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Hypoxia is an important component of tumor microenvironment and plays a

pivotal role in cancer progression. With the distinctive physiochemical

properties and biological effects, various nanoparticles targeting hypoxia had

raised great interest in cancer imaging, drug delivery, and gene therapy during

the last decade. In the current review, we provided a comprehensive view on

the latest progress of novel stimuli-responsive nanomaterials targeting

hypoxia-tumor microenvironment (TME), and their applications in cancer

diagnosis and therapy. Future prospect and challenges of nanomaterials are

also discussed.
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1 Introduction

Hypoxia, caused by an imbalance in the supply and consumption of oxygen (O2) by

rapidly proliferating tumor cells, is a hallmarker of numerous solid tumors (1, 2). The

hypoxic TME can increase the generation of reactive oxygen species (ROS), which can

disrupt normal tissues. It also disrupts cell cycle regulation and leads to treatment

resistance, thereby contributing to cancer recurrence (3).

Overcoming hypoxia is a viable therapeutic strategy. Several techniques have been

proposed and explored to cure hypoxia, including inhalation of hyperbaric oxygen,

injection of erythropoietin, using vasodilators, or transfusing blood (4–7). Unfortunately,

none of these tactics have been proven effective. Nanomaterials have brought unique

insights into the therapy of tumor hypoxia in recent years, owing to the advancement of

nanotechnology (8). Physical strategies and/or specific chemical have been used to

enhance many basic types of nanomaterials, such as polymers (9, 10), liposomes (11), and

inorganic nanoparticles (12). These nanomaterials can prevent tumor hypoxia in a

variety of ways; for example, targeted transport or generation of oxygen, such as

catalyzing the decomposition of higher concentrations of H2O2 in the
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microenvironment to oxygen or using perfluorocarbons with

high oxygen affinity. Constructing hypoxia-activated chemical

bond-modified nanostructures, such as the design of nitro-

coupled polymeric drugs, which can disrupt the structure and

release the drug by nitro cleavage (13). In addition, researchers

have designed active targeting vectors or anaerobic bacterial

vectors in combination with in vitro adjuvant therapy,

subsequently activating the drugs by means of radiotherapy

and photothermal therapy. On the other hand, nanomaterials

could also have great potential to improve tumor diagnostic

strategies. Current clinical diagnostic imaging techniques for

tumors include computed tomography (CT)/magnetic

resonance imaging (MRI), positron emission tomography

(PET), and near-infrared fluorescence (NIRF) imaging (14).

Given that traditional contrast agents often do not efficiently

accumulate in hypoxic tumor regions, these imaging modalities

have gradually failed to satisfy the demand for early and accurate

diagnosis. Unlike conventional contrast agents or probes,

nanomater ia l s could accumulate in TME through

decomposition and self-assembly or targeting various

components associated with hypoxia through modified ligand

materials to achieve stable and highly specific imaging

results (15).

In the present study, we focus on new advances in

nanomaterials for cancer imaging and therapy. We first

provided an overview of the physicochemical and biological

aspects of hypoxia and then illustrate strategies and recent

advances that have been used to develop hypoxic stimuli-
Frontiers in Oncology 02
responsive nanomaterials. The major limitations and future

prospects for clinical translation are also discussed.
2 Characteristics of hypoxia
microenvironment

Hypoxia is a hallmark of solid tumors. The oxygen tension in

most normal tissues with abundant blood supply is

approximately 30-70 mmHg. In contrast, the oxygen tension

around most tumor cells varies from 2.5 mmHg to 7.5 mmHg

(16). Hypoxic regions can accelerate the formation of the tumor

barrier and increase cytokine secretion (6). These abnormal

tissue conditions give tumor cells different physical, chemical,

and biological characteristics, such as low pH and high redox

potential. Understanding these characteristics is useful for

researchers to improve the design of new nanomaterials and

lead to more effective diagnosis and treatment (Figure 1).
2.1 Low pH

Tumor cells are usually in a low-oxygen environment owing

to the insufficient blood supply. This environment exacerbates

anaerobic glycolysis of tumor cells, which produces large

amounts of lactic acid, protons, and carbonic dioxide into the

TME during tumor expansion (17). Tumor cells catalyze the

export of these acidic metabolites by regulating transmembrane
FIGURE 1

Main hallmarks of hypoxic TME. Figure created with Biorender.com.
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ion fluxes. However, the hypoxic TME is distant from the blood

vessels, the clearance of acidic metabolic waste is obstructed (18).

Thus, these effects endow the hypoxic tumor region with a

relatively low pH around 6.2–7.2 (19). Furthermore, in order to

exacerbate the migration and invasion of hypoxic tumor cells,

low pH environment often facilitates the destruction of the

extracellular matrix (20).
2.2 High redox potential

High redox potential is another specific feature found in

hypoxic TME (21). Normal cells tend to maintain a dynamic

redox balance, but tumor cells generally exhibit a state of

oxidative stress and generate large amounts of ROS—100

times higher than that in normal cells—to adapt to hypoxia

and glucose deprivation (22). ROS are important components of

redox reactions, resulting in tissue damage and stimulation of

metastasis-associated growth factor (23–25). To avoid redox

imbalances and prevent fatal levels of ROS, tumor cells’

antioxidant systems become more activated than those of cells

under normoxic conditions. For examples, the activities of

reductase systems, including azo reductase, nitro reductase

(NTR), and NAD(P)H, are enhanced, and the amounts of

antioxidant agents such as cysteine and glutathione, are

increased (26). These properties play a crucial role in the

formation of hypoxia-induced chemical bonds that react with

different types of reductases, including nitroimidazole, azo,

and others.
2.3 Tumor-associated macrophages

Tumor-associated macrophages (TAMs) constitute a

significant percentage of TME, accounting for up to 50% of

solid tumors (27). It is well known that tumor cells secrete a

variety of chemokines, such as CCL2, CXCL1, CXCL8, etc

(28–30). Macrophages in the blood are attracted by these

cytokines, accumulate near the TME, and develop into

TAMs. Subsequently, hypoxic tumor regions produce

hypoxia-inducible factor-1 (HIF-1)-dependent cytokines

(CXCL12 , VEGF, and CXCL4) , caus ing TAMs to

accumulate in the avascular zone (31). TAMs are highly

associated with tumor progression and poor prognosis.

