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Glioma, is a representative type of intracranial tumor among adults, usually has a

weak prognosis and limited treatment options. Traditional therapies, including

surgery, chemotherapy, and radiotherapy, have had little impact on patient survival

time. Immunotherapies designed to target the programmed cell death protein 1

(PD-1)/programmed death ligand 1 (PD-L1) signaling pathway have successfully

treated various human cancers, informing the development of similar therapies for

glioma. However, anti-PD-L1 response rates remain limited in glioma patients.

Thus, exploring novel checkpoints targeting additional immunomodulatory

pathways for activating durable antitumor immune responses and improving

glioma outcomes is needed. Researchers have identified other B7 family

checkpoint molecules, including PD-L2, B7-H2, B7-H3, B7-H4, and B7-H6. The

current review article evaluates the expression of all 10 reported members of the

B7 family in human glioma using The Cancer Genome Atlas (TCGA) and the

Genotype-Tissue Expression (GTEx) data, as well as summarizes studies evaluating

the clinical meanings and functions of B7 family molecules in gliomas. B7 family

checkpointsmay contribute to different immunotherapeuticmanagement options

for glioma patients.
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1 Introduction

Glioma is a representative tumor regarding central nervous system (CNS), and

accounts for approximately 81% of adult primary brain tumors (1). Based on World

Health Organization (WHO) Classification updated in 2016, glioma treatment and

prognosis can vary dramatically (2). Conventional treatment modalities for glioma

patients include surgery, radiotherapy, and chemotherapy. While these options have

achieved remarkable progress in recent decades, glioma patient survival rates remain low,

especially among those with glioblastoma (GBM). Thus, new treatment strategies or

agents shall be developed urgently.
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Immunotherapy is a revolutionary cancer treatment that

targets checkpoints in various solid tumors, including gliomas

(3). T cells are pivotal effectors in the immune response to

cancer, and the loss of function of this cell type can promote

immune evasion (4). Immune responses are under the strict

controlling of the B7 family memembers, including co-

stimulatory molecules and co-inhibitory molecules. Co-

stimulation can be balanced by co-inhibitory signals, that

determine the activation or the inhibition of T cells (5). B7

family members also can essentially regulate the tumor

progression, growth, proliferation, invasion, and drug

sensitivity (6). Thus, the B7 family has received particular

attention for their potential role as immune checkpoint

inhibitors (ICIs) in cancer treatment. By now, there have been

ten identified B7 family molecules: B7-1 (CD80), B7-2 (CD86),

B7-H1 (CD274, PD-L1), B7-DC (CD273, PD-L2), B7-H2

(CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1or VTCN1), B7-

H5 (GI24, VISTA or PD-1H), B7-H6 (NCR3LG1) and B7-H7

(HHLA2) (7).

Several B7 family members are highly expressed in glioma,

suggesting that these molecules participate the anti-glioma

immune response (8, 9). Multiple mechanisms regulate the

expression of B7 molecules. Blocking B7 activates T

lymphocytes and NK cells and restores antitumor immunity

(10). The current study used TCGA and GTEx data to

investigate the expression of different members of B7 family in

glioma. B7-H3 and B7-H5 presented a higher expression than

other family members, suggesting these two molecules may play

an essential role in anti-glioma immunity (Figure 1). This could

explain the limited efficacy exerted by PD-1/PD-L1 therapy

against this disease. Nevertheless, few studies have investigated

the relationships between B7-H5, B7-H7 and glioma,

respectively. The current review summarizes research on other

B7 family members, including PD-L1(B7-H1), PD-L2(B7-DC),

B7-H3, B7-H4, and B7-H6, in glioma. Further study shall be

conducted on these molecules to develop new and useful

immunotherapies, either single or combined medicines.
Abbreviations: TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue

Expression; PD-1, programmed cell death protein 1; PD-L1, programmed

death ligand 1; GBM, glioblastoma; NK, natural killer; EMT, epithelial-

mesenchymal transition; ICIs, immune checkpoint inhibitors; TLR, toll-like

receptor; EGFR, epidermal growth factor receptor; IFN, interferon; MyD88,

myeloid differentiation factor 88-independent; PTEN, Phosphatase and

Tensin Homolog deleted on Chromosome 10; EMT, epithelial

mesenchymal transition; MMP-2/-9, matrix metalloproteinase-2/-9; ADCC,

antibody-dependent cell-mediated cytotoxicity; rGBM, recurrent

glioblastoma; ORR, overall response rate; CR, complete response; PR,

partial response; SD, steady disease; GATA2, GATA-binding factor 2; APC,

antigen-presenting cells; MMP, metalloproteinase; CAR, Chimeric antigen

receptor; GSLC, glioma stem-like cell.
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2 Clinical meanings and functions of
PD-L1 in gliomas

Programmed death ligand 1 (PD-L1), also known as CD274

or B7-H1, was first named B7-H1 by Dong et al. in 1999 (11).

