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The Uridine diphosphate
(UDP)-glycosyltransferases
(UGTs) superfamily: the role
in tumor cell metabolism

Wenyu Liu †, Jing Li †, Rui Zhao †, Yao Lu* and Panpan Huang*

School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
UDP-glycosyltransferases (UGTs), important enzymes in biotransformation,

control the levels and distribution of numerous endogenous signaling

molecules and the metabolism of a wide range of endogenous and

exogenous chemicals. The UGT superfamily in mammals consists of the

UGT1, UGT2, UGT3, and UGT8 families. UGTs are rate-limiting enzymes in

the glucuronate pathway, and in tumors, they are either overexpressed or

underexpressed. Alterations in their metabolism can affect gluconeogenesis

and lipid metabolism pathways, leading to alterations in tumor cell metabolism,

which affect cancer development and prognosis. Glucuronidation is the most

common mammalian conjugation pathway. Most of its reactions are mainly

catalyzed by UGT1A, UGT2A and UGT2B. The body excretes UGT-bound small

lipophilic molecules through the bile, urine, or feces. UGTs conjugate a variety

of tiny lipophilic molecules to sugars, such as galactose, xylose,

acetylglucosamine, glucuronic acid, and glucose, thereby inactivating and

making water-soluble substrates, such as carcinogens, medicines, steroids,

lipids, fatty acids, and bile acids. This review summarizes the roles of members

of the four UGT enzyme families in tumor function, metabolism, and multiple

regulatory mechanisms, and its Inhibitors and inducers. The function of UGTs in

lipid metabolism, drug metabolism, and hormone metabolism in tumor cells

are among the most important topics covered.

KEYWORDS

UDP-glycosyltransferase, tumor, lipidmetabolism, drugmetabolism, hormonemetabolism
1 Introduction

UDP-glycosyltransferases (UGTs) are a superfamily of enzymes found in animals,

plants, fungi, and germs that catalyze the covalent addition of sugars from nucleotide

UDP sugar donors to functional groups on a variety of lipophilic compounds. There are

22 UGTs in humans. UGTs found in the endoplasmic reticulum membrane catalyzes the
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attachment of the hemiacetal hydrogen bond of glucuronic acid

(UDPGA) to a range of compounds containing functional

groups, such as hydroxy, carboxylic, amino, and sulfhydryl

groups to create esters or glycosides. Glucuronides are

excreted via the bile and urine. The metabolism of many drugs

relies on this pathway, as does the excretion of substances, such

as endogenous steroids, thyroid hormones, and bilirubin

generated from the degradation of heme in the human body

(1, 2). To demonstrate the role of glucuronidation in cancer,

many reviews have summarized UGTs genetic variants and their

risk assessment in cancer, illustrating the effects of UGTs in

exogenous carcinogen detoxification and endogenous tumor-

promoting factor inactivation (3–5). Reviews of the relationship

between UGTs and cancer progression, and that between UGTs

and primary or acquired treatment resistance have also been

published (6). This review focuses on the function of UGTs in

cancer metabolism.

Human UGTs are expressed in a wide range of organs and

tissues, but most isoforms are prominent in the liver, kidney and

intestine, reflecting their role in detoxification. Tumor cells can

meet the high demand for their own growth and survival by

promoting the biotransformation of small molecule metabolites.

The most common function of UGTs in cancer is the metabolic

inactivation of chemotherapeutic agents (7). By conjugating

glucuronic acid to lipophilic drugs, UGTs weaken the

biological activity of these drugs and increases their water

solubility, driving these agents to be eliminated in bile, urine

and feces (6). Increasingly, studies have shown that the

upregulation and inactivation of UGTs in cancer progression

have a significant impact on tumor development as well as

prognosis (4, 5, 8). UGTs genes are upregulated in tissues

associated with drug metabolism, such as cancers of the liver,

kidney, intestine, and pancreas, such as UGT1A6, UGT1A9,

UGT1A10, UGT2A3, UGT2B7, and UGT8, and they are

significantly associated with increased overall survival in

cancer (9). High expression of UGT2B17 in chronic

lymphocytic leukemia (CLL) leads to poorer prognosis in CLL,

partly because upregulated UGT2B17 glucuronidates anti-

leukemic drugs (e.g., fludarabine) in CLL cells, leading to their

local inactivation and enhancing their drug resistance (10, 11). It

follows that UGTs differentially expressed in tumors can be used

as biomarkers or therapeutic targets for cancer prognosis.