TAMs highly express IL-6, CXCL-8, and IL-10, which

promote tumor cell growth, suppress the immune response

of cytotoxic T cells and reduce the effects of chemotherapy

(32, 33). TAMs also secrete matrix metalloproteinases

(MMPs), histone proteases, and serine proteases, which

could diminish the connections between the endothelial

basal lamina and endothelial cells, as well as accelerate

tumor cell migration (34).
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2.4 Hypoxia-inducible factor-1

The hypoxic cellular response is primarily driven by

hypoxia-inducible factor-1 (HIF-1). Hypoxia-inducible factor-1

is considered as a major transcriptional regulator to hypoxia in a

variety of cells, which is composed of HIF-1a and HIF-1b
subunits (35). In normal tissues, HIF-1a is hydroxylated by

oxygen, attaches to ubiquitin ligase, and is subsequently

destroyed by proteasomes. Under hypoxic conditions, HIF-1a
hydroxylation is blocked, resulting in its binding to HIF-1b and

translocation to the nucleus (36). To reduce the negative effects

of hypoxia, HIF-1 can activate genes that regulate glucose

transporters and glycolytic enzymes, in addition to switching

tumor cells from aerobic respiration to anaerobic glycolysis (37).

HIF-1 can stimulate the hepatocyte growth factor (HGF)/HGF

receptor (c-MET) signaling pathway (38), boosting tumor cell

invasion and metastasis (39–41). Therefore, HIF-1 is frequently

used to predict poor tumor prognosis.
3 Strategies for overcoming hypoxia

3.1 Active targeting nanomaterials

3.1.1 Obligate anaerobes
The ability of bacteria to treat cancer was first discovered by

Dr. William B. Coley in the early 19th century. He established a

new approach for cancer therapy, namely anaerobic targeted

therapy (42). The principle of anaerobic treatment of tumors is

that the anaerobes could proliferate after entering into tumors,

due to the anoxic environment. By depleting the nutrients

needed for tumor growth, bacteria could kill tumors. However,

early research was unsuccessful, especially for large solid tumors

(≥500 mm3 in volume). The reason is that anaerobes could

selectively proliferate and destroy hypoxic tumor regions but

leave a well-oxygenated outer rim of the large solid tumors that

can lead to tumor recurrence (43–45).

Bacteria-mediated hypoxia-specific nanoparticles have

demonstrated therapeutic efficacy. Nanomaterials could help

anaerobes cross physiological boundaries to improve their

anticancer activity (Table 1). There are three types of

nanoparticles: bacterial complexes with nanomaterials, anaerobic

bacterial spore germination marker-targeting nanomaterials, and

bacterial secretions coupled to nanomaterials (58) (Figure 2). The

coupling of nanocarriers with strains is a typical building method.

Salmonella Typhimurium YB1 (YB1) is a typical biologically

modified bacterium that can easily form amide bonds with

micro photosensitizers (INPS) (59). Zheng et al. created a

biological/abiotic nanocomposite (YB1-INPS) that retained both

YB1 activity and the photothermal efficacy of INPS. YB1-INPS had

an excellent fluorescence imaging ability, which clearly revealed the

tumor area. After exposure to the tumor, NIR light activates the
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TABLE 1 Active targeting nanomaterials and nanoparticles for oxygen transport.

Name/
Target
(Year)

Materials Drug Size
(nm)

Zeta
(mV)

Tumor model Imaging
mode

Results

Obligate
Anaerobes

1. YB1-INPS PLGA INPS ≈1000 − MB49 cells/ C57BL/6
mice

NIR fluorescence
imaging

Highly selective hypoxia-targeting of delivering
INPs. (46)

-2019

2. SP-AgNPs AgNPs —— 15 -2 B16F10 cells/ BALB/c
mice

Bioluminescence
imaging

Improve tumor therapy biosafety via neutrophil
infiltration. (47)-2021

3. OMV-
NPNs@Pt

PEG-b-PLGA Cisplatin 149.0 ±
3.1

-4.16
± 0.32

EMT6/CT26 cells/ —— Excellent tumor targetability and complete
eradication of tumors through PTT combination
therapy. (48)-2020 BALB/c mice/ C57BL/6

mice

Targeted
HIF-1

4. DG-PEG-
LA-Lys-9R

2-DG-PEG siRNA 218.39 ±
9.00

−0.01
± 0.07

HepG2, U87MG, SGC-
7901, MCF7 cells/
BALB/c nude mice

NIR fluorescence
imaging

Enhance antitumor efficacy and reduce organ
toxicity. (49)

-2015

5. Gd@C82
(OH)22

Gadolinium
metallofullerene

—— 40.5~175.7 —— MDA-MB-231, BT-549
cells/

—— As a non-toxic inhibitor of HIF-1a and TGF-b
activities, efficient elimination of breast cancer
stem cell. (50)-2015 (pH

4.3~7.4)
Female BALB/c nude
mice

Targeted
TAM

6. LCL-PLP LCL Prednisolone
phosphate

≈100 —— B16.F10 cells/ Male
BALB/c nude mice

—— Reduction of the TAM-mediated production of
pro-angiogenic factors. (51)

