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immune microenvironment in
lung adenocarcinoma

Pengpeng Zhang1†, Shengbin Pei2†, Jianlan Liu3†, Xiao Zhang1†,
Yanlong Feng1, Zeitian Gong1, Tianyu Zeng4*, Jun Li1*

and Wei Wang1*

1Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China, 2Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China, 3Department of Burns and Plastic Surgery, The First Affiliated Hospital of
Nanjing Medical University, Nanjing, China, 4Department of Oncology, The First Affiliated Hospital of
Nanjing Medical University, Nanjing, China
Background: Cuproptosis, a unique kind of cell death, has implications for cancer

therapy, particularly lung adenocarcinoma (LUAD). Long non-coding RNAs

(lncRNAs) have been demonstrated to influence cancer cell activity by binding to

a wide variety of targets, including DNA, RNA, and proteins.

Methods: Cuproptosis-related lncRNAs (CRlncRNAs) were utilized to build a risk

model that classified patients into high-and low-risk groups. Based on the

CRlncRNAs in the model, Consensus clustering analysis was used to classify

LUAD patients into different subtypes. Next, we explored the differences in

overall survival (OS), the tumor immune microenvironment (TIME), and the

mutation landscape between different risk groups and molecular subtypes.

Finally, the functions of LINC00592 were verified through in vitro experiments.

Results: Patients in various risk categories andmolecular subtypes showed statistically

significant variations in terms of OS, immune cell infiltration, pathway activity, and

mutation patterns. Cell experiments revealed that LINC00592 knockdown significantly

reduced LUAD cell proliferation, invasion, and migration ability.

Conclusion: The development of a trustworthy prediction model based on

CRlncRNAs may significantly aid in the assessment of patient prognosis,

molecular features, and therapeutic modalities and may eventually be used in

clinical applications.
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Introduction

Lung cancer is one of the most diagnosed cancers and is the

biggest cause of cancer deaths (1). The histological subtypes of lung

cancer comprise small and non-small cell lung cancers (NSCLC). The

latter takes up 85% of cases (2, 3). Among NSCLC, lung squamous cell

carcinoma (LUSC) and LUAD represent 30% and 70% of total cases,

respectively (4). LUAD is related to broad molecular heterogeneity

and marked genomic changes in comparison to other lung cancer

subtypes (5). Despite recent advances in immunotherapy, radiation

therapy, chemotherapy, and surgery, the five-year survival rate for

lung cancer patients remains extremely poor (6). Therefore,

identifying a novel prognostic marker is critical for patients

with LUAD.

It is widely known that during the development of multicellular

organisms, there are a variety of predetermined and precisely

controlled programmed cell deaths, such as necroptosis, apoptosis,

pyroptosis, and ferroptosis. These forms of cell death are involved in

tumorigenesis and cancer development (7–9). Cuproptosis is a novel

cell death whose mechanism differs from that of known cell deaths.

Researchers have found that when the known cell death mode is

blocked, copper ions can still induce cell death. Copper-dependent

death occurs through the direct combination of copper with the fatty

acylation component of the tricarboxylic acid (TCA) cycles. This

results in fatty acylation protein clustering and then iron-sulfur

clustering protein loss, causing proteotoxic stress and finally cell

death (10). Some investigations identified higher levels of copper in

various malignancies compared to normal tissues (11). Copper

aggregation is related to the proliferation and development of

cancer cells, as well as the processes of angiogenesis and metastasis.

In particular, higher levels of copper have been observed in the serum

and tumor tissues of patients with breast, thyroid, lung, prostate, and

oral cancers (12–15). There is evidence that copper may play a role in

the etiology, severity, and cancer progression (16). Abnormal copper

metabolism is related to many diseases, especially cancer (17–19).

Since Cu metabolism holds the key to tumorigenesis, various Cu

chelators, such as elesclomol, have been considered for cancer

treatment. According to research reports, copper ionophores

employ high amounts of copper in tumor tissues or use the

susceptibility of cancer cells to oxidative stress to fight cancer (19).

Targeted therapy involving copper ionophores could represent a new

method of cancer treatment. As discussed in the review by

Steinbrueck (20), copper-binding compounds have great potential

for cancer therapy. Many different types of copper ionophores have

been adopted as anticancer agents for promoting copper poisoning,

inc luding flavonoids , 8-hydroxyquinol ines (HQs) , b i s

thiosemicarbazone ligands and dithiocarbamates, among others

(21). Thus, targeted copper poisoning has significant potential as a

new form of cancer treatment.

Previous studies have shown that genomic variants influence

tumor progression in lung cancer (22). LncRNAs are non-coding

RNAs featuring transcripts of over 200 nucleotides. There has been

increasing evidence to confirm that lncRNAs are involved in the

progression and metastasis of NSCLC and that this is related to

immune pathways. C5orf64 is exhibited as a potential index of the

tumor microenvironment (TME) regulation and tumor mutation
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feature remodeling in LUAD (23). LINC01748 plays a carcinogenic