PD-L1 can be encoded by the PDCDL1 gene, has seven exons,

includes both IgV-like and IgC-like extracellular domains (12),

and is the first functionally characterized ligand of coinhibitory

PD-1. Multiple cancer types see the expression of PD-L1,

including lung cancer, glioma, Merkel cell carcinoma, head

and neck cancer (HNC) and classical Hodgkin’s lymphoma

(CHL) (13–17). In gliomas, PD‐L1 expression ranges from

6.1–88% (18) and is mainly controlled by TLR, EGFR, and

IFN signaling. TLR signaling promotes PD-L1 expression in

gliomas by activating the MyD88/TRAF6/MEK/ERK pathway

(19). EGFR is activated by tumor growth factor-a or EGF

binding, inducing Ras/RAF/MAPK and PI3K/Akt-1/mTOR

signaling and promoting the PD-L1 expression (8). PTEN,

which negatively regulates the Akt activation, can vitally

regulate the PD-L1 expression in glioma. Indeed, PTEN

homozygous deletions or mutations are found in 36% of

gliomas and correlate positively with PD-L1 expression (8).

MicroRNA-34a (micR-34a) is also relate to the PD-L1

expression in gliomas, which modulates EGFR or PD-L1

translation for suppressing tumors (20). IFN type 1 (a, b, and
w) regulates PD-L1 by binding to the type 1 interferon receptor,

and includes two subunits of IFNAR 1 and IFNAR 2 (21).

Receptor binding induces the STAT 1–3 signaling cascade and

the JAK1 and JAK2 activation, resulting in elevated PD-L1

expression (22). Meanwhile, IFNAR1/2 gene silencing reduces

PD-L1 expression.

The molecular chaperone, FK506-binding protein 51

(FKBP51), is an important biomarker of metabolic dysfunction

and is abundantly expressed in glioma. D’Arrigo et al. reported

that FKBP51s led to PD-L1 expression up-regulation on the

plasma membrane through the catalysis of the protein folding

needed for the later glycosylation, confirming it as an underlying

target for GBM immunotherapy (21). According to Chen. et al.,

PD-L1/Ras/ERk signaling promotes the EMT, the migration,

and the invasion of glioma cells (23). More accurately

understanding the PD-L1 mechanisms of action could inform

the development of new immunotherapies for glioma. Figure 2

displays the known roles and regulatory mechanisms of PD-L1.

The PD-1/PD-L1 axis acts as a crucial checkpoint in cancer

immune evasion and progression. The binding of and PD-1 and

PD-L1causes T cell exhaustion, anergy and apoptosis, as well as

reduces cytotoxicity (24). Using anti-PD-1/PD-L1 antibodies for

treatment has a similar effect. In contrast, blocking the process of

PD-L1 binding to PD-1 creates an immunosuppressive

microenvironment and leads to T cell activation, to enable T

cells recognize as well as kill tumor cells (25). Anti-PD-1 antibodies

are applied to different solid tumors (26). Clinical trials of PD-1/
frontiersin.org
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PD-L1 inhibitors are ongoing in patients with glioma.

CheckMate143 (NCT02017717), a randomized controlled clinical

trial comparing Nivolumab (PD-1 antibody) with Bevacizumab in

recurrent glioblastoma (rGBM) patients, is the first trial launched

in the United States (27). At the 2017 WFNOS meeting,

researchers reported that Nivolumab failed to prolong patients’

overall survival time (OS) compared with Bevacizumab. The

Nivolumab group possessed obviously lower progression free
Frontiers in Oncology 03
survival time (PFS) relative to the Bevacizumab group (1.5 vs.