-2008

7. CaBP
(99mTc)-PEG

CaBP-PEG 32P ≈40 -0.5 4T1, CT26 cells/ Female
BALB/c mice

SPECT imaging Great biocompatibility and prolonged
biodistribution. (52)

-2018

8. MPEI/
pCAR-IFN-g

MPEI IFN-g 32.8 ± 2.1 3.2 ±
1.7

Neuro-2a mouse
neuroblastoma cells/
female A/J mice

NIR fluorescence
imaging

Effectively detected TAM biomarker and improve
anti-tumor immunity. (53)

-2021

Oxygen
Transport

9.
PFTBA@HSA

Perfluorocarbon O2 150 -35 CT26, SUM149PT cells/
Male

—— Increase RBCs infiltration and O2 delivery via
physically dissolved oxygen, reverse tumor
resistance to radiotherapy. (54)

-2018 BALB/c mice

10．
PFC@PLGA-
RBCM

(PFC) O2 290 -10.8 4T1, CT26 cells/ Female
nude mice

—— Prolonged blood circulation and enhance
radiotherapy. (55)

-2017 PFC-PLGA

11.
IR780@O2-
FHMON

FHMON O2 180 -26 Panc-1 cells/ nude mice Ultrasound
Molecular
Imaging

High storage capacity and binding sites, mitigate
hypoxia tumor induced resistance. (56)

-2017

12.
Gd@HbCe6-
PEG

Gd-based
nanostructures

Hb 21 —— 4T1 cells/ BALB/C mice MR imaging Great biocompatible and non-toxic, enabled
tumor-specific PDT by ameliorating tumor
hypoxia. (57)

-2020
Frontiers in On
cology
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photosensitizers, which can destroy tumors and the leftover

bacteria (46). Furthermore, with the specific germination of

Clostridium difficile spores under anoxic conditions, researchers

can leverage this trait to sequentially introduce spores and specific

antibody-nanoconjugates into the body; the antibodies

subsequently signal spore germination to detect the tumor site

(13). Rare earth upconversion luminescent nanomaterials (UCNR)

or Au nanorods can be used in nanomaterials to realize the

integration of NIR imaging and photothermal therapy (58). This

antibody-targeted diagnosis and treatment can enhance the

imaging contrast, prolong the cycling time, and improve the

therapeutic effect on tumors.

Gram-negative bacteria secrete outer membrane vesicles

(OMVs) under certain conditions (60). The surface of OMVs

contains bacterial antigens, moreover, OMVs have the advantages

of good biocompatibility, safety, and modifiability (61). It is

known that neutrophils may detect and ingest pathogens by

identifying pathogen-associated molecular patterns (PAMPs)

(62). By formulating the use of pathogenmimicking nano-

pathogenoids (NPNs) to attract circulating neutrophils,

researchers could produce a nano-sized replica of the original

bacteria with similar pathological activities by covering NPs with

OMVs (63). Thus, researchers proposed a combination strategy

by leveraging this property: first, inject salmonellas into the body

and allow the bacteria to infiltrate the tumor and recruit

neutrophils; next, inject sialic acid (SA)-modified silver

nanoparticles (AgNPs) in vivo, which can target the TME by

recognizing neutrophil L-selectin (47). In addition, by combining

OMVs with cisplatin-loaded nanoparticles, Wang et al. developed

nano-bionic pathogens (NPNs@Pt). These pathogens could target

hypoxic tumor areas and activate inflammatory responses after

photothermal therapy (PTT), leading to massive neutrophil

infiltration. The neutrophils rapidly break down OMVs and

release cisplatin to kill tumor cells—within four hours. This

strategy was highly effective in mice, completely curing them

after two treatment sessions (48).

3.1.2 HIF-1
Following the finding that HIF-1 may be used as a tumor

therapeutic target, various small molecule inhibitors, medications

and siRNAs have been developed (64, 65). By encouraging HIF-1

protein degradation or by preventing HIF-1 mRNA production,

several small inhibitors have demonstrated a high rate of HIF-1

activity inhibition (66, 67). However, these small inhibitors have a

relatively high risk of clinical failure, whichmay be attributed to the

high redundancy and complexity of the TME. siRNAs prevent

tumor growth by blocking HIF-1 transcription and translation.

However, they are easily degraded by various nucleases in the

circulation (68). Recent studies have revealed that some indirect

methods, such as nanomedicines, may be a strong strategy to

translate HIF-1 directed therapies to clinical development

(Table 1). By loading inhibitors into NPs, the complexes could

easily target HIF-1a, avoiding drug degradation (69, 70). Zhu et al.
Frontiers in Oncology 05
created a functional nanocarrier using 2-deoxyglucose (DG)-

polyethylene glycol (PEG) and fluorescent CdTe quantum dots

(Qds). When the nanocarrier reached the hypoxic region, it self-

ruptured and released siRNA, which could target and silence

tumor cells, whereas fluorescent Qds could actively monitor the

transport process (49). Another composite nanomaterial, Gd-

metallofullerenol nanomaterial (Gd@C82(OH)22)—a dual-action

inhibitor of HIF-1a and TGF-b—showed excellent targeting ability

and inhibition in a triple-negative breast cancer (TNBC) mouse

model. This nanomaterial is non-toxic in normal tissues, but the

particle size is reduced in the TME to penetrate the tumor center

and significantly inhibit tumor growth (50).

3.1.3 TAMs
Tumor-associated macrophages (TAMs) are important

components of immune cells present in high numbers in

TME. Current nanoparticles targeting TAMs are mainly for

inhibiting their expression or deplete their number (Table 1).