role in non−small cell lung cancer cell lines through the regulation of

the microRNA−520a−5p/HMGA1 axis (24). SLC9A3-AS1 is

upregulated in NSCLC, and the SLC9A3-AS1 gene knockout

hinders NSCLC progression by targeting miR-760, implying that it

may have a role as a new biomarker and therapeutic target of NSCLC

(25). Due to the important role of lncRNAs in cancers, the

implications of lncRNAs for the prognoses of LUAD patients have

been widely studied (8). However, there is an absence of research on

CRlncRNAs in the prognosis and the TME of LUAD. Therefore, we

employed CRlncRNAs to build a predictive model and found

substantial changes in survival, pathway activity, and the TME

amongst patient subgroups. Finally, cell experiments confirmed

LINC00592’s effects on LUAD cells.
Materials and methods

Dataset acquisition and processing

The RNA sequencing data, mutation data, and corresponding

clinical information of 551 LUAD patients were downloaded from the

TCGA database(https://portal.gdc.cancer.gov/), which consisted of

497 LUAD tumor specimens and 54 normal specimens. Then, each

gene featuring zero values was removed, and the average excess

gene expression was calculated. Samples featuring no survival

information and those with OS below 30 days were removed from

the clinical information. The gene expression information of 397

LUAD tumor specimens and the relevant clinical information were

obtained from the GEO (https://www.ncbi.nlm.nih.gov/geo/)

GSE31210/GSE30219/GSE37745 datasets. For better dataset

comparability, all of the expression data were converted to FPKM

format. Batch effects were then eliminated using the combat function

of the “sva” package. All data were transformed using Log2 before

analysis. Ten cuproptosis-related genes (CRGs) were then retrieved

from one published work and the researchers identified seven

positively regulated and three negatively regulated CRGs (10).
Identification of differentially expressed
CRlncRNAs

The correlations between the 10 CRGs and lncRNA expression

were analyzed using Pearson correlation analysis. Each CRlncRNA

must be in accordance with the following standard of correlation

coefficients (|Pearson R|): >0.3 and P <0.01. Using difference analysis,

we ultimately obtained 76 differentially expressed CRlncRNAs (log2

fold alteration >1, false discovery rate (FDR) <0.05).
Building and evaluating prognostic model

Using the “caret” R package, the 497 TCGA LUAD samples were

randomly divided into a training group and a testing group at a ratio

of 1: 1. The training group was used for constructing the CRlncRNAs

signature, while the testing group was used for internal validation. In
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combination with the LUAD clinical information in TCGA, the

differentially expressed CRlncRNAs were imported into the Cox

and LASSO regression to create the predictive signature. Finally,

the r i sk score was determined as fo l lows : r i sk score

= ∑
n

k=1
Coef(k) �  Expr(k). Coef (k) were the short name for the

regression coefficients and Expr (k) was the expression of

prognostic CRlncRNAs. Patients were divided into low- and high-

risk groups based on the mean risk score. The Kaplan–Meier

estimator and the log-rank test were used to analyze whether a

difference existed between the high and low-risk groups in terms of

the OS of LUAD patients and the “survival” R package was employed

for this. Then, external validation was performed for this signature,

with the risk scores of 397 LUAD samples from the GEO database

calculated by the above formula for survival analysis. K-M survival

curves with log-rank tests were used to assess the prognostic efficacy

of the risk model across all cohorts. The accuracy of this signature in

foretelling OS of LUAD patients was evaluated using receiver

operating characteristic (ROC) curve analysis. Both univariate and

multivariate Cox regression analyses were used to estimate the

independent prognostic value.
Nomogram and subgroups analysis of
clinical features

Using the “rms” R package, the risk scores and the clinical

variables of gender, age, and tumor phase were combined to

construct a nomogram for the one-, three- and five-year OS of

LUAD patients and correction plots based on the Hosmer-

Lemeshow test for illustrating the consistency between actual

outcomes and predicted outcomes. Then, we separated the

clinicopathological characteristics into subgroups and ran a survival

analysis to determine whether they had any effect on the model.
Enrichment analysis

Utilizing the “GSVA” package, Gene Set Variation Analysis

(GSVA) was carried out to investigate the heterogeneity of diverse

biological processes. Hallmark gene sets “h.all.v7.5.1.symbols.gmt”

from MSigDB (https://www.gseamsigdb.org/gsea/msigdb/index.jsp)

were utilized for the GSVA. Using the R package “clusterProfiler”

and “org.Hs.eg.db”, gene set enrichment analysis (GSEA) was applied

to identify clearly enriched signaling paths in various groups on the

basis of the following criterion: FDR < 0.25 and P < 0.05.
Evaluation of the tumor immune
microenvironment

In order to assess the correlation between the prognostic signature

and the TIME, the immune infiltrating values of the TCGA-LUAD

specimens were calculated according to 7 algorithms: CIBERSORT,

CIBERSORT-ABS, EPIC, MCPCOUNTER, QUANTISEQ, TIMER,

and XCELL (26–32). Spearman correlation analysis was used to

evaluate the correlation between immune cell sub-populations and
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risk scores and the outcomes were presented in a bubble chart. Then,

the abundance of immune cells and stromal cells between various

groups was explored. The immune scores, stromal scores, and

estimate scores (stromal scores + immune scores) of patients were

computed to assess the TME differences by the “estimate” R package.

Machine learning can accurately assess and quantify immunogenicity.

The Cancer Immunome Atlas (TCIA) database was used to retrieve

the Immunophenoscores (IPS) for LUAD (33). To forecast

immunotherapy sensitivity, the IPS between the high-risk and low-

risk groups was examined. Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm was used online (http://tide.dfci.

harvard.edu/) (34). Patients were more likely to respond to ICI

treatment with greater effects if their TIDE scores were lower.

