could learn

compact and efficient features from highly sparse binary data

and accordingly developed a multiple-stage process to extract

information from binary genotype data and applied it for cancer

prognosis. In the first stage (screening), we reduced the number

of markers via a univariable regression model to a moderate size.

In the second stage (extracting), we used a trainable auto-

encoder to extract representations from the reduced data. In

the third stage (selecting), we performed a LASSO process over a

grid of tuning parameter values to select the optimal

combination of the extracted features. Finally, we applied such

feature combination to cancer prognostic models, and evaluated

the raw predictive effect of the models.
2 Materials and methods

2.1 The construction of auto-encoders

A simple auto-encoder is much similar to the ANNs, which

generally contains three layers: an input layer, a hidden layer,

and a reconstructed layer (output layer) (15). The hidden layer

corresponds to the constructed features, with each neuron node

representing one feature. The reconstructed layer and the input

layer had the same dimensions, and the objective optimized

function for the algorithm was to minimize the difference

between the two layers.

Let us recall the traditional auto-encoder model proposed by

Bengio et al. (16). As many machine learning methods do, we

first normalize the continuous input data by the formula (x −

xmin)/(xmax − xmin). Thus, an auto-encoder with “p” features

takes an input vector x in [0, 1]p. The hidden layer

representation y with “d” dimension is constructed through a
frontiersin.org
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deterministic mapping y = fq(x) = s(Wx + b), parameterized by q
= {W, b}. W is a “p × d” weight matrix and b is a bias vector.

Function s(x) is called activation function, which introduces

nonlinear properties into the network. Common activation

functions include (1) rectified linear unit (ReLU) function and

(2) sigmoid function:

f xð Þ =
x,   x ≥ 0

0,   x < 0
      1ð Þ

(

g xð Þ = 1
1 + e−x

      2ð Þ

Equation (1) maps a linear set of input values to an interval

ranging from [0, ∞ ) and equation (2) maps a linear set of input

values to an interval in [0, 1]. The value contained in the latent

representation y for each neuron node is termed the activity

value. Then, the resulting hidden layer y is mapped back to a

“reconstructed” vector z in [0, 1]p in a similar manner, by

inputting space z = gq’(y) = h(W’y + b’) with q’ = {W’, b’}.

The function h(x) is also an activation function, restoring the

latent information to the original information. We could use tied

weights if the two activation functions are the same, which

means that the transpose ofW was used forW’. The parameters

in this neural network are optimized to minimize the average

reconstruction loss between the input layer x and the

reconstructed layer z:

q ,   q
0
= arg min

 q,  q 0    1= non

i=1
L(x(i); z(i)Þ  (3)

where n is the sample size and L is a loss function like

squared error loss function L(x, z) = ||x−z||2. An alternative error

loss, cross-entropy loss function, is suggested by the

interpretation of x and z as vectors of bit probabilities:

LH x,  zð Þ = −op
k=1 xklog zk + 1 − xkð Þlog 1 − zkð Þ½ �      (4)

Like other feed-forward ANNs, the auto-encoder takes back

propagation algorithm and gradient descent algorithm to

compute and update target parameters iteratively until

reaching an acceptable loss or the given epochs. The specific

theory can be referred to the relevant literature (17).
2.2 The LASSO and its selection rules

Given a linear regression with standardized predictors xij
and centered response values yi for i = 1, 2,…, N (samples) and j

= 1, 2,…, p (features), the LASSO solves the l1-penalized

regression problem for finding b = {bj} to minimize

oN

i=1
(yi − o

j

xijbj)
2 + lop

j=1
bj
�� �� (5)

where l ≥ 0 is a tuning parameter.
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A main reason for using the LASSO is that the l1-penalty

tends to set some entries of ~b to 0, and therefore, it performs a

kind of variable selection. Furthermore, Tibshirani (18)