For example, encapsulating glucocorticoids (such as

prednisolone) with long-circulating liposomes (LCLs) can

passively target tumors via the enhanced permeability and

retention effect (EPR); i.e., gradually releasing encapsulated

hormones and blocking monocyte differentiation, thereby

effectively preventing TAM production (51). Tian et al.

combined calcium bisphosphate with 99mTC/32P-labeled PEG,

which can deplete TAM and promote the normalization of

tumor blood vessels, laying a solid foundation for subsequent

radioimmunotherapy (52). On the other hand, by encoding

specific plasmid DNA, M2 macrophages can be transformed

into M1 macrophages via the NF-kB and STAT pathways. A

recent study developed a PEI-encapsulating mannose

nanocomplex (MPEI), which could target mannose receptors

overexpressed on the surface of TAMs and transfect plasmids

into TAMs (53). Meanwhile, combining IL-12-overexpressing

plasmids with vincristine-containing nanocarriers permitted

circulation in vivo and long-term uptake by TAMs, even up to

seven days. Thus, a microscopic reversal of many M2

macrophages to the M1 phenotype was observed (71).
3.2 Relieve hypoxia

3.2.1 Hypoxia-triggered oxygen transport
In the last century, hyperbaric oxygen (HBO) therapy had

been shown to enhance the sensitivity of cancer cells to

radiotherapy and chemotherapy; thus, doctors have applied it

to cancer patients as an adjuvant (72). However, side effects, such

as barotrauma and hyperoxic seizures, limit HBO’s clinical

application (73, 74). Recently, certain inorganic nanomaterials,

such as perfluorinated carbons and carbon nanotubes, have

shown efficient oxygen-carrying capacities (75) (Table 1). One

study combined albumin with perfluorotributylamine, and

designed a two-step oxygen delivery system (PFTBA@HAS).
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First, oxygen is released through the passive targeting of

nanoparticles, followed by the platelet inhibitory effect of

PFTBA, which inhibits aberrant tumor angiogenesis, thereby

facilitating secondary oxygen release (54). Liu et al. loaded

perfluorinated carbons (PFC) in poly (lactic-co-glycolic acid)

(PLGA) and encapsulated them in red blood cell membranes.

This particle exhibited a significant oxygen-carrying capacity

and an extremely long blood circulation time (55).

Unfortunately, the dissolved oxygen in perfluorocarbons can

only be released by simple diffusion, thus lead to low oxygen
Frontiers in Oncology 06
release rate. Therefore, researchers could utilize specific

nanocarriers by external stimulation, promoting the release of

oxygen more quickly and effectively. Chen et al. improved the

oxygen-releasing nanoplatform by designing fluorocarbon

chain-functionalized hollow mesoporous organosilica

nanoparticles (FHMONs), which have sufficient storage

capacity for acoustic sensitizers (IR780) and oxygen.

Ultrasonography could release large amounts of oxygen by

triggering the carrier to decompose, as well as generating ROS

that kill tumor tissue (56).
A B

D

E

C

FIGURE 2

Bacteria-mediated nanoparticles have efficient imaging properties and superior therapeutic outcome. (A) In vivo FL imaging of YB1-INPs, (+)
refers to laser irradiation at 12 h. Reprinted with permission (46). Copyright 2019 Biomaterials. (B) In vivo FL imaging of OMV-labeled SP-AgNPs.
Reprinted with permission (48). Copyright 2020 Nature Communications. (C-E) Therapeutic efficacy and safety evaluation of OMV-NPNs@Pt.
Reprinted with permission (47). Copyright 2021 Nano Letters. (C) H&E, TUNEL, and Caspase 3 staining of tumor sections after different
treatments. Scale bar = 50 mm. (D) The bacteria distribution in vital organs after different treatments (E) Survival rate of the mice with various
treatments. ***P < 0.001, ****P < 0.0001.
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Despite the high oxygen carrying capacity, these

nanoparticles have a poor histocompatibility. Hemoglobin

(Hb) has received increasing interest as a high-oxygen

transporter with excellent biocompatibility (76–78). A

synthesized paramagnetic nanoprobe (Gd@HbCe6-PEG) was

reported to enhance the therapeutic effect of photodynamic

therapy (PDT) by retaining the oxygen-carrying ability of Hb.

The fluorescence imaging demonstrate that this strategy can

significantly alleviate the hypoxic condition (57).

3.2.2 Hypoxia-triggered oxygen production
Owing to the high redox potential in the tumor regions,

large amounts of H2O2 and ROS cannot be decomposed. In

the acidic environment of the hypoxia TME, metal

nanoparticles can be activated to decompose H2O2 to

oxygen and hydroxyl radicals (79, 80). In this section, we

review metal nanoparticles based on their unique catalytic

capacity (Table 2, Figure 3).

3.2.2.1 Manganese

Manganese (Mn) is an element necessary for human

metabolism, with low toxicity and high biocompatibility. Owing

to their unique hollow structure and chemical properties, Mn-

based nanoplatforms had demonstrated promising results in

bioimaging and tumor-targeted therapy (92–94). MnxOy, such

as MnO2, can degrade and release Mn2+ into tumor regions.

Manganese ions converts endogenous H2O2 into highly toxic

hydroxyl radicals (-OH) through a Fenton-like reaction. Hydroxyl

radicals aggravates the state of cellular oxidative stress, thereby

realizing chemodynamic therapy (95). MnO2 nanoparticles can

also enhance reoxygenation in tumors and destroy the hypoxic

TME, thus enhancing the therapeutic effect of radiotherapy. This

combination therapy can prolong the survival of breast

cancermouse models by three to five times (96). At the same

time, MnO2 can react with H+ and GSH in the TME, leading to

the increase of ROS levels to promote tumor cell apoptosis.