Then, single-sample GSEA (ssGSEA) was applied to explore the

difference between various groups in terms of immune cells and

immune-related function. Subsequently, comparisons were also made

between high-and low-risk groups in terms of immune checkpoints.
Drug sensitivity

The IC50 of commonly used chemotherapeutic medications in

the TCGA-LUAD dataset was computed using the R package

“pRRophetic” to analyze the risk model in the clinic for LUAD

treatment (35). By building statistical models using gene expression

and drug sensitivity data from cell lines in the Cancer Genome

Project, this program enables users to predict the clinical

chemotherapeutic response using just baseline tumor gene

expression data. Violin plots depict the Wilcoxon signed-rank test

findings comparing the IC50s of commonly used antitumor

medicines between the high-and low-risk groups.
Consensus clustering analysis,
immunotherapy response, and
mutations landscape

To explore potential molecular subtypes, all patients with LUAD

were classified into different clusters based on the expression of

prognostic CRlncRNAs via the R package “ConsensusClusterPlus”.

Differences in survival, TIME, immune checkpoints, and response to

immunotherapy between subgroups were assessed in the same

manner as before. At the same time, we used the TCGA-LUAD

mutation data to explore the mutation differences between high-and

low-risk groups and different clusters, which were presented in the

form of heat maps.
Cell lines culture

Normal human lung epithelial BEAS-2B cells and human LUAD

cell lines (A549, H1299) were purchased from the Cell Resource Center

of Shanghai Life Sciences Institute. These cells were grown in F12K or

RPMI-1640 (Gibco BRL, USA) with 10% fetal bovine serum (FBS), 1%

streptomycin, and penicillin (Gibco, Invitrogen, Waltham, MA, USA).

5% CO2, 95% humidity, and 37°C were used to cultivate the cells.
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Cell transfection

LINC00592 knockdown was generated using small interfering

RNAs (siRNAs) constructs (GenePharma, Suzhou, China). In

addit ion, LINC00592 siRNA sequences were l i s ted in

Supplementary Table S1. Briefly, cells were seeded at 50%

confluence in a 6-well plate and infected with negative control

(NC), and knockdown (siLINC00592). All transfections were

carried out with Lipofectamine 3000 (Invitrogen, USA).
Extraction of RNA and real-time PCR

Total RNA from cell lines was extracted by the manufacturer’s

instructions using TRIzol (15596018, Thermo). After that, cDNA was

created using the PrimeScriptTMRT kit (R232-01, Vazyme). SYBR

Green Master Mix (Q111-02, Vazyme) was used to perform the Real-

time polymerase chain reaction (RT-PCR), and the expression levels

of each mRNA were normalized to the level of mRNA GAPDH. The

2−DDCt method was used to count the expression levels. Tsingke

Biotech (Beijing, China) provided all primers, and Supplementary

Table S1 has full primer sequences.
Cell counting kit-8 experiment

In 96-well plates, we seeded the cell suspension with 3×103 cells

per well. The plate was then incubated for 2 hours at 37°C in the dark

with 10 mL of CCK-8 labeling agent (A311-01, Vazyme) each well.

The enzyme-labeled meter (A33978, Thermo) was used to measure

the absorbance of the cells at 450 nm for 0, 24, 48, 72, and 96 hours in

order to determine the vitality of the cells.
Colony formation

We transfected 1×103 cells into each well of a 6-well plate and

kept the cells alive for 14 days. Before Crystal violet (Solarbio, China)

staining, the cells were washed twice with PBS and fixed for 15

minutes in 4% paraformaldehyde.
EdU

A 96-well plate with 2×104 treated cells in each well was used for

the experiment, which was conducted after the cells had attached to

the wall. The manufacturer’s recommended 5-Ethynyl-2’-

deoxyuridine (EdU) assay was then carried out (Ribobio, China).

An inverted microscope was used to count the number of

proliferating cells.
Wound-healing assay

In 6-well plates, transfected cells were plated and cultured in a cell

incubator until they were 95% confluent. In each cultured well, a

single straight line was scraped using a sterile 20-L plastic pipette tip,
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and unattached cells and debris were gently washed away twice with

PBS. Finally, we used the Image J software to measure the width of the

scratches after taking photos of the scratch wounds at 0h and 48h.
Transwell assay

Cell invasion and migration studies were performed in transwells.

The top chamber of 24-wells was filled with treated A549 and H1299

cells (2×105), which were then incubated for 48 hours. To assess the

cells’ ability to invade and migrate, the top section of the plate was

either precoated with matrigel solution (BD Biosciences, USA) or left

untreated. The remaining cells on the bottom layer were then fixed

with 4% paraformaldehyde and stained with 0.1% crystal violet after

the cells on the top surface were removed (Solarbio, China).
Statistical analysis

All of our data and statistics were processed using R (version

4.1.3). Experiment data were analyzed using the applications

Graphpad and Image J. Kaplan-Meier curves with a log-rank test

were used to compare the OS rates of the two groups. A “Survminer”

R package was used to generate all survival curves. To assess

prognostic factors, univariate and multivariate Cox regression

analysis (CRA) was employed. Lasso regression was used to

discover characteristics that had a greater impact on the outcomes.

The “ggplot2” R program was used to visualize the data, and the

“survival” R package was used to calculate the OS and risk ratings.

The heatmap is created using the “Pheatmap” R package. For

normally distributed data, a two-tailed t-test or a one-way ANOVA

was employed to discover significant quantitative differences. To

determine if there were significant differences for nonnormally

distributed data, a Wilcoxon test or a Kruskal-Wallis test was

utilized. Every statistical analysis was completed using R software.