3.5 months, respectively) (27). However, in a phase II trial, single

Nivolumab therapy induced an effective overall response rate

(ORR) of 7.8% (27). In 2021, a multicohort phase 1b

KEYNOTE-028 s tudy (NCT02054806) compar ing

Pembrolizumab to PD-L1 positive GBM found that

Pembrolizumab monotherapy promoted durable antitumor

activity with a median PFS of 2.8 months and a median OS of
FIGURE 2

The function and regulatory mechanisms of PD-L1/PD-L2 in gliomas.
FIGURE 1

B7 family molecules expression levels in glioma. Heatmap representing expression of the ten B7 family member genes in normal (n = 5) and
glioma tissue (n = 173) in TCGA (n=173). The data came from UCSC Xena and t test served for the analysis after the log2 transformation.
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13.1 months. An ORR of 8% was observed (28). Most recently, a

Phase III trial (NCT02667587) of Stupp regimen+Nivolumab or

Placebo for newly diagnosed enzyme O(6)-methylguanine-DNA

methyltransferase (MGMT) methylated GBM was reported.

Regretfully, Nivolumab added to Stupp care did not improve

survival in patients. The PFS was 10.6 months with Nivolumab

+ radiotherapy (RT) + temozolomide (TMZ) vs 10.3 months with

Placebo+RT+TMZ and mOS was 28.9 months vs 32.1 months,

respectively (29). These findings indicated that ICIs showed anti-

tumor activity in in minor patients. This may be explained by

several reasons. First, the tumor microenvironment of GBM

contains few T-cells and instead is dominated by tumor-

associated macrophages (TAMs), especially IDH-mut glioma (30,

31). Second, GBM is rich in myeloid-derived suppressor cells

(MDSCs) (32), which can strongly suppress the activity of T

cells, NK cells, and certain myeloid cells. Third, high tumor

mutational load has rarely been observed in GBM (33). In

addition, a large amount of TGF is present in tumor

microenvironment, including TGF-b, L10, IDO and other

immunosuppressive factors. At present, regulatory T (T-reg) cells

are considered as one of the main reasons for the

immunosuppressive microenvironment of GBM (34). Together,

these findings indicate the immunologically “cold” nature of GBM.

Recently, studies suggested that radiotherapy could remodel

tumor inflammatory environment and turn immunologically

‘cold’ to ‘hot’ (35). In a 2012 study by Zeng et al., they found that

mice (models of GBM) that received Stereotactic Radiosurgery +
Frontiers in Oncology 04
anti-PD-1 therapy had a near doubling of mOS than that

received anti-PD-1 therapy alone (36). Then, combining SRS

with ICIs may provide an attractive combination for treating

GBM. In 2019, a study by Cloughesy et al. found that compared

with adjuvant pembrolizumab, neoadjuvant pembrolizumab

plus adjuvant pembrol izumab confer a s ignificant

improvement in OS (13.7vs 7.5 months) and PFS (3.3vs

2.5months) for patients with rGBM (37). Thus, it may be a

novel management paradigm for rGBM. A phase 2 clinical trial

(NCT03197506) of neoadjuvant ICI therapy are ongoing in the

Mayo Clinic. Tables 1, 2 list the completed clinical trial results

and ongoing trial results, respectively.

Anti-PD-L1 antibodies, including Avelumab, Durvalumab,

and Atezolizumab, enjoy wide application in clinical practice.

Avelumab functions as a fully human IgG1 mAb which exerts

selective blocking effect on PD-L1, as well as facilitates anti-

tumor T-cell activity (26). A non-randomized, open-label phase

II trial of Avelumab for rGBM treatment was completed in

Belgium and elicited an ORR of 33.3% (39). According to a

phase Ia trial, the PR and steady disease (SD) of Atezolizumab

were 6% and 18%, respectively, in rGBM patients (40). In a

separate phase II study (41), Durvalumab combined with

standard or reduced dose Bevacizumab had no significant

effect on a cohort of Bevacizumab-naïve rGBM patients (41).

These findings suggest that current PD-L1 inhibitor treatments

for patients with recurrent glioma are poor. Tables 1, 2 give the

completed and the ongoing clinical trial results, respectively.
TABLE 1 Ongoing clinical trials targeting B7 family molecules.