Moreover, the released Mn2+ can simultaneously as a contrast

agent (CA) for T1-weighted MR imaging (97, 98). Although the

T1-MRI performance of MnO2 nanoparticles is not as good as

that of commercial Gd chelates, the loaded drugs can be released

to perform a variety of treatments under the guidance of MR

imaging (99). Wenbo et al. developed intelligent nanomaterials

based on the MnO2 nanosheets anchored with upconversion

nanoprobes (UCSMs). Under the influence of acidic tumor pH

levels, the outermost MnO2 sheet disintegrates to expose the

responsive luminescence signal of the inner layer, allowing

physicians to achieve synergistic oxygen uplift guided by high-

resolution upconversion luminescent (UCL) imaging (81).

Another strategy is to combine metal ions with MnO2, such as

Au or Cu ions, to enhance the efficacy of chemodynamic therapy/

radiotherapy. Liu et al. wrapped the cancer cell membrane on the
Frontiers in Oncology 07
surface of mesoporous copper/manganese silicate nanospheres

(mCMSNs) and delivered it to the tumor area accurately using the

adsorption of the same cell membrane. They combined active

targeting, PDT, Fenton-like reactions, MRI, and oxygenation,

which provided an excellent idea for the innovation of metal

nanoparticles (82).

3.2.2.2 Fe

In addition to Mn-based nanomaterials, Fe-based

nanoplatforms could also achieve the integration of treatment

and imaging by releasing Fe2+ (100). Existing clinical CAs are

mainly gadolinium (Gd) chelates, which have short relaxation

times and nephrotoxicity (101, 102). Superparamagnetic iron

oxide nanoparticles (SPIONPs) have been commercialized as a

type of contrast agent for MRI, but their clinical application is

limited owing to their poor T2-weighted imaging. To improve

the imaging capability of SPIONPs, one strategy is to develop

quasi-amorphous and hierarchical Fe2O3 supraparticles.

Compared to ordinary SPIONPs, Fe2O3 supraparticles have

higher degradation-induced imaging signals. This self-

degradation ability also reduces the metabolic burden on the

kidneys and avoids side effects similar to those of Gd contrast

agents (83). Furthermore, single-atom catalysts are a viable

strategy for enhancing the Fe-based nanoplatforms therapeutic

capabilities of tumors. Chen et al. fabricated single-atom Fe

nanocatalysts (SAF NCs) with single-atom Fe being isolated in

nitrogendoped carbon. Fe atom could catalyze the Fenton

reaction under acidic TME to release -OH, which can cause

ferroptosis by massive induction of lipid peroxides. At the same

time, based on the photothermal performance of the amorphous

carbon, mild-photothermal augmented Fenton catalytic

therapeutics could complete eliminate tumors (103). In

addition, the Fenton reaction consumes H2O2 in the tumor

area and causes the irreversible transformation of Fe2+ into

inactive Fe3+, eventually leading to the failure of antitumor

therapy. Therefore, it is important to ensure the continuous

generation of Fe2+ and H2O2. Yuan et al. developed a multi-layer

iron-based nanomaterial consisting of Hb, Fe3+, a dopamine

core, a glucose oxidase interlayer, and a folic acid-modified

polyethylene glycol (PEG-FA) corona. The PEG-FA corona is

considered asa tumor-targeting agent, which could also protect

Hb and glucose oxidase from proteases in circulation. After

reaching the hypoxic TME, the nanomaterial decomposes and

releases polydopamine, which is employed to increase the local

temperature under NIR irradiation. Hb supplies oxygen to

promote glucose oxidase activity and achieve rapid glucose

consumption and H2O2 formation. Polydopamine can also

continuously reduce Fe3+ to Fe2+, which further catalyzes the

conversion of H2O2 to -OH via the Fenton reaction (84). Finally,

this nanomaterial achieved photothermal-starvation-

chemodynamic therapy for effective tumor treatment.
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3.3 Hypoxia-triggered chemical bonds

Hypoxia-activated prodrugs are a class of inactive prodrugs

that require enzymatic activation (by electron oxidoreductases)

to produce cytotoxic substances (104, 105). The unique

properties of hypoxia-activated prodrugs are derived from

hypoxia-responsive chemical bonds, including nitro, azo, and

AQ4N bonds. The variety of such chemical bonds under hypoxia

endows nanomaterials with diverse functions that enhance their

therapeutic and diagnostic effects. In this section, we discussed
Frontiers in Oncology 08
recent advances of hypoxia-responsive chemical bonds

nanoplatforms (Table 2).
3.3.1 Nitroimidazole
Since the 1970s, nitroimidazoles have been widely used in

MRI, PET, fluorescence imaging, radiotherapy, responsive

prodrugs, and other fields (106). Nitroimidazole compounds

can be used as imaging agents and prodrugs because the nitro

group (RNO2-) can be reduced under nitroreductase to generate

free radical anions (RNO2-) (107). In normal tissues, this process
TABLE 2 Hypoxia-sensitive nanoparticles for oxygen production and hypoxia-responsive chemical bones nanoplatforms.