P < 0.05 is a statistically significant value.
Outcomes

Conformation of CRlncRNAs

The flow chart of this study was shown in Figure 1. A total of 76

differentially expressed CRlncRNAs were obtained by correlation

analysis (|Pearson R| > 0.3 and P < 0.01) and variance analysis (|

Log2FC| > 1 and P < 0.05), and the correlation network diagram

(Supplementary Figure S1A) and corresponding heatmap and

volcano charts were constructed (Figures 2A, B).
Construction and validation of the
CRlncRNAs signature

Through univariate CRA, 8 prognostic CRlncRNAs related to OS

(P < 0.05) were obtained, and each of the CRlncRNAs was modulated

positively through CRGs as shown in the Sankey diagram (Figure 2C).

The circle diagram displays the prognostic HR value of 8 CRlncRNAs,
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and it is clear that TPMO-AS1, LINC00205, OGFRP1, MIR31HG,

LINC00592, OGFRP1, and TFAP2A-AS1 are high-risk genes. In

contrast, AQP4-AS1 and CADM3-AS1 were shown to be low-risk

genes (Figure 2D). Subsequently, the prognostic signature consisting of

7 CRlncRNAs (LINC00592, OGFRP1, TFAP2A-AS1, AQP4-AS1,

CADM3-AS1, MIR31HG, and LINC00205) was constructed by

LASSO regression (Supplementary Figures S1B, C) and multivariate

CRA. Some of the prognostic CRlncRNAs (LINC00205, OGFRP1,

MIR31HG) have previously been proven to be closely related to

NSCLC (36–38). Then, the expression levels of these genes were

examined in the normal and tumor groups (Figure 2E), and the

findings revealed that AQP4-AS1 and CADM3-AS1 were strongly

expressed in the normal group, while the other genes were

substantially expressed in the tumor group. Meanwhile, the clinical

correlation heatmap was constructed based on clinical information and
Frontiers in Oncology 05
the expression levels of the 7 CRlncRNAs (Figure 2F). The risk scores of

all LUAD patients were then calculated according to regression

coefficients, and the patients were divided into high-and low-risk

groups based on the mean risk score. The risk scores were calculated

using the following formula: risk score = (0.6418 × LINC00592

expression) + (0.6236 × OGFRP1 expression) + (0.5246 × TFAP2A-

AS1 expression) + (-2.4203 × AQP4-AS expression) +

(-1.47395306825907 × CADM3-AS1 expression) + (0.3009 ×

MIR31HG expression) + (0.5019 × LINC00205 expression). Similarly,

we calculated the risk value for 397 LUAD samples from the GEO

database using the above formula and subsequently divided them into

high-and low-risk groups. In order to determine the prognostic capability

of the risk signature, we compared Kaplan-Meier survival plots for OS

(Figures 2G-J), the distribution of risk scores, the survival time and

survival status, and the related expression of 7 CRlncRNAs between the
FIGURE 1

The flowchart of this study.
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high-and low-risk groups in the TCGA cohort (training group, the

testing group, all groups) and the GEO cohort (GSE31210, GSE3021,9

and GSE37745) (Supplementary Figures S1D-G).
Evaluation of prognostic models
and nomograms

Univariate and multivariate CRA confirmed that our risk model

was an independent prognostic indicator in TCGA and GEO cohorts

(P <0.001, Supplementary Figures S1H-K). After this, it can be

demonstrated using principal component analysis (PCA) analysis

that the risk score may separate the TCGA and GEO cohorts into two

different clusters (Figures 3A-D). Then, the ROC curves were used for

validation of the specificity and sensitivity of the signatures in train

groups, and the AUCs for one-, three- and five-year survival reached

0.703, 0.710, and 0.757, respectively, implying a good predictive value

(Figure 3E). Additionally, the ROC curves showed high predictive

abilities in the other validation groups (Figures 3F-H). After that, we
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evaluated the ability of the model genes to predict the high-and low-

risk of patients, and the results are shown in Supplementary Figures

S2A-G. The AUC values were all greater than 0.6, among which the

AUC values of OGFRP1 and LINC00205 were both greater than 0.7,

showing a strong predictive ability. Clinical data and risk

classification were merged to construct a nomogram (Figure 3I),

which was then utilized to evaluate the prognosis of TCGA-LUAD

patients. The nomogram may aid in more precisely determining

patient risk and directing future treatment options. We also created

calibration curves (Figure 3J) and observed that this nomogram could

reliably predict the prognosis of LUAD patients after one-, three-, and

five years. Prognostic ROC analysis was used to further evaluate the

accuracy of this nomogram, and the findings significantly beat those

of other clinical shapes and risk scores. The AUC in 1, 3, and 5 years

was 0.724, 0.734, and 0.708, respectively, according to the results

(Figures 3K-M). These outcomes further suggested that this predictive

signature constitutes a promising biomarker to predict the prognosis

of LUAD. To determine whether the constructed prognostic model

could forecast OS based on various clinical features, we conducted
B C

D E F

G H I J

A

FIGURE 2

CRlncRNAs prognostic signature in LUAD. (A) A heat map depicted differentially expressed CRlncRNAs between tumor and normal samples and the top
ten genes are annotated. (B) A volcano diagram depicted differentially expressed CRlncRNAs. (C) The sankey diagram shows the regulatory relationship
between CRGs and 7 prognostic CRlncRNAs. (D) Circle diagram shows the HR value and confidence interval of 7 prognostic CRlncRNAs. (E) Difference
between normal and tumor tissue of 7 prognostic CRlncRNA. (F) A heatmap of correlations between prognostic signatures of CRlncRNAs and
clinicopathological outcomes. (G-J) Survival analysis for TCGA cohort (training group, testing group, and all group) and GEO cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1088931
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.1088931
survival analysis for several clinical subgroups. The following