Target Drug Disease Phase N Trial ID Status

PD-L1 PD-L1 CAR-T Glioma/Recurrence Tumor 1 100 NCT03423992 Recruiting

PD-L1 Avelumab Glioma 1 60 NCT03893903 Recruiting

PD-L1 Atezolizumab Glioma 1 18 NCT04160494 Recruiting

PD-L1 Atezolizumab GBM 1 12 NCT05423210 Not yet recruiting

PD-L1 Olaparib
/Durvalumab

Glioma
/Cholangiocarcinoma
/Solid Tumor

2 78 NCT03991832 Recruiting

B7-H3 B7-H3/CAR-T Central Nervous System
Tumor

1 90 NCT04185038 Recruiting

B7-H3 131I-Omburtamab DIPG 1 NCT05063357 Not yet recruiting

B7-H3 B7-H3CAR-T Brain and Nervous System 1 39 NCT05474378 recruiting

B7-H3 B7-H3CAR-T GBM 1 36 NCT05366179 Not yet recruiting

B7-H3 B7-H3CAR-T rGBM 1 12 NCT04385173 Unknown status

B7-H3 B7-H3CAR-T GBM 1 30 NCT05241392 Recruiting

B7-H3 B7-H3 CAR-T rGBM 1/2 40 NCT04077866 Recruiting

GBM, glioblastoma; recurrent glioblastoma, rGBM; N, number; DIPG, diffuse intrinsic pontine glioma; CAR-T, chimeric antigen receptor-T cell therapy.
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3 Clinical meanings and functions of
PD-L2 in gliomas

PD-L2, also called CD273, is a receptor for PD-1. Like PD-

L1, PD-L2 contains IgV-like and IgC-like extracellular domains

and exists on multiple immune, endothelial, and tumor cells

(42). Less is known about how PD-L2 is regulated than PD-L1.

Fu et al. showed that GATA-binding factor 2 (GATA2) was

capable of promoting the expressions of PD-L1 and PD-L2 (43).

GATA2, encoding a zinc finger transcription factor required for
Frontiers in Oncology 05
normal hematopoiesis, is located on chromosome 3q21.2 (44).

This transcription factor can increase the expressions of PD-L1

and PD-L2, which is needed for PD-L2 expression. Li et al. found

that HOXC10, a which belonged to the homeobox genes (HOX)

gene family, could considerably affect the physiological processes

of mammalia. This gene is upregulated in glioma and promotes

the expression of PD-L2, and other genes related to tumor

immunosuppression (45). HOXC10 binds directly to PD-L2

promoter regions. De Waele et al. reported that poly (I:C)

(Toll-like receptor 3 agonist, TLR-3) stimulates the expressions
TABLE 2 Completed clinical trials that target B7 family molecules in glioma.

Target Drug Disease Phase N Trial ID ORR/mPFS/mOS

PD-1 Nivolumab r/High Grade Glioma/
Brain Cancer

2 43 NCT03925246 NR

PD-1 DNX-2401/
Pembrolizumab

Brain cancer 2 49 NCT02798406 NR

PD-1 Pembrolizumab HGG 13 Lombardi
et al. (38)

m PFS: 2.2 months
m OS: 5.6 months

PD-1 Nivolumab Glioma/GBM/
Astrocytoma

1 6 NCT02529072 cohort1: Preoperative nivolumab and postoperative nivolumab
+ DC vaccine:
(mPFS: 4.3 months mOS: 8.0 months)
cohort2: Preoperative nivolumab + DC vaccine and
postoperative nivolumab + DC vaccine
(mPFS: 6.3 months mOS: 15.3 months)

PD-1 Nivolumab/
Bevacizumab

GBM 3 369 NCT02017717 Arm A: Nivolumab, ORR: 7.8%
Arm B: Bevacizumab, ORR: 23.1%

PD-1 nivolumab GBM II 29 NCT02550249 Presurgery nivolumab +surgery+ adjuvant nivolumab:
m PFS: 4.1 months
m OS: 7.3 months

PD-L1 Avelumab GBM 1 13 NCT03341806 Completed, NR

PD-L1 Axitinib/Avelumab rGBM/Glioma (WHO
IV)

2 52 NCT03291314 Cohort1: (Low baseline corticosteroids) Axitinib + avelumab:
ORR:33.3%
mPFS: 12.0 weeks mOS: 10.7 weeks
Cohort2: (High baseline corticosteroids): Axitinib+ avelumab
after 6 weeks): ORR: 22.2%