Name/
Target
(Year)

Materials Drug Size
(nm)

Zeta
(mV)

Tumor model Imaging
mode

Results

Oxygen
Production

13. MnO2-
UCSMs
(2015)

MnO2, UCSM Mn2+ —— —— 4T1 cells/
Female BALB/C mice

UCL imaging Simultaneous diagnosis and positioned treatment of
tumors via the radio/photodynamic therapy. (81)

14.
mCMSNs
(2019)

DPSNs Cu2+, Mn2
+

130 -10 MCF-7, A549 and NHDF
cells/
Female BALB/C mice

MR imaging Monitor and enhance the synergistic CDT/PDT
anticancer treatment. (82)

15. Fe2O3

SPs
(2020)

Fe2O3 Fe2+ 15 -17.5 4T1 cells/ Female BALB/c
nude mice and female
BALB/c mice

MR imaging High signal-to-noise ratio resulting in excellent MR
imaging capacity. Great biocompatibility, easy
clearance. (83)

16. Hb-
PDA-
Fe@GOD
@PEG-FA
(2021)

Hb-PDA NPs PDA,
GOD
Fe2+

200 -17 B16.F10 cells/ Male BALB/c
nude mice

NIR fluorescence
imaging

Manipulates the TME as needed to indicate
synergistic therapy. (84)

Chemical
bonds

17. HRNP/
siRNA
(2020)

Cationic lipid-
like compound

CDC20
siRNA

54.7 —— MCF-7, Luc-HeLa cells/
Female BALB/c nude mice

NIR fluorescence
imaging

Sufficiently silencing of CDC20 expression,
exhibited potent antitumor efficacy. (85)

18. HA-Fe-
NIs-DOX
(2018)

Ferrocene-
based redox
polymers

DOX 83.03 ±
1.29

-41.3 PC3, DU145 and 293T cells/
Male BALB/c nude mice

NIR fluorescence
imaging

Improved synergistic mechanisms of antitumor
agents and chemo-/radiotherapy by effective DOX
release. (86)

19. UIO-
NBD
(2021)

Iron oxide —— 10.06 -40.4 MDA-231, 4T1, MCF-7, B16
cells/
Female BALB/c mice

MR imaging/ NIR
fluorescence
imaging

Notable efficiency of penetration and accumulation
inside tumors resulting in dual-mode imaging. (87)

20. AQ4N-
Cu(II)-
AptCe6-
GNPs
(2017)

Monodispersed
gold
nanoparticle

Ce6, AQ4 137.07
± 4

-6.1 ±
0.9

HepG2, LO2, HeLa cells/
BALB/c nude mice

NIR fluorescence
imaging

Enhanced tumor specificity and PDT/PTT/
chemotherapy functions. (88)

21. PEG-
PO-PCL-
PO
-PEG
(2019)

PEG, PCL GOD,
AQ4

180 —— Hep3B cells/
Nude mice

NIR fluorescence
imaging

Synergistic effects of starvation therapy and
chemotherapy via a programmable self-destruction.
(89)

22.
HCHOA
(2019)

HAS Oxaliplatin 100~150 —— 4T1 cells/
Female BALB/c nude mice

NIR fluorescence
imaging

Strong imaging, deep penetration of hypoxia TME
resulting in effective combined therapy. (90)

23. AMOFs
(2019)

Metal−organic
frameworks

siRNA,
DOX

152.4 ±
6.1

23.1
±1.8

MCF-7 cells/
Female BALB/c nude mice

NIR fluorescence
imaging

Efficiently break hypoxia-induced chemoresistance
via inhibiting the expressions of HIF-1a. (91)
DPSNs, dendritic mesoporous silica nanoparticles.
Hb-PDA NPs, hemoglobin conjugated polydopamine nanoparticles.
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is reversible, whereas in hypoxic tumor cells, products are

further reduced to hydroxylamine (RNHOH) or amine

(RNH2), both of which bind to proteins and are trapped in

tumor cells. 2-Nitroimidazole (NI), one of the most commonly

used nitroimidazole compounds, can impart hypoxic

responsiveness to various nanomaterials (108).

In siRNA therapy, researchers prefer to develop highly stable

liposomes, such as methoxy- polyethylene glycol (mPEG) or
Frontiers in Oncology 09
alkylated PEI (109, 110). However, stable liposomes can also

hinder the release of siRNAs and reduce the efficiency of gene

silencing. The hypoxia-responsive nanoparticle (HRNP)

nanoplatform—composed of the 2-nitroimidazole-L-glutamine

polymer and methoxy polyethylene glycol—solved this problem

(85). HRNP exhibited prolonged blood circulation and high

tumor accumulation, as well as delivered an siRNA silencing

efficiency of more than 90%. Gao et al. successfully modified
A B

D

E

C

FIGURE 3

Variety of metal nanoparticles have great imaging effect. (A) In vivo MRI images of the Fe2O3 SPs, the tumor sizes are about 300 and 5 mm3,
respectively. Reprinted with permission (83). Copyright 2020 ACS Nano. (B, C) Reprinted with permission (84). Copyright 2021 Biomaterials. (B)
The photothermal images of tumor-bearing mice with injection of Hb-PDA-Fe@GOD@PEG-FA after being exposed to 808 nm irradiation. (C) In
vivo biodistribution of Hb-PDA-Fe@GOD@PEG-FA nanoparticles. (D) In vivo MRI of tumor-bearing mice before and after intravenous injection
of mCMSNs. Reprinted with permission (82). Copyright 2019 ACS Nano. (E) Representative 2D photoacoustic images of solid tumors before and
after injection of saline/MnO2-UCSMs. Reprinted with permission (81). Copyright 2015 Advanced Materials.
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branched polyethyleneimine with alkylated NI (C6-NI), which

could effectively condense siRNA to form a hypoxia-responsive

polyethyleneimine carriers. This nanocarrier can be self-

assembled into micellar polymers under physiological

conditions for improved stability. After being transported into

the hypoxic tumor cells, the structure of micellar polymers

would be loosened by reduction of NI to facilitate the siRNA

dissociation in the cytoplasm (111). Furthermore, NI can be

combined with Fe-based nanomaterials, which can act as a

sensitizer for radiotherapy. By examining enhanced

radiotherapy, Mao et al. combined ferrocene with NI and

modified with hyaluronic acid (HA) to synthesize HA-Fe-NIS

nano-micelles. Under hypoxic conditions, HA-Fe-NIS could

completely release the loaded doxorubicin within six hours,

and this smart design enhanced the tumor fluorescence

imaging intensity. Most importantly, compared to HA-Fe

micelles, tumors in the HA-Fe-NIS group showed more

obvious DNA damage after radiotherapy treatment, proving

that HA-Fe-NIS had a strong radio sensitizing effect on

hypoxic tumor cells and had clinical application value (86). NI

derivatives and cysteine-modified ultrasmall iron oxide

nanoparticles (UIOs) have excellent physical and chemical

properties. UIOs have a very small particle size, allowing them

to easily penetrate endothelial cells to reach the TME.