analytical details are provided: Age (≤65 or >65), Gender (Male or

Female), Clinical Stage (Stage I or Stage II-IV), T Status (T1-2 or T3-

4), M Status (M0 or M1), and N Status (N0 or N1-3). Figures 4A-L

showed that independent of age, gender, clinical stage, T status, M

status, or N status, the OS rates of high-risk patients were lower than

those of low-risk patients.
Analysis of enrichment

Analysis of hallmark pathway gene signatures highlighted that the

high-and low-risk groups showed some differences. A direct

comparison of Risk-High versus Risk-Low revealed that the top 5
Frontiers in Oncology 07
enriched signatures in high-risk group included E2F targets, G2M

checkpoint, MYC targets v1, MYC targets v2 and unfolded protein

response and the low-risk group was mainly active in some metabolic

related pathways (Figure 5A). According to clinical research, E2F

family members are directly linked to the incidence, growth,

proliferating, and apoptosis of cancerous tumors such as gastric,

pulmonary, liver, esophagus, prostrate, bladder, and ovarian cancer

(36, 37). In order to control cell proliferation, the G2M checkpoint

also functions as a cell cycle regulatory route. High G2M checkpoint

pathway activation has been linked in studies to considerably worse

survival in people with pancreatic cancer (38). Furthermore, c-Myc is

necessary for tumorigenesis (39), Almost often, Myc may increase

transcription (40), which showed that LUAD cells could be

susceptible to Myc inhibition. Extremely crucial nuclear
B C D

E F G H

I J

K L M

A

FIGURE 3

Evaluation of prognostic models and nomograms. (A–D) PCA analysis in TCGA cohort and GEO cohort. (E–H) Time-dependent ROC curves of
signatures in the TCGA cohort (training group, testing group, and all group) and GEO cohort. (I) Nomogram was constructed by combining Clinical
features with risk groups. (J) Nomogram’s 1-, 3, and 5-years calibration curve. (K–M) ROC curves for 1, 3, and 5 years showed AUC values for various
clinical factors, risk scores, and nomogram scores.
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transcription factors involved in controlling the cell cycle are encoded

by the E2F family (36, 41). Unfolded protein response (UPRmt) is

known to be preserved in cancer and is able to become active in

response to mitochondrial stress (42). This helps to preserve

mitochondrial integrity and promotes the development of tumors.

As a result, these pathways, which were more prevalent in the high-

risk group, may play a crucial role in controlling tumor development

in LUAD. Then, GSEA was further applied to determine the obvious

pathways between different risk groups (Figure 5B). It was found that

the T/B cell receptor signaling pathway (SP), the JAK/STAT SP, and

the cytokine receptor interaction were clearly enriched in the low-risk

groups, implying a close association of low-risk patients with tumor-

and immune-related pathways. On the other hand, high-risk groups

were obviously enriched in cell cycle, DNA replication and

proteasome pathway.
Assessment of TIME

The correlation between risk scores and tumor-infiltrating

immune cells was explored (Figure 5C). Most of the levels of

immune cell infiltration, such as memory activated CD4+T cells, B

cells and macrophages, were negatively correlated with the risk score,

which may imply that patients in the low-risk group had higher levels

of immune cell infiltration in the TME, as we confirmed in the

following validation. In order to further assess TIME patterns and

immunotherapeutic responses across different risk groups, we

conducted an attempt. The components of LUAD’s TME score

were calculated using the ESTIMATE method. Correlation analysis
Frontiers in Oncology 08
showed that the risk score was negatively correlated with immune

scores, stromal cores and estimate scores, and positively correlated

with tumor purity (Figure 5D). The violin diagrams confirmed that

the low-risk group had higher immune scores, stromal scores and

estimate scores, and the high-risk group had higher tumor purity

(Figure 5E). The IPS may also aid in identifying those who might

benefit from immunotherapy. It was predicted that LUAD patients

will respond well to either PD-1/PD-L1 or CTLA4 inhibitors, or

perhaps to both (Figures 6A-D). The results showed that the low-risk

group showed higher IPS scores when patients were not treated with

PD1/PDL1 and CTLA-4, and no significant differences were seen in

the other subgroups. Surprisingly, Dysfunction scores were much

lower in the high-risk group and Exclusion scores were significantly

greater than in the low-risk group (P < 0.001; Figures 6E-G), which

suggests that high-risk patients are more likely to benefit from

immunotherapy. Subsequently, the ssGSEA enrichment scores of

different immune cells and immune related functions were

quantified (Figures 6H, I). Compared to the high-risk group, B

cells, DCs, immature dendritic cells (iDCs), mast cells, neutrophils,

plasmacytoid dendritic cells (pDCs) and T helper cells had higher

enrichment scores in the low-risk group. In the low-risk group, CCR,

HLA, MHC class I and Type II TFN response were enriched to a

higher degree, which may indicate that the TME of low-risk patients

has a more active immune status to fight against tumor progression

and thus has a better prognosis. Meanwhile, a comparison of various

risk groups in terms of immune checkpoint activation revealed that

most immune checkpoints expressed more activity in low-risk groups,

such as HHLA2, CD40LG, CD48 and CD244 (Figure 6J). Some of

these immune checkpoint expression levels were found to be highly
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FIGURE 4