Metabolic enzymes are involved in carcinogenesis and

metastasis and can be exploited as targets for cancer detection

and treatment. Metabolic reprogramming has a significant role

in tumorigenesis (12). Metabolic changes in tumors are

associated with dysregulation of the activity of intermediate

enzymes in metabolic pathways (13). UGTs are rate-limiting

enzymes in the glucuronide pathway. Because of the complex

and interconnected metabolic networks, changes in the activity

of UGTs can affect many metabolic pathways and thus influence

tumor development. UGTs have effects on glucose and lipid
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metabolism in tumor cells in addition to the biotransformation

of small molecule metabolites. This article not only describes the

role of UGTs in tumors, but also elucidates the new role of UGT

in metabolism, including glucose, lipid, drug, and hormone

metabolism, providing new research directions for the role of

UGTs in tumor metabolism alterations.

The expression and enzymatic activity of UGTs have been

reported to be regulated by multiple mechanisms and influenced

by a variety of factors. The regulatory mechanisms include

epigenetic modifications (e.g. DNA methylation and histone

modifications), transcriptional regulation, post-transcriptional

regulation (miRNA), and post-translational regulation (e.g.,

structural and functional modifications, and protein-protein

interactions). Methylation regulates UGTs expression in some

cases, for example in colon cells, where methylation of the

transcription factor HNF1A has a negative regulatory effect on

UGT1A1 (14, 15). Histone modifications also regulate the

expression of UGTs and also synergize with DNA methylation

to regulate the expression of UGT1A1 (16). The promoters

upstream of UGTs as well as enhancers comprise the

transcription factor conjugating sites that induce and regulate

UGTs expression, and the regulation of UGTs by transcription

factors varies in different tissues (17). miRNAs can act directly

on the mRNA of UGTs to regulate their expression, or indirectly

by repressing UGTs transcription factors (18–20). Post-

translational N-linked glycosylation and phosphorylation of

UGTs and their interactions with different proteins have

important effects on their activity (21–23). Therefore, this

review contains an in-depth study and summary of its

regulatory network and discusses the regulatory relationships

of the above multiple mechanisms on UGTs for future studies.
2 Roles of UGTs in tumors

Studies have shown that UGTs expression profiles in tumor

patients are highly individual and intra-individual specific, and

that its upregulation and downregulation correlate significantly

with the overall survival of some patients (9). In this review, we

summarize the relationship between UGTs expression and

breast cancer, lung cancer, liver cancer and prostate cancer.

UGT family members play an important role in the

development of breast cancer. The UGT1A6 gene polymorphism

is associated with breast carcinogenesis in the European

population, and people with the UGT1A6-19-GC genotype have

an increased risk of developing breast cancer (24). Furthermore,

the UGT1A8 polymorphism is associated with breast cancer and

leads to an increased risk of breast cancer cell malignancy (25).

Meanwhile, existing studies have shown that the expression of

UGT2B28 has an impact on the metabolic changes of steroid

hormones in breast cancer (26). In basal breast cancer, UGT8

enhances the malignancy of basal breast cancer cells. High UGT8
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expression is closely related to the tumor grade and size in patients

with basal breast cancer, and plays an important role in poor

patient prognosis (27) (Figure 1A).

Polymorphisms in the UGT1A6 gene in lung tissue and

qualitative or quantitative alterations in humans may increase

the likelihood of lung cancer in the population (28). High

expression of UGT8 in lung cancer tissues can maintain the

malignancy of these tissues and is closely associated with drug

resistance and tumor metastasis in patients, leading to poor

patient prognosis (29, 30) (Figure 1B).

UGT1A7 can alter an individual’s susceptibility to cancer by

decreasing the body’s detoxification capacity (31). High

expression of UGT1A7 in different populations is also strongly

associated with increased risk of liver cancer (32). Hepatocellular

carcinoma cells can also regulate the expression of UGT family

members. In hepatocellular carcinoma, UGT2B4 expression is

negatively regulated by miR-135a and miR-410 (33). It was also

confirmed that UGT variants were associated with the age of

onset, recurrence, distant migration and death in patients with

liver cancer (34).

UGT2B15 promotes lymph node metastasis in prostate

cancer. Its hypermethylation increases the risk of prostate

cancer, and its gene polymorphism is strongly associated with

the development of prostate cancer (35, 36). Furthermore, low

expression of UGT2B17 further promotes the development of

prostate cancer (37). Meanwhile, both polymorphisms are

negatively regulated by miR-376c (36)(Figure 1C).
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The literature indicates that UGTs are important players in

tumorigenesis. To investigate whether the UGTsmentioned above

also play a role in other cancers, we used bioinformatics analysis to

initially explore whether they are of potential research value

(GEPIA: http://gepia.cancer-pku.cn/detail.php, SangerBox:

http://vip.sangerbox.com/login.html). Elevated expression of

UGT1A6 in kidney, liver, and lung cancers compared with

normal tissues has different prognostic implications for patients

with different cancers. In kidney and liver cancers, the higher the

expression of UGT1A6, the shorter the overall survival of patients;

while in lung cancer, the higher the expression of UGT1A6, the

better the prognosis of patients. This tentatively suggests that

UGT1A6 may play an oncogenic role in kidney and liver cancers,

while the effect of UGT1A6 on cancer progression in lung cancer

needs to be further explored. UGT1A8 expression was elevated in

hepatocellular carcinoma, lung cancer, and head and neck

squamous cell carcinoma compared with normal tissue, but its

expression was not significantly associated with patient prognosis.