proposed “strong rules” to discard noise signal in the LASSO-

type penalty problems. The results indicated that the LASSO

performs well in both low signal-to-noise ratio (SNR) and high

sparse regimes by incorporating the “strong rules”. However, the

predictor matrices from their simulated studies were all

generated from Gaussian distribution. Subsequent simulation

studies that aimed to improve variable selection algorithm using

a LASSO-type penalty still concerned continuous predictors

mainly (19–21). Guo et al. considered the power of the LASSO

for SNP selection in predicting quantitative traits and proved

that the LASSO still has good selection ability for high-

dimensional and sparse binary predictors (22). However, when

the values of these binary predictors become highly sparse (rare

mutation) such as 99.9% of zeros and 0.01% of ones, we observed

that the power of the LASSO to select non-zero variables

declined. This is briefly illustrated in supplementary file part II

and Table S1.
2.3 The property of the auto-encoder to
feature selection

We explore the feature extraction capability of the auto-

encoder using two visualized image datasets from the Mixed

National Institute of Standards and Technology database

(MNIST) (23) and fashion MNIST. The MNIST is one of the

most widely used benchmark dataset for isolated handwritten

digit recognition from 0 to 9. Digits are transformed to 28×28

images, and represented as 784×1 vectors. Each component is a

number between 0 and 255, which means the gray levels of each

pixel. The number of zeros accounts for about 81%. It has a

training set of 60,000 examples, and a test set of 10,000 examples.

The fashion MNIST is a substitute for the MNIST dataset and is

more complex, consisting of 10 types of wearing images. The

number of 0 accounts for about 51%. The above datasets are

loaded and accessed through the “Keras”module of TensorFlow.

The deep learning framework of the auto-encoder is constructed

by the TensorFlow library (2.3.0) of Python (3.7) in the Jupyter

Notebook platform (6.3.0).

2.3.1 Handwritten digit recognition
We took the first 1,000 examples of training set as training

data and the first 1,000 examples of test set as testing data from

the MNIST to study the property of our auto-encoder. First, as

mentioned above, we reshaped the 28×28 images to 784×1

vectors and normalized the input data from [0, 255] to [0, 1].

Thus, the dimension of input layer as well as reconstructed layer

was 784. We set the hidden layer dimension to 100 (this number

is optional). See construction of the auto-encoder in Figure S1.
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Activation function s(x) was specified to the ReLU function due

to its good property and therefore the activity values in the

hidden layer y ranging from [0,∞ ). The activation function h(x)

could be either ReLU function or sigmoid function,

corresponding to mean squared error (MSE) loss and mean

cross-entropy (MCE) loss. We used the two activation functions

respectively and compared the fitting effects.

In terms of configuration training method, we used the

“Adam” optimizer from the “Keras” module. The size of each

update is controlled by learning rate. To speed up the training,

samples were randomly grouped into batches, and the number of

samples contained in a batch was termed the batch size, with

weight and bias being updated after each batch. Training

proceeded through epochs, and samples were re-batched at the

beginning of each epoch. Training was stopped after a specified

number of epochs (termed epoch size) was reached. We

performed a full factorial design over all combinations of the

following parameters: a learning rate of 0.001, 0.005, and 0.010; a

batch size of 32, 64, and 128; and an epoch size of 50, 100, and

150. After a full factorial parameter sweep, the parameters that

we selected were as follows: a learning rate of 0.005, a batch size

of 128, and an epoch size of 100, which could achieve fast

training speed and smooth loss.

When using the sigmoid function as activation function h(x),

the MCE was 0.0683 with a binary accuracy (calculates how often

predictions matches labels) of 0.8156 in the training data (see

Figure S2A) and 0.0898 MCE with 0.8244 accuracy in the testing

data using the model built in training data. We read the first five

images of the training data and testing data, as shown in Figures

S3A, B. The first row shows the original images, the second row

shows the extracted features, and the third row shows that the

images were restored accurately with the extracted features. The

results show that the model can be used to extract the key features

well. Meanwhile, we used the reconstructed data for handwritten

digit prediction and found that the probability of predicting the

correct classification was close to 1 (see Table S2).

While using the ReLU function as activation function h(x),

the MSE was 0.0067 with an accuracy (calculates how often

predictions matches labels) of 0.0150 in the training data (see

Figure S2B) and 0.0125 MSE with an accuracy 0.0200 in the

testing data using the same model. We also read the first five

images of the training data and testing data (Figures S3C, D). It

shows that the ReLU function performed quite poorer compared

to sigmoid function. Because the labels of corresponding output

data are normalized data ranging from [0, 1], sigmoid function

could work more suitably.

2.3.2 Fashion image recognition
We took the same procedure as Section 2.3.1 in fashion

MNIST data. We selected the first 1,000 examples of training set

as training data. The activation function h(x) was directly

specified to sigmoid function. We set the same configuration
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training method except for an epoch size of 200. The MCE was

0.2667 with a binary accuracy of 0.5166 in the training data (see

Figure S4A). We read the first six images of the training data, as

shown in Figure S5A. We found that the fitting effect was poorer

in the fashion MNIST data than in the MNIST data, because the

proportion of zeros is lower in the fashion MNIST data (about

51%) than the MNIST data (about 81%).