KM survival analyses of various clinical subgroups in TCGA-LUAD cohort. (A) Age ≤ 65 years; (B) Age > 65 years; (C) Female; (D) Male; (E) Pathology N0;
(F) Pathology N1-3; (G) Pathology T1-2; (H) Pathology T3-4; (I) Pathology M0; (J) Pathology M1; (K) Stage I; (L) Stage II-IV. It can be seen that the ability
of the model to predict survival was not affected by clinical subgroups.
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expressed in the high-risk group, such as LAG3, IDO1, CD276 and

PDCD1 (also called PD1), which may provide therapeutic guidance

for high-risk groups.
Drugs sensitivity

Different chemotherapeutic medicines’ effectiveness was

compared between different groups. For patients with higher risk

score, we found that the IC50 for the following chemotherapeutic

medications was lower: Vinblastine, Cisplatin, Tipifarnib, Axitinib,

Cytarabine, Foretinib, Tivozanib, Masitinib, Bexarotene (P < 0.001,
Frontiers in Oncology 09
Figures 7A-I). Our results support the use of this risk score to forecast

chemotherapeutic drug sensitivity and immunotherapy response in

LUAD patients, which makes it easier to construct a personalized

medication treatment.
Consensus clustering and TME

In order to identify distinctive molecular subtypes according to

the expression of prognostic CRlncRNAs, unsupervised consensus

clustering was applied. LUAD patients were separated into three

clusters, with k=3 identified as the optimal clustering stability
B
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A

FIGURE 5

Enrichment analysis and assessment of immune infiltration. (A) GSVA showed the enrichment of hallmark gene sets in different risk groups. (B) GSEA
enrichment method showed pathway differences between high-and low-risk groups. (C) The correlation between risk scores and tumor-infiltrating
immune cells. (D) A scatter plot depicted the correlation of risk scores with stromal score, immune score, and ESTIMATE score. (E) The violin charts the
differences of stromal score, immune score, and ESTIMATE score, respectively, between low-and high-risk groups.
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(Figure 8A). The PCA plot showed the distribution of Cluster 1(C1),

Cluster 2 (C2) and Cluster 3 (C3) samples (Figure 8B), and a Sankey

diagram was constructed to display the connection between clusters

and high-and low-risk groups (Figure 8C). Samples C2 and C3 mainly

belong to the high-risk group, while samples C1 are mainly

distributed in the low-risk group. Subsequent survival analysis

showed that patients in the C3 group had the worst prognosis,

while patients in the C1 group had the best prognosis (Figure 8D).

The heat map of immune cell infiltration including 7 algorithms was

drawn (Figure 8E), and the results showed that there was higher

immune cell infiltration in the TME of C1 group, such as M2

macrophages, T cells, etc., which may mean that more immune

cells in the TME of C1 were recruited and activated adaptive

immune response to form a hot tumor state. The TME scores of

various clusters were then analyzed, and the findings revealed that C1

had a higher immune score, stromal score and estimate score, as well

as lower tumor purity, than C2.
Frontiers in Oncology 10
Immunotherapy and the mutational
landscape

TME scores, immune checkpoint and immune cell infiltration

results calculated by CIBERSORT were integrated to draw a heat map

(Figure 9A), which showed that there were different degrees of highly

expressed immune checkpoints in the C3 group, such as LAG3, PDL1,

CD70, IDO1, PDL2, etc. This may indicate that C3 group is more

likely to benefit from immune checkpoint blockade treatment,

whereas no significant difference was seen in the heat map of

immune cell infiltration. Subsequently, the expression of immune

checkpoints in different clusters is shown by boxplot (Figure 9B).

Patients with LUAD mutational landscape were presented in

Figure 9C, which showed the highest 20 mutation frequency of

gene mutation, it can be seen in the high-risk group, C2/C3 gene

mutation frequency increases. Figure 9D confirmed that higher tumor

mutation burden in high-risk groups, so we further according to the
B C D
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A

FIGURE 6

Immunotherapy and immune checkpoint analysis. (A-D) The low-risk group showed higher IPS scores when patients were not treated with PD1/PDL1
and CTLA-4, and no significant differences were seen in the other subgroups. (E-G) TIDE scores were significantly lower and Exclusion scores were
significantly higher in the high-risk group than in the low-risk group. (H, I) The ssGSEA scores of immune cells and immune functions in two risk groups.
(J) The difference of common immune checkpoint expression in different risk groups. ***P ≤ 0.001. **P ≤ 0.01. *P ≤ 0.05.
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median risk scores and the median TMB, divided the patients into

four groups (H-TMB+high-risk, H-TMB+low-risk, L-TMB+high-

risk, and L-TMB+low-risk) and the survival differences between

them were further observed (Figure 9E). Survival analysis illustrated

that H-TMB+low-risk group had the best prognosis and L-TMB

+high-risk group had the worst prognosis.
Validation of LINC00592 expression and
biological function in LUAD