PD-L1 Avelumab GBM 2 6 NCT02968940 NR

PD-L1 Durvalumab/
Tremelimumab

Glioma/rGBM 2 36 NCT02794883 NR

PD-L1 DSP-7888 GBM/DIPG 1/2 18 NCT02750891 NR

PD-L1 Atezolizumab GBM 1 16 NCT01375843 ORR: 6%
mPFS: 1.2 months
mOS: 4.2 months

PD-L1 Durvalumab/
Bevacizumab

GBM 2 159 NCT02336165 A: Newly diagnosed uMGMT: (Durvalumab + radiotherapy)
mOS: 15.1 months
B: Bevacizumab‐ naïve rGBM
(B1: Durvalumab: 12‐months-OS: 44.4%;
B2: Durvalumab + Bevacizumab: NR
B3: Durvalumab + Bevacizumab: NR
C: Bevacizumab‐recurrent: Durvalumab + Bevacizumab: mOS:
5.6 months

GBM, glioblastoma; recurrent glioblastoma, rGBM; high grade glioma, HGG; N, number; ORR, Objective response rate; mPFS, median progression free survival; mOS, median overall
survival; NR, not reported; uMGMT, MGMT unmethylated.
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of PD-L1 and PD-L2 through TLR3-TICAM1 signaling (46).

Figure 2 displays the regulatory action of PD-L2 expression. Like

PD-L1, PD-L2 crucially modulates T cell activation,

proliferation, and immune escape by human tumors (47). In

glioma patients, PD-L2 expression could report worse clinical

outcomes (43). Thus, targeting PD-L2 signaling may serve as a

potential substitute therapy for glioma.
4 Clinical meanings and functions of
B7-H3 in gliomas

B7 homolog 3 (B7-H3), also named CD276, refers to a 316

amino acid long type I transmembrane protein (48). In 2001,

researchers first clone it from a cDNA library from the dendritic

cells (DCs) (49). The human B7-H3 gene can be observed on

chromosome 15 (48). While B7-H3 mRNA presents an

ubiquitous expression in various tissues and cells, B7-H3

protein can only be found in resting fibroblasts, osteoblasts,

activated T lymphocytes, endothelial cells, NK cells, and APC

(10) . The express ion of B7-H3 were assessed by

immunohistochemistry and western-blot in human GBM and

benign brain tissue, including 2IgB7-H3 and 4IgB7-H3 two

isoforms (50, 51). Despite the presence of 2IgB7-H3 in benign

brain tissue, 4IgB7-H3 showed certain expression in GBM.

2IgB7-H3 had a higher expression in rGBM tissue, more

resistant to apoptosis under the mediation of temozolomide

(9). A separate study found that 2IgB7-H3 mRNA presented

expression in glioma tissues but was weak or undetectable in

benign brain tissues. Meanwhile, 4IgB7-H3 mRNA could be

found in benign brain and in glioma tissues (Table 3) (52).

Glioma patients with isocitrate dehydrogenase (IDH) wild‐

type or a higher tumor grade express more B7-H3 (53). Studies

also show that microRNA‐29 family members can negatively

regulate B7‐H3 in glioma tissue. B7-H3 is positively correlated

with TLR signaling (53). This protein is present in many kinds of

cancers, including glioma, and is relevant to tumor

aggressiveness and reports poor prognosis (54, 55). According

to Zhong et al., elevated B7-H3 expression exerted an obviously

positive impact on the proliferation and invasion of glioma cells

both in vitro and in vivo, that leads to weak clinical prognosis

(56). Elevated B7-H3 levels results in the activation of the JAK2/
Frontiers in Oncology 06
STAT3 prosurvival signaling pathway, that contributes to tumor

growth, meanwhile inducing EMT in cancer cells. In addition,

B7-H3 induces tumor cell EMT processes by downregulating e-

cadherin and upregulating MMP-2/-9 expression. The STAT3

inhibitor, NAP, can remarkably suppress the glioma growth and

invasion and could thus be a potential strategy for treating

glioma. MMP-2 (main) degrades the extracellular matrix and

induces cell migration from the primary tumor to the

surrounding environment. Exosomes are membrane vesicles

that were released by cancer cells that promote cancer cell

growth and increase tumor swelling, invasion, and migration

(57) Recently, Ciprut et al. showed that angio-associated

migratory cell protein (AAPP) was a binding partner of B7-H3

and that B7-H3-induced immunosuppression could be blocked

by targeting AAPP (58). Kanchan et al. found that CD276 is an

oncogenic target of miR-1253. MiR‐1253 transfection

downregulates CD276 expression. However, tumor cell

migration and invasion are substantially reduced when CD276

is silent (59). Figure 3 displays the regulatory actions of B7-

H3 expression.