Inspired by denoising auto-encoders (24), we artificially

added some corruption to training data. Specifically, we set

values below 0.21 to zeros in the input data, making the

proportion of zeros up to about 58.5%. Then, we retrained the

model; the MCE was 0.2440 with an accuracy of 0.5924 in

the new (corrupted) training data (see Figure S4B). The first six

images of the new training data are shown in Figure S5B. The

black icon became a little clearer (e.g., the second on the left, the

first on the right). Images before and after the corruption are

shown in Figure S5C. The first and third images were before the

corruption, and the second and fourth images were after the

corruption. Our results show that the higher the proportion of 0

and 1, the better the feature extraction effect of the auto-encoder

using the sigmoid function.

2.3.3 Auto-encoder feature selection for highly
sparse binary predictors

We used the auto-encoder to extract features from the highly

sparse binary data. We randomly used simulation data generated

from scenario 5 in Table S1. The sample size was 200 with 400

binary predictors. Thus, in the testing auto-coder, the dimension

of the input layer as well as the reconstructed layer was 400. We

set the hidden layer dimension to 100, i.e., extracting 100

important features. We used the “Adam” optimizer, and the

parameters that we selected were as follows: a learning rate of

0.005, a batch size of 32, and an epoch size of 200. The activation

function h(x) was set to sigmoid function.

As a result, the MCE was 0.0001 with a binary accuracy of

1.0000 (see Figure S6A). We read the first five “images” of this

simulated data, as shown in Figure S6B. The auto-encoder

could recover the scattered genetic signals and when there was

no genetic signal in the sample, an identical noise signal was

given. The extracted 100 signal features were then used in

LASSO Cox regression, and 9 features were selected. We

calculated Harrell’s concordance index (C-index) with 0.670

(standard error, SE = 0.035) and the R2 was 0.215. If the LASSO

Cox regression were applied directly using 400 binary

predictors, a total of 65 predictors were selected (of which 5

were real nonzero predictors). The C-index was 0.721 (SE =

0.030) and the R2 was 0.379. The result obtained using the

auto-encoder was much more close to the performance of

scenario 1 in Table S1 (average C-index: 0.647, average R2:

0.244). Due to the selection of more noise predictors, using the

LASSO directly had a virtual height of C-index and R2 that

would induce overfitting.
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3 Cancer prognosis application

The Cancer Genome Atlas (TCGA) project was started in

2006 by the National Cancer Institute (NCI) and the National

Human Genome Research Institute (NHGRI). The database has

contained a variety of cancer data from more than 20,000

samples of 33 types of cancer, including transcriptome

expression data, genomic variation data, methylation data, and

clinical data. As the largest cancer gene database, TCGA has

become the first choice for cancer research due to its large

sample size, diverse data types and standardized data formats.

We downloaded the latest (in July 2022) single-nucleotide

variation (SNV) data and phenotype data of the GDC TCGA

Breast Cancer (BRCA) cohort (female) and GDC TCGA Ovary

Cancer (OV) cohort from the official website “GDC Data

Portal”. A total of 977 SNV documents and 1,085 phenotype

documents were obtained from BRCA and 480 SNV documents

and 597 phenotype documents were obtained from OV. The

data type of SNV is masked somatic mutation, read and collated

by R package mafTools. The overview of SNV in BRCA and OV

is shown in Figure S7. We eliminated data with variants that

were nonsense mutation. Next, we used the R package reshape2

to reshape the mutation data to count howmany SNVmutations

were present in each gene per patient. Zero means wild type, and

one means mutated (genotype data with 0/1 values). The

interested phenotype in this study was overall survival (OS).
3.1 BRCA data

There were a total of 66,780 SNV items in which 4,910 were

nonsense mutation. Many genes had more than one mutation,

but we deemed all of them as “mutated” and were labeled “1”. A

total of 952 BRCA patients with 15,124 genotype data were

available. After merging survival data, those with missing

survival data were eliminated and 939 subjects were left.

Univariable Cox analysis was performed on these 15,124

genotype data as preliminary screening to identify potential

contributors, and 1,936 of them with a p-value of less than

0.05 (a rough threshold) were selected for subsequent analysis.