In the above studies, we found that LINC00592 exhibited the

highest HR value and was substantially elevated in tumor samples

compared to normal samples. Using the GEPIA database, we further

determined the impact of LINC00592 on survival, and patients with

high expression of LINC00592 had a worse prognosis (Supplementary

Figure S2H). Further research was done on the LINC00592 in the

signature. We conducted in vitro research to better comprehend

LINC00592’s role in LUAD. Compared to BEAS-2B cell lines from

healthy human lung epithelial tissue, Figure 10A showed that

LINC00592 was significantly elevated in two LUAD (A549, H1299)

cell lines. LINC00592 in LUAD cell lines was knocked down for

subsequent experiments. First, we employed the qRT-PCR technique

to measure the level of LINC00592 expression 5 days after
Frontiers in Oncology 11
transfection in order to gauge the effectiveness of siRNA

knockdown of LINC00592 in A549 and H1299 cell lines

(Figure 10B). We discovered that all siRNA sequences could

significantly reduce LINC00592 expression (P < 0.001). Following

LINC00592 knockdown, there was also a significant reduction in the

cells’ vitality as evaluated by the CCK8 assay (Figure 11A). The

findings of the experiment indicate that LINC00592 may have a key

role in LUAD cell surviva. Cell proliferation was evaluated using the

colony formation assay. Comparing cells with decreased LINC00592

expression to the siRNA NC group, the reduced LINC00592

expression cells showed a significantly lower number of colonies

(Figure 11B). Therefore, a slower rate of colony formation was seen in

LINC00592 knockdown cells, suggesting that LINC00592 may be

essential for the proliferation of the LUAD cell line. EdU assays

revealed that lower expression of LINC00592 decreased the

proliferative activity of A549 and H1299 cells in comparison to the

NC group (Figure 11C). The outcome of the scratch-wound healing

experiment was comparable. Cells with reduced LINC00592

expression showed a significantly delayed rate of wound healing

(Figure 11D). Transwell experiments revealed that LINC00592

downregulation severely restricted the migration and invasion of

A549 and H1299 cells (Figure 11E). To demonstrate the accuracy

and reproducibility of the results, all experiments were repeated in

two LUAD (A549, H1299) cell lines and all data were presented as the
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A

FIGURE 7

Prediction of chemotherapy drug sensitivity in LUAD patients. (A-I) Comparisons of IC50 for chemotherapeutics between two subgroups revealed that
the high-risk group was more likely to benefit from Vinblastine, Cisplatin, Tipifarnib, etc.
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means ± SD of three independent experiments. *P < 0.05, **P < 0.01,

***P < 0.001.
Discussion

As the most frequently diagnosed subtype of NSCLC, LUAD still

presents a great challenge to global human health, with mortality and

morbidity continuing to rise. Identifying an effective and reliable

prognostic signature for patients with LUAD is critical for improving

its prognosis. There has been an accumulation of data demonstrating

that the abnormal behaviors of lncRNAs, such as over-expression,

mutation or deletion, constituted drivers for recurrence, metastasis

and progression of tumors (43). A study showed that miR-142-3p

acted as a tumor inhibitor in NSCLC via inhibition of the MALAT1/
Frontiers in Oncology 12
b-catenin SP (44). In conclusion, lncRNAs were involved in

numerous key biological LUAD courses. Despite the discovery of

numerous other lncRNA signatures for predicting LUAD survival

results, a CRlncRNA signature hadn’t yet been identified. Therefore,

such a signature was developed for exploring the prognoses and the

TME of LUAD patients.

In the exploration, we performed COX and LASSO analysis based

on the differentially expressed CRlncRNAs and finally obtained 7

CRlncRNAs (LINC00592, OGFRP1, TFAP2A-AS1, AQP4-AS1,

CADM3-AS1, MIR31HG, and LINC00205) that were most relevant

to the prognosis of LUAD patients. Meanwhile, we conducted both

internal and external validation to evaluate the accuracy of the

signature. Of these prognostic CRlncRNAs, LINC00205 was

identified as promoting malignant tumors of LUAD by sponging

miR-185-5p (45); OGFRP1 constitutes an oncogene in NSCLC
B C
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I

FIGURE 8

Consensus Clustering based on 7 prognostic CRlncRNAs expression. (A) LUAD patients were divided into three clusters (k=3). (B) PCA depicted the
distribution for clusters. (C) The Sankey diagram of the connection between clusters and high-and low-risk group. (D) Kaplan–Meier survival curves of
OS in clusters. (E) A heat map showing immune infiltration containing 7 algorithms in different clusters. (F-H) The boxplots showed that the differences of
stromal score, immune score, and ESTIMATE score, respectively, in three clusters. (I) The boxplots showed that the differences of stromal score, immune
score, ESTIMATE score, and tumor purity respectively, in three clusters.
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FIGURE 9

The TIME and the mutation landscape based on three clusters. (A) A heat map represented TME score, immune checkpoint and immune cell infiltration
in three clusters (B) The differences of immune checkpoints expression in three clusters. (C) Mutational landscapes in different risk groups and clusters.
(D) Differences in TMB between high-and low-risk groups. (E) Survival analysis for four groups (H-TMB+high-risk, H-TMB+low-risk, L-TMB+high-risk,
and L-TMB+low-risk). *P < 0.05, **P < 0.01, ***P < 0.001.
BA