Functionally, B7-H3 promotes tumor-immune escape and

confers a more aggressive phenotype to multiple tumor cell types

(60). The B7-H3 checkpoint can promisingly serve for cancer
FIGURE 3

The function and regulatory mechanisms of B7-H3 in gliomas.
TABLE 3 Two forms of B7-H3 expression in normal brain and glioma tissue.

Forms Normal tissue Glioma tissue

mRNA 2IgB7-H3 – +

4IgB7-H3 + +

Protein 2IgB7-H3 + +

4IgB7-H3 – +

-, weak or undetectable; +, positive.
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immunotherapy as a novel target. According to studies, using a

monoclonal antibody to target B7-H3 can safely and effectively

serve for treating stage IV childhood neuroblastoma (61).

MGA271, an anti-tumor-associated B7-H3 monoclonal

antibody, inhibits the growth of glioma cells through ADCC,

thereby increasing the anti-tumor response (62). Meanwhile,

8H9 acts as a murine IgG1 mAb targeting B7-H3 (63, 64), which,

based on the immunostaining, presents a broad response in

human solid tumors, such as embryonal tumors and carcinomas

(63). This mAb exhibits a good tumor uptake in xenograft

models of both sarcoma and brain tumors (65).

Chimeric antigen receptor (CAR) T cells have become an

useful immunotherapeutic approach in cancer treatment (66).

CAR essentially constitutes CAR-T, relying on which T cells can

recognize tumor antigens without needing HLA, and recognize a

larger number of wide target antigens compared with natural

TCR (67). As CAR-T cells has enjoyed a successful application to

treating hematological malignancies, using CAR-T cell therapy

for solid tumor is gaining more and more attentions (68). Many

clinical trials are conducted in several countries including the

US, China and Europe, and with the trail progress and outcome

being strictly detected. To date, some preclinical and clinical

studies regarding the CAR-T immunotherapy specific to gliomas

have achieved good results (69–71). Tang et al. constructed B7-

H3-specific CAR-T cells and evaluated it antitumor activities in

primary glioma cells and GBM cell lines, as well as found that the

CAR-T group of orthotropic GBM model has significantly

longer survival time than that of control group (72).

According to the study by Nehama et al. in 2019, B7-H3-

specific CAR-T cells release effector cytokines like IL-2 and

IFN-g, meanwhile controlling the growth of neurospheres and

human GBM cell lines (73). In consistent with Tang et al’s

report, compared with control T cells, B7-H3 CAR-T group

significantly prolonged the survival of treated mice. B7-H3-

specific CAR-T has promising antitumor activities in immune-

competent animal models and patient-derived orthotopic

xenograft. Dual CAR-T target antigens improve variation of

antigens and the heterogeneity in treating solid tumors and

showed enhanced antitumor effects (74). Accordingly, B7-H3 is

likely to be a promising CAR-T target for GBM. Table 2 lists the

ongoing clinical trial results. These findings confirm B7-H3

CAR-T as an useful and safe immunotherapeutic agent

for tumors.
5 Clinical meanings and functions of
B7-H4 in gliomas

In 2003, B7 homolog 4 (B7-H4), also called B7x and B7S1,

was identified by three laboratories as it was similar to other B7

family molecules (75). As a type I transmembrane protein, it can

share 20–30% amino acid homology with other family members

in its extracellular region. Similarity in B7-H4 amino acid
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sequences between mouse and human is approximately 87%

(76). B7-H4 encodes the VTCN1 protein, which includes 283

and 282 amino acids in murine and humans, respectively (77).