Simultaneously, the modified nitroimidazole group can induce

covalent cross-linking of UIOs under hypoxia to increase their

particle size and promote accumulation and retention time in

the hypoxic region. By measuring nano-aqueous solution under

different oxygen conditions, the relaxation value of UIOs

increased from 12.8s-1 to 21.4s-1 under hypoxia, indicating

increased water proton transverse relaxation and contributing

to enhanced T2-weighted MRI. UIOs and assembly-responding

fluorescence dyes (NBD) can also provide dual-mode (MRI/

fluorescence imaging) imaging in vivo (87). This hypoxia

imaging probe can show fast and stable MRI/fluorescence

imaging signals, greatly improving imaging detection sensitivity.

3.3.2 AQ4N
AQ4N, also known as banoxantrone, is a highly soluble di-

N-oxide prodrug. It was designed to have minimal cytotoxicity

in the presence of oxygen. Hypoxic tumor cells can activate and

reduce it to a single N-oxide intermediate (AQ4M), which is

ultimately reduced to the cytotoxic metabolite, AQ4 (112–114).

It had been proved that the reduction of AQ4N into toxic AQ4

could be improved by further enhance the local hypoxia level of

TME (115, 116). Coincidentally, PDT therapy could aggravate

the hypoxia within tumor regions via continuous O2, so AQ4N

can be used in combination with PDT. Zhang et al. constructed a

tumor-specific nanoplatform (AQ4N-Cu(II)-AptCe6-GNP)

using Cu(II)-liganded chlorin e6 (Ce6)-labeled aptamer-gold

nanoparticles to host AQ4N. For this model, the TSL11a

aptamer with tumor-targeting function is linked to AuNPs
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through Au-S bonds. After the particles are endocytosed by

tumor cells, Au-S bonds are cleaved by a large amount of GSH in

the cells and release Ce6 to enhance PDT. Compared with PDT

(Ce6) or AQ4N treatment, the AQ4N-Cu(II)-AptCe6-GNPs

group produced a more pronounced therapeutic effect after

irradiation with a 670 nm laser. PDT aggravates tumor

hypoxia, increases the amount of reductase, and enhances

AQ4N activity, resulting in a superior synergistic antitumor

effect (88). AQ4N combined with starvation therapy can also

enhance the antitumor effect. Glucose oxidase (GOX) consumes

glucose and oxygen to produce H2O2, which enhances hypoxia

and oxidative stress in tumor cells. Liu et al. encapsulated AQ4N

and GOX in long-circulating recessive liposomes, which

effectively inhibited 4T1 tumor cells in vivo (117). Similarly,

Yu and co-workers developed yolk–shell organosilica

nanoparticles containing tetrasulfide bonds to deliver AQ4N

and GOX. Increased intracellular GSH levels in tumor regions

disrupt the tetrasulfide bond to release GOX, which

subsequently consumes oxygen and glucose to produce H2O2.

Further consumption of oxygen drives the conversion of AQ4N

to toxic AQ4. Meanwhile, the depletion of GSH can further

elevate the H2O2 levels. This combinatorial strategy had been

proved by both in vitro and in vivo results (118). However,

glucose is widely distributed in the human body, which means

that the use of these two passive tumor-targeting nanocarriers

involves high risk. Li et al. optimized this by choosing PEG and

polycaprolactone (PCL) copolymers modified by peroxyoxalate

(PO) (89). This nanocarrier is a vesicular structure that prevents

drug leakage while in circulation. When PEG accumulates

around the tumor, PO reacts with the large amount of H2O2

in the tumor area to enhance the permeability of the PEG

membrane. The reaction between glucose oxidase and glucose

entering the PEG promoted the production of H2O2. Finally,

AQ4N is activated and produces cytotoxicity through cascade

amplification. Importantly, in normal tissues, glucose oxidase

cannot react with glucose because of blocking by the PO barrier

structure, ensuring the safety of PEG.

3.3.3 Azo
Azo compounds can be decomposed under low-oxygen

conditions to generate luminescent amino derivatives; this

unique property originates from azo bonds. The azo bond,

with the structural formula –N=N–, undergoes reversible

reductive cleavage in a normoxic environment (119). This

process of converting non-luminescent azo compounds into

luminescent products can be used to develop hypoxia small-

molecule probes and hypoxia-triggered prodrugs while

combining them with nanomaterials for better diagnostics and

treatment effects. A hybrid liposome (HR-HLP), composed of

azo and hydrogenated soybean phospholipids (HSPC), achieves

this goal (120). Stimulating the reduction products to azo in the

TME traps the HR-HLP in the tumor regions, and the ensuing
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carrier cleavage releases the loaded drug to produce antitumor

effects. This process was monitored using NIR fluorescence

imaging. Azo compounds can also be used to enhance PDT.