We found that if the LASSO Cox regression were applied directly

to these 1,936 genotype data, no variables would be selected by

LASSO (see Figure S8). This was possible in such a scenario

because the proportion of zeros reaches 99.6%. Thus, we thought

of using an auto-coder to extract features from these highly

sparse binary variables. We also consider random survival forest

(RSF) as an alternative to screen the key variables because the

random forest method is employed to detect significant SNPs in

large-scale GWAS (25).
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3.1.1 Feature extraction using an auto-encoder
and the development of the prognosis model

Specifically, in our BRCA auto-encoder, the dimension of

the input layer as well as the reconstructed layer was 1,936. We

set the hidden layer dimension to 100, i.e., extracting 100

important features. Figure 1A shows the construction of the

auto-encoder. We used the “Adam” optimizer; the parameters

that we selected were as follows: a learning rate of 0.005, a batch

size of 32, and an epoch size of 150. The activation function h(x)

was set to sigmoid function with MCE loss.

As a result, the MCE was 0.0006 with a binary accuracy of

1.0000 (Figure 1B). We read the first five “images” of these data,

as shown in Figure 1C. The auto-encoder could recover the

scattered genetic signals well as expected. The extracted 100

signal features were continuous variables (see Table S3 for

example) and then thrown into the LASSO Cox regression.

Finally, 25 features were selected (see Figure 2). We build a

prognosis signature called SNV signature based on these 25

features using the R functions “predict()”, “cph()”, and “coxph

()” among BRCA patients. The mean C-index of this signature

was 0.830 (SE = 0.069), and the mean R2 was 0.245, which was

performed with a fivefold cross-validation process and stepAIC

to avoid overfitting.

We used this signature to divide the population into two

groups. The optimal cutoff value of the signature was determined

using the R package survminer. The R package survival was used

to perform survival analysis between these two groups. The

Kaplan–Meier (K-M) curve was used to show difference of

survival curves between groups (discrimination). Log-rank test

was used to evaluate statistical differences of the survival. The

receiver operating characteristic (ROC) curve and its area under

the curve (AUC) values were utilized to evaluate the specificity

and sensitivity of the signature in a time-dependent manner

using the R package timeROC. We drew observed survival curves

and predicted survival curves to compare the agreement

(calibration), by calculating baseline hazard using the R

function “basehaz()”. We also assessed calibration with

calibration plots. A 45°C diagonal line represents perfect

calibration, while deviation below or above this line implies

overestimation or underestimation of survival.

SNV signature ranging from (−3.564, 6.445) with a mean of

0. Patients were divided into a low-risk group (n = 820) and a

high-risk group (n = 119); optimal cutoff value was 1.243 (see

Figure 3A). The low-risk group had a much higher survival rate

compared to the high-risk group (p < 0.0001). The 8-year

survival rate of the low-risk group was over 0.75, whereas that

of the high-risk group was almost 0. The time-dependent AUC

curve was approximately 0.9 during 8 years (Figure 3B). The 2-,

5-, and 8-year AUC of the signature were 0.928 (95% CI: 0.870–
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0.987), 0.894 (95% CI: 0.840–0.949), and 0.879 (95% CI: 0.821-

0.937), respectively. (Figure 3C). The observed survival curves

(solid line) and predicted survival curves (dotted line) are shown

in Figure 3D. The predicted survival curves were in the credible

interval. The signature overestimated survival probability for the

low-risk group and underestimated survival probability for the

high-risk group. The calibration plot of these two groups shows

the same result at 2, 5, and 8 years (Figure 3E).
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For a summary of SNVs in both the low-risk group

(Figure 4A) and the high-risk group, see Figure 4B. The

median of variants per sample in the low-risk group was 30

but 74 in the high-risk group. The rank and distribution of the

top 10 mutated genes in the low-risk group was similar to

the whole population (Figure S7A). Peculiarly, we plotted the

detailed distribution of the top 10 mutated genes in the high-risk

group (Figure 4C). Fifty-seven percent of the samples had TP53
A

B

C

FIGURE 1

(A) The construction of the auto-encoder in BRCA data. (B) Loss function value and accuracy of the auto-encoder in BRCA data by the epoch
times. (C) The first five visualized genetic signal of BRCA data. The first row shows the original images, the second row shows the extracted
features, and the third row shows that the images were restored accurately with the extracted features.
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mutation in the high-risk group compared to 31% in the low-risk

group; 38% of the samples had TTN mutation in the high-risk

group compared to 14% in the low-risk group.