From the perspective of structure, B7-H4 possesses an

extracellular, a hydrophobic transmembrane, together with an

intracellular domain (78). Until now, researchers have not

identified a certain receptor for B7-H4. While researchers

considered a B and T lymphocyte attenuator as a B7-H4

receptor, this has not been supported by additional

experiments (78). B7-H4 mRNA presents a wide distribution

in normal tissues, however, it has a limited expression in cancer

(79). In normal tissue, B7-H4 mRNA is expressed on bone

marrow-derived DCs, APCs, B cells, peritoneal macrophages

and widely distributed in non-lymphoid tissue. Different with

other members, B7-H4 exhibits a strict expression on cells

originate in hematopoietic. In vitro culture, B7-H4 expression

is lost rapidly (80). B7-H4 protein has been found to overexpress

in several cancer tissue, including ovarian, pancreatic cancer,

renal cell cancer, hepatocellular carcinoma (HCC), gastric

cancer, glioma, lung cancer, breast, prostate cancer, cervical

cancer and melanoma (81). Studies indicate that cytokines can

effectively regulate B7-H4. B7-H4 expression can be increased by

IL-10 and IL-6, but decreased by IL-4 and DC-differentiation

cytokines (82, 83). Yao et al. found that IL10 and IL6 produced

by CD133+ cells induce B7-H4 expression by glioma-infiltrating

macrophages (84). According to Zhou et al., B7-H4 expression

in mouse tumor cells decreases IFN-g production and negatively

regulates the cytotoxicity, expansion, and activation of CD8

tumor-specific T cells. This process can promote tumor

growth and weaken tumor-specific immunity (85). Studies

suggest that recombinant anti-B7-H4 antibodies may assist in

enhancing anti-tumor immune responses as well as triggering T-

cell activation (80, 86). In human glioma, B7-H4 expression

shows a positive association with advanced glioma grade and

poor prognosis (87). Yao et al. detected B7-H4 mRNA and

protein expression in glioma tissue and showed that levels

increased as the disease progressed. B7-H4 can be a prognostic

marker for glioma. IL-6 increases B7-H4 expression by

activating the IL-6/JAK/STAT signaling pathway (84). Figure 4

displays the regulatory actions of B7-H4 expression. In a

xenograft glioma model, T cells become activated if the B7-H4

gene is silenced, hence it could serve as a possible target for

glioma therapy. To determine coexpression levels of PD-L1 and

B7-H4, two primary B7 immune regulatory molecules, in

glioma, Chen et al. adopted immunohistochemistry (IHC) for

assessing 505 tumor tissues of primary gliomas (stage II–IV) and

found that 23% and 20% of patients expressed PD-L1 and B7-

H4, respectively, while only 2% of patients co-expressed the two

proteins (88). These findings demonstrate that PD-L1 and B7-

H4 may be mutually compensatory immune checkpoint

molecules for immune targeted or activation-specific

immunotherapy against gliomas. In addition, based on an

exploratory randomized phase II clinic trial, GBM patients
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who had low B7-H4 expression had obviously longer OS after

receiving a dendritic cell vaccine (DCV) (89). B7-H4 could help

to predict the success of this treatment in glioma patients.

B7-H4 expressed in various human cancer, and that its

overexpression serves as adverse prognostic marker that

significantly correlated with patient’s poor prognosis makes it

an attractive drug target. B7-H4 can be targeted through a variety

of mechanisms like monoclonal-blocking antibodies (mAbs),

antibody–drug conjugate (ADCs), CD3 bispecific antibodies

(BiTE), single chain fragment variables (scFvs) and CAR-T (80,

90, 91). Since ovarian cancer sees the expression of B7-H4, anti-

B7-H4 scFvs have shown the ability to delay the growth of

established ovarian cancer (80). A B7x scFv/CD3 BiTE has been

shown it strong antitumor activity in preclinical breast cancer

model to control the growth of breast cancer cell line (92). In

addition, B7-H4 specific target CAR-T cells ability of recognizing

both murine and human B7-H4 led to tumor regression in

xenograft models (90). Regretfully, to date, there is no ongoing

or finished clinical/preclinical trial targeting B7-H4 in glioma.
6 Clinical meanings and functions of
B7-H6 in gliomas