In the hydroxyapatite nanosystem, azobenzene, a representative

hypoxia-responsive compound, can link human serum albumin

(HSA)-coated Ce6 chloride with oxaliplatin (HCHOA). The

nanosystem can quickly dissociate into ultrasmall Ce6-

conjugated HAS (HC) and oxaliplatin prodrug-conjugated

HAS (HO) therapeutic nanoparticles with a diameter smaller

than 10 nm under hypoxia TME. Owing to their ultra-small

particle size, HC and HO therapeutic nanoparticles can easily

penetrate the core of the tumor away from the blood vessels. At

the same time, Ce6 has extremely low activity when coated with

nanoparticles, but its fluorescence and singlet oxygen production

abilities increase rapidly when it is released. Singlet oxygen could

selective apoptosis induction in tumor cells. This special

property gives the nanocomposite a lower imaging background

signal and better light-induced efficacy (90). In addition,

azobenzene improved PEGylation siRNA delivery. Early

experiments found that azobenzene-linked PEG, PEI, and 1,2-

dioleyl-sn-glycero-3-phosphoethanolamine (DOPE)

nanocarrier complexes (PAPDs) could be activated by hypoxia

and cleaved to isolate siRNA (121). PAPDs retain their stability

in normal tissues, but they cannot effectively silence genes,

indicating that parts of this nanostructure or siRNA can be

improved. Huang et al. chose an iron (Fe)-azo metal-organic

framework (AMOF) and adsorbed HIF-1a siRNA on its surface

for targeted therapy (91). AMOF carriers have two advantages

over the PAPDs. First, a positively charged metal frame can be
Frontiers in Oncology 11
better adsorbed onto the surface of the negatively charged cell

membrane, promoting tumor cell endocytosis. Second, HIF-1a
has a stronger inhibitory effect on tumor growth after silencing.

The results demonstrated the unique advantages of AMOFs in

hypoxia response activation in vivo and in vitro.
4 Discussion

Hypoxia-responsive nanomaterials can be used for

diagnostics, therapeutics, or both. Previous attempts to target

tumor hypoxia were based on the development of hypoxia-

activated prodrugs or small-molecule inhibitors directed toward

tumor cells. These prodrugs and inhibitors are usually difficult to

be delivered to tumors because of the poor vasculature and high

interstitial pressure in the TME. The transport of drugs to

undesired locations or uncontrolled drug release may lead to

an increase in adverse effects. Nanomaterials can retain drug

concentrations for a longer duration by passively or actively

accumulating in the tumor regions. In the present study, various

nanoplatforms that release encapsulated drugs into the TME—

bacteria-mediated hypoxia-specific nanoparticles, hypoxia-

selective chemical bond-conjugated nanomaterials, and TAM-

targeted nanocarriers—displayed favorable prospects as

hypoxia-specific therapeutics (Figure 4). Their use can enrich

the efficacy of chemotherapy, PDT, PTT, and other therapeutic

approaches. Nano-contrast agents for MRI, PET, and NIR

imaging, such as SPIONPs and mCMSNs, may provide more

accurate and earlier tumor detection than existing contrast
FIGURE 4

Illustration of the principles to design hypoxia-responsive nanomaterials.
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agents. In addition to the achievements of these nanoparticles,

there are still some issues that need to be addressed before

clinical translation.

The biocompatibility of nanomaterials, particularly metal

nanomaterials, should be considered. Because metal

nanomaterials are difficult to be excreted from the body, they

may lead to undesired inflammation and increase the risk of

cytotoxicity. The extent of damage varies depending on the

nanomaterial type and structural and functional characteristics,

all of which must be carefully evaluated via preclinical studies.

The clearance rate of the nanomaterials is another issue need to

be considered. The main metabolic organs are the kidney and

liver (122). Some nanoparticles had low clearance rates, such as

gold nanomaterials with diameters greater than 150 nm, which

could still be detected in vivo one year after the in vivo injection.

The current study found that surface functionalization

(hydrophilic moieties such as PEG and PLGA) and the small

size of nanoparticles (<50 nm) could be crucial in reducing

undesirable uptake (123). For example, nanoparticles possessing

self-decomposition functions, such as PO-modified PEG-PCL

nanocarriers, folic acid-modified PEG sandwich complexes, and

fluorocarbon chain-linked silica complexes, can be rapidly

excreted by liver and kidney, which has a unique advantage in

clinical transformation.

The development of simple and smart nanomedicines in

future studies will be important for their clinical application.

Responsive nanoparticles are currently evolving in a multi-

modal manner. Multi-strategy synergistic therapeutic

nanocarriers, such as AQ4N synergistic PDT, Gd@HbCe6-

PEG, and multi-layer iron-based nanomaterials, have been

used in many previous studies and have shown excellent

efficacy. However, owing to their multi-layer structure and

complex synthetic procedures, the clinical transformation of

these materials is limited. The synthesis of nanoparticles

should be simple and facile, and there should be a uniform

standard. Many researchers are moving toward making their

nanoparticles out of materials that have been generally regarded

by the U.S. Food and Drug Administration (FDA) as being easily

scalable, such as SPION, Mesoporous silicananoparticles

(MSNs), and so on. Furthermore, bacteria-based microbial

synthesis has many advantages for the synthesis of metal

nanomaterials (MNMs). Bacteria are easier to isolate and

cultivate due to natural evolution, which could be mass-
Frontiers in Oncology 12
produced in a short time at low cost. Therefore, bacteria could

rapidly synthesize a wide range of MNMs, such as Au, Fe3O4,

CdTe, and so on. Researchers may also choose the template

methods to prepare nanoparticles, which simplify the synthesis

and assembly steps of nanomaterials and is suitable for

mass production.

Although existing nanomaterials are still far from clinical

applications, we believe that benefiting from the advances of

nanotechnology, intelligence responsive nanomaterials will

improve the clinical cancer imaging and therapy.
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