3.1.2 RSF for variable screening
RSF is used for prediction and variable selection for right-

censored survival and competing risk data (26). A random forest

of survival trees is used for ensemble estimation of cumulative

hazard function in right-censored settings. Different survival tree
Frontiers in Oncology 07
splitting rules are used to grow trees. An estimate of C-index is

provided for assessing prediction accuracy. Variable importance

for single or grouped variables can be used to filter variables and

to assess variable predictiveness.

We used the R package randomSurvivalForest to build an

RSF model and ranked the importance of variables. Number of

trees to grow was set to 10,000 in order to ensure that every input

row got predicted at least a few times. The result of the model is

shown in the Figure S9. Prediction error is measured by the 1 −
A

B

FIGURE 2

The process of the LASSO to select optimal predictors in BRCA data. (A) Penalty parameter tuning conducted by 10-fold cross-validation. (B)
The solution pathway of the 25 features.
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C-index. The estimate of prediction error rate of this model was

0.449 (Figure S9A). We selected variables with an importance

index greater than 0.3 (21 mutant genes) and plotted them in

Figure S9B. However, we selected the 100 most important

variables (see Table S4) and threw them into the LASSO Cox

regression model. Twenty-three predictors were left (Figure

S10). They offered 0.624 (SD = 0.048) of mean C-index and

0.081 of mean R2 performed with a fivefold cross-validation

process and stepAIC. It was not surprising that the C-index and

R2 were much lower using the RSF model when compared to

using the auto-encoder (they used a similar number of variables:

25 versus 23) because the RSF model only selected the 100 most

impor t an t va r i ab l e s and the au to - encode r u s ed

whole information.

3.1.3 Genotype and gene expression
We also performed univariable Cox analysis with gene

expression data of BRCA. Data category is transcriptome

profiling, data type is gene expression quantification, and

workflow type is “STAR-Counts”. We also selected 1,936 of

them with the lowest p-value in univariable Cox analysis. Then,

the multivariable LASSO Cox was used to select final predictors.

A total of 60 predictors were left (Figure S11). They offered 0.831

(SD = 0.059) of mean C-index and 0.239 of mean R2 performed

with a fivefold cross-validation process and stepAIC. We drew a

Venn plot of approximately 1,936 genotypes, 1,936 genes, and 60
Frontiers in Oncology 08
predictors (see Figure S12), and found many common genes.

Based on an explicit assumption of temporal ordering from

genotype, gene expression, and survival outcome, survival

mediation analysis of gene expression with multiple genotype

exposures is feasible, referring to (27).
3.2 OV data

There were a total of 30,210 SNV items in which 1,650 were

nonsense mutation. A total of 406 OV patients with 11,322

genotype data were available. After merging survival data, those

with missing survival data were eliminated and 359 subjects were

left. Univariable Cox analysis was performed on these 11,322

genotype data, and 1,089 of them with a p-value of less than 0.05

were selected for subsequent analysis. Then, the LASSO Cox

regression was applied directly to these data, and a total of 95

predictors were selected by LASSO (see Figure S13A). The mean

C-index was 0.707 (SD = 0.032) and the mean R2 was 0.091

performed with a fivefold cross-validation process and stepAIC.

We also used the auto-coder to extract features from the 1,089

binary variables. A total of 19 features were selected from 100

extracted features using the LASSO process (see Figure S13B).

The mean C-index of the 19 features was 0.734 (SD = 0.025) and

mean R2 was 0.297 performed with a fivefold cross-validation

process and stepAIC.
A B C

D E

FIGURE 3

Discrimination and calibration of SNV signature in BRCA data. (A) The K-M curve of the low-risk group and the high-risk group. (B) Time-
dependent AUC of SNV signature. (C) The 2-, 5-, and 8-year AUC of SNV signature. (D) The observed survival curves (solid line) and predicted
survival curves (dotted line). (E) Calibration plot for 2-, 5-, and 8-year AUC of SNV signature.
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4 Discussion

The use of transcriptome data to construct cancer prognostic

models has become very popular, and its performance in the

internal verification is often satisfactory. However, due to

different sequencing platforms and sequencing methods,

instability of transcriptome data expression, and data

standardization problems, extrapolation is still questionable.

Trying to get the same desirable results from a random external

data is always going to be less than expected.