B7 homolog 6 (B7-H6), also called NCR3LG1, is a kind of the

immune checkpoints of the B7 family and plays the role of an

endogenous/co-stimulatory ligand. This gene encodes a 454-aa-

long type I transmembrane protein of which the predicted

molecular mass is 51 kDa (93). The B7-H6 extracellular region

contains both an IgV-like and an IgC-like domain. Using a residue

mutation strategy, Gordon Joyce et al. found that there is a direct

and selective interaction between the extracellular domain of

NKp30, an NK cell-activating receptor, and the B7-H6

extracellular domain (94). Upon binding to its receptor, NKp30

becomes immunogenic and induces NK cell immunosurveillance.
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The intracytoplasmic domain has many signaling motifs, e.g. an

inhibition motif based on immunoreceptor tyrosine (SaYtpL), a

SH2 (Src homology 2)-binding domain (YqlQ), and a SH3-binding

motif (PdaPilPvsP) (95). B7-H6 also presents a selective expression

on several tumor cell types (melanoma, neuroblastoma, primary

blood or bone marrow cells from various hematological

malignancies, etc. (96, 97). This protein is undetectable in normal

tissue and normal peripheral blood mononuclear cells. Researchers

have explored B7-H6 expression and regulation mechanism. One

study investigated the induction of B7-H6 at the surface of

neutrophils and proinflammatory monocytes with ligands of TLR

and proinflammatory cytokines (TNF-a and IL-1b) (98). In

another study, B7-H6 expression on the tumor cells surface was

triggered by metalloproteases and the regulation relied on siRNA-

mediated gene attenuation or metalloprotease inhibitors, which

increased B7-H6 expression and strengthened NKp30-mediated

NK cell activation (99). According to the study by Guo et al. in 2016,

B7-H6 presents an over-expression in human astrocytoma tissues,

and is positively correlated with WHO tumor grade (100). Jiang

et al. found that B7-H6 remarkably regulated the biological behavior

of glioma cells. Knocking the B7-H6 down in glioma cells, the cell

proliferation, migration, and invasion were obviously suppressed,

however, the apoptosis and cell cycle arrest were strengthened

(101). Conforming to these findings, Che et al. revealed that B7-

H6 knockdown in the glioma cell exerted an obvious increased

effect on the expression of X protein associated with E-cadherin and

Bcl-2, as well as suppressed the expressions of vimentin, matrix

metalloproteinase-2, N-cadherin, matrix metalloproteinase-9 and

survivin expression (102). They also found that lipopolysaccharide

(LPS) could induce B7-H6 expression in glioma cells. To better

understand how B7-H6 expression affected the tumor tissue of

glioma from biological perspective, Chen et al. conducted a study.

They found the high expression of B7-H6 in GSLCs from the

glioma cell lines in vitro. Interestingly, among the B7 family

members, B7-H6 was the only member with preferential

expression in the GSLCs. They also found that GSLC

proliferation was promoted by PI3K/Akt and ERK/MAPK and c-

Myc/RNMT axis signaling pathways (38). Wu et al. found that B7-

H6 knockdown remarkably restricted the tumorigenesis as well as

facilitated the chemosensitivity through STAT3 signaling pathway

in B-cell non-Hodgkin lymphoma, which may provide us with

some enlightenments on investigating on chemosensitivity of

glioma (103). Figure 5 displays the regulatory actions of B7-H6

expression. Therefore, B7-H6 can effectively mark glioma diagnosis

and prognosis from biological level, and is a useful target for new

treatment therapy.

B7-H6 presents an obvious expression in various cancer

types, it therefore serves as a proper candidate for targeted

treatment. Researchers consider the utilization of certain

monoclonal antibodies against B7-H6 as an effective method

for tumor treatment. Gacerez et al. has revealed that mouse scFv-

based CARs can target B7-H6 in Lymphoma, thereby enhancing

the T cells’ anti-tumor activity( (104). Regretfully, so far, there is
FIGURE 4

The function and regulatory mechanisms of B7-H4 in gliomas.
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no ongoing or finished clinical/preclinical trial targeting B7-H6

in glioma.
7 Conclusion

In the last decade, a lot of ICIs targeting B7 family have been

developed and tested in various solid cancers. However, the role of

B7 family members in glioma remains largely unexplored. Thus,

further understating of the mechanism and function of the B7

family in glioma would contribute to discovering more effective

immunotherapy targets. The current study demonstrated that B7-

H3 and B7-H5 presented higher expression than other family

members, suggesting these two molecules may play an essential

role in anti-glioma immunity. Additionally, the nature of glioma as

a “cold” tumor severely restrict the effect of ICIs. Future research

should also focus on how to reverse the immunosuppressive

microenvironment in glioma.
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