FIGURE 10

Cell experiment. (A) qRT-PCR to evaluate the level of LINC00592 expression in healthy human lung epithelial BEAS-2B cell lines and two LUAD (A549,
H1299) cell lines (B) qRT-PCR to evaluate the level of LINC00592 expression 5 days after transfection and siRNA sequences could result in significant
decrease in LINC00592 expression ***P < 0.001.
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through the miR-4640-5p/eIF5A axis, and downregulation of

OGFRP1 inhibited the progression of NSCLC (46); MIR31HG

could be confirmed as a poor prognostic biomarker and a new

therapeutic target for NSCLC patients through activation of the

Wnt/b−catenin SP (47); AQP4-AS1 is downregulated in breast

cancer tissues, and its over-expression is related to better prognoses

(48); however, for the first time, LINC00592, TFAP2A-AS1 and

CADM3-AS1 were unveiled in lung cancer and could represent

new therapeutic targets. The LUAD patients were then classified

into low-and high-risk groups according to the median risk score for

subsequent analysis. The results revealed a better prognosis in the
Frontiers in Oncology 14
low-risk group than the high-risk group, and risk scores were

independent predictors of OS of LUAD patients. ROC analysis

showed the signature to be relatively accurate in predicting LUAD

survival. The nomogram presented an excellent degree of consistency

between the observed and predicted rates for the one-, three-and five-

year OS. Taken as a whole, the above results suggest that our

CRlncRNAs signature may be highly accurate in predicting the

prognoses of LUAD patients.

The GSVA results showed that the high-risk group was mainly

enriched in cell cycle-related pathways, such as E2F targets, G2M

checkpoint, and MYC targets, whose activation may promote tumor
B
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FIGURE 11

The role of LINC00592 in LUAD. (A) CCK8 assay showed that, after LINC00592 knockdown, the cells showed significant reduction in viability. (B) Colony
formation assay displayed that cell with reduced LINC00592 expression exhibited a significant reduction in the numbers of colonies, compared with the
NC group. (C) EdU staining assay indicated that downregulation of LINC00592 expression repressed cell proliferation in LUAD cell lines. (D) Scratch-
wound healing assay depicted that a significantly slower wound healing rate was observed in cells with a decreased expression of LINC00592. (E)
Transwell assay showed that downregulation of LINC00592 expression inhibited the migration and invasion capacity of LUAD cells. To demonstrate the
accuracy and reproducibility of the results, all experiments were repeated in two LUAD (A549, H1299) cell lines and all data were presented as the means
± SD of three independent experiments. **P < 0.01, ***P < 0.001.
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progression, while the low-risk group was mainly enriched in

metabolism-related pathways, such as fatty acid metabolism and

bile acid metabolism. GSEA results indicated that the JAK/STAT

SP, cytokine receptor interaction, and T/B cell receptor SP were all

enriched in low-risk groups. The researchers discovered that the

activating JAK2 p.V617F mutation might confer sensitivity to anti-

PD1 immunotherapy and JAK suppressors in NSCLC (49). The

upregulation, mutation, and amplification of JAK2 detected may

participate in the invasion, migration, and proliferation of cancer

cells in LUAD (50). Suppression of the IL-6R/JAK1/STAT3 SP raised

the degree of sensitivity to afatinib in NSCLC (51). To further evaluate

the immune infiltration status of different risk groups, we used seven

different algorithms to verify the higher immune cell infiltration level

in the low-risk group. Following that, ssGSEA enrichment analysis

also showed similar results, indicating that the low-risk group was

more prone to form a hot tumor state to activate the immune system

to resist tumor progression. Studies have revealed immune

checkpoint gene expression levels to be closely related to the

efficacy of immunotherapy (52). According to our study, some

immune checkpoints were differentially expressed in both high-and

low-risk groups. To further explore the effect of immunotherapy

benefit in different risk groups, we explored the situation of TIDE

scores in different risk groups, and the results showed that the low-

risk group had higher TIDE scores, which also indicated that the

high-risk group may be more suitable for immunotherapy.

Molecular subtypes have been reported to be related to the TME

(53). TME status differ among subtypes, leading to differences in

prognosis and response to immunotherapy. Patients were classified

into three clusters according to the expression of the 7 prognostic

CRlncRNAs, and the three clusters were compared in terms of

survival, the TME and immune checkpoints. The results showed

that C1 exhibited the highest OS. C3 featured a higher abundance of

immune and stromal cells. Also, most of the immune checkpoints

were highly expressed in C3, indicating that patients in C3 are more

sensitive to immunotherapy than those in the other two groups.

Subsequently, mutation analysis showed the differential landscape of

gene mutations in different risk groups and different clusters, which

showed that the high-risk group had significantly higher TMB, and

further survival analysis found that H-TMB+low-risk group had the

best OS rate.

According to our study, LINC00592 is highly expressed in tumor

cells and has the largest HR value. Survival analysis showed that

LINC00592 has a significant effect on survival, patients with high

LINC00592 expression have a worse prognosis. Cell experiments

confirmed that knockdown of LINC00592 reduced the proliferation,

invasion and migration of LUAD cells. LINC00592 may be a new

therapeutic target for LUAD patients, so it was used for

experimental validation.

Inevitably, our study has some limitations and shortcomings. Our

studies of the functional phenotype of LINC00592 have been

preliminary, and its particular functions and mechanisms in LUAD
Frontiers in Oncology 15
need additional research utilizing animal models in vivo. In summary,

the CRlncRNAs signature was capable of independently predicting

LUAD patients’ prognoses, and may provide guidance for

immunotherapy for LUAD patients.
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