SNV is a widely studied type of genemutation (SNP is themost

common type), which exists stably in somatic cells and plays a key

role in regulating transcriptome expression. Aggregating small

effects of SNV is a convincing attempt with promising

applications. Our research shows that auto-encoders can extract

effective information from dichotomous data well, even in the case

of highly sparse variable values. It maps the linear combination of

input dichotomous variables to a continuous value space with a

lower dimension by neural networks and activation function. These

features can retain most of the original information without

worrying about overfitting issues, because our goal is to get the

original information as possible. In addition, compared to highly

sparse binary variables, low-dimensional continuous variables are
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better utilized. Therefore, we thought of using the auto-encoder to

integrate such highly sparse binary SNV data.

Studies have shown that inherited genetic variation is

associated with cancer prognosis (28–30). However, few studies

have used SNV information to predict cancer prognosis in female

patients. A study using multi-omics data [including gene

expression data, copy number variation (CNV) data, and SNP] to

predict the prognosis of BRCA patients had a 5-year survival AUC

of 0.65 through their six-gene signature (31). By contrast, our study

shows the power of feature extraction using the deep learning

method. Based on the aggregated SNV information, we can greatly

improve the ability to predict cancer patients’ outcome.

In our study, BRCA patients were stratified into a low-risk

group and a high-risk group based on the SNV signature. The high-

risk group had higher TP53 and TTN mutation. TP53 is a well-

knownmutated gene and is amutant in 30% of all breast cancers. It

is clear that the role of TP53 in the management of breast cancer

matters (32). Moreover, we searched the existing mutational

signatures of BRCA in COSMIC (the catalogue of somatic

mutations in cancer, https://cancer.sanger.ac.uk/signatures/) and

found that TP53 mutation is validated to be concordant with

transcriptome expression (33). TTN-AS1 is a long noncoding

RNA (lncRNA) that binds to titin mRNA (TTN). Many studies
A B

C

FIGURE 4

The summary of SNVs in two groups in BRCA data. (A) Low-risk group. (B) High-risk group. (C) The detailed distribution of the top 10 mutated
genes in the high-risk group.
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have shown that overexpression of TTN-AS1 correlates with poor

prognosis in breast cancer and withmore advanced pathology (34).

Furthermore, we searched for studies on SNP analysis with

the auto-encoder in PubMed (8, 35–37). The most cutting-edge

methods take auto-encoders to extract features from SNP data

too (35). Specifically, the authors applied a deep canonically

correlated sparse auto-encoder to extract key features from SNP

data and functional magnetic resonance imaging (fMRI) data

and then stacked these features together for classification. Their

approach is very interesting and engaging because they

addressed the nonlinear dimension reduction and considered

the correlation between the above two types of data. The AUC

score of their proposed model for the SNP data was 0.984 and

that for fMRI data was 0.953, which were the highest AUC scores

among all models. The difference of our study is that we have

made an interesting experiment on the feature extraction

property of auto-encoders. We compared the selection of

activation functions in the output layer and found that the

sigmoid function was more suitable for feature extraction than

the ReLU function. The effect of dichotomous data was better

than continuous data. In addition, the data involved in our study

were from publicly available databases; thus, all results are

reliable and reproducible.

Our study has its limitations. First, a person’s entire

sequencing genome data are not easy to come by, which

makes it difficult to verify the performance of the prediction

model externally, but it is hoped to be achieved in the future.

Second, although we considered the correlation between

covariates within and between groups in our simulation study

in supplementary files, we did not incorporate genetic elements

such as linkage disequilibrium. Third, due to the randomness of

parameter initialization, results of deep neural network training

are also random. Therefore, the characteristics obtained from

each training time are always different. For example, in the

BRCA dataset, each time the auto-encoder was retrained, the

obtained features used for the LASSO analysis were different, as

well as the C-index. However, the difference was not apparent,

only causing the raw C-index to move around an interval, say

0.865 to 0.915 (see Table S5). Therefore, any training result is

feasible in a single test. Furthermore, there may be many other

scenarios where deep neural networks can be used to extract

features and make use of them. This remains to be discovered by

the scholars.
5 Conclusion

Integrating minor effects from highly sparse genetic genome

data could improve prediction power. We studied the feature
Frontiers in Oncology 10
extraction property of the auto-encoder and found that it can

work well to extract features by transforming highly sparse

binary data (e.g., rare mutation) to lower-dimensional

continuous data in a non-linear way. We applied this method

to two cancer prognosis studies that had genotype data and

achieved good predictive performance. This idea may provide

something for everyone involved in cancer research, risk

reduction, treatment, and patient care.
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