In adrenocortical carcinoma, UGT1A8 expression was increased,

whereas its low expression was associated with poor patient

prognosis. UGT8 expression was elevated in colon cancer,

esophageal cancer, glioblastoma, low-grade glioma of the brain

and gastric cancer compared with normal tissue, and higher

expression of UGT8 in colon cancer, esophageal cancer, and

gastric cancer was positively associated with good patient

prognosis. Furthermore, UGT1A7 expression was elevated in

lung cancer and positively correlated with good patient
A B C

FIGURE 1

Mechanisms of UGTs role in three types of cancer. (A) In basal breast cancer, UGT8 is regulated by SOX10, which promotes the expression of
sulfatide and activates the expression of aVb5 signaling, thereby enhancing the malignancy of basal breast cancer cells; (B) In pulmonary non-
small cell lung cancer, UGT8 is regulated by the transcription factor SOX9, which affects the glycolytic process in pulmonary non-small cell lung
cancer and plays an important role in maintaining the malignancy of pulmonary non-small cell lung cancer and in poor patient prognosis; (C) In
prostate cancer, the expression of both UGT2B15 and UGT2B17 was negatively regulated by miR-376c, with reduced expression leading to their
diminished glucuronidation capacity and consequently to increased tumor malignancy.
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prognosis, while UGT2A3 expression was elevated in kidney

cancer compared to normal tissue and positively associated with

good patient prognosis. UGT2B15 was highly expressed in

hepatocellular carcinoma compared to normal tissues and

positively correlated with good patient prognosis. The high

expression of UGT1A8, UGT8, UGT1A7, UGT2A3, and

UGT2B15 in these cancers and its relation to good patient

prognosis is very interesting and deserves further investigation.

Hence, increased or decreased expression of UGTs may have an

impact on tumor progression. Identifying the key point where

UGTs affect tumor progression and blocking it will provide new

options for clinical tumor treatment, improvement of patient

prognosis, and increasing the survival rate (Table 1).
3 Roles of UGTs in the regulation of
tumor metabolism

The metabolic networks in the human body are

interconnected to achieve homeostasis due to the interaction

of metabolic signals. In the process of cancer development, any

dysregulation of metabolites will lead to the disruption of the

metabolic network, which leads to cancer development and

malignant metastasis. The glucuronate pathway’s rate-limiting

enzyme belongs to the UGTs. Alterations in its metabolism can

affect gluconeogenesis and even lipid metabolism pathways,

leading to altered metabolism in tumor cells, which affects the

development and prognosis of cancer.
Frontiers in Oncology 04
3.1 Roles of UGTs in tumors related to
glucose metabolism

The UGTs are involved in the metabolism and elimination

of thousands of both exogenous and endogenous human

hydrophilic drugs and substances. UGTs conjugate a variety of

tiny lipophilic compounds to sugars, such as glucuronide,

galactose, glycosyl, or galacto (39–42), with substrates, such as

cancer-causing substances, medications, corticosteroids,

triglycerides, fatty acid oxidation, and bile salts (43). UGT1A,

UGT2A, and UGT2B are primarily responsible for this reaction,

which is known as glucuronidation. UGT covalently conjugates

with other substrates via glucuronic acid provided by UDP-

sugars. These compounds are then removed from the body

through bile, urinary, and fecal matter (44) (Figure 2). UGT8

is a UGT family member that catalyzes the transfer of galactose

from UDP galactose to ceramide, a crucial step in the synthesis

of brain sphingolipids. In contrast, UGT3A1 and UGT3A2 use

UDP N-acetylglucosamine and UDP glucose and UDP xylose,

respectively, as sugar donors to conjugate substrates.

Furthermore, it has been demonstrated that UGT8 is also

capable of conjugating bile acids and bile acid analogs that are

similar to drugs, such as galactosylation, and that UGT8

conjugates bile acids around 60 times more effectively than

ceramide (3, 42).

In addition to the function of UGTs in glucuronidation,

UGTs may interact with other metabolic enzymes thereby

affecting multiple metabolic pathways in tumor biology and
TABLE 1 Relationship between UGTs expression and cancer.

UGTs
expression

Types of cancer The effect of UGTs on cancer Reference

UGT1A6-19-gc breast cancer People with UGT1A6-19-gc have an increased risk of breast cancer. (24)

UGT1A6 (high) kidney cancer and liver cancer Overall survival was shortened.

UGT1A6 lung cancer Changes in its gene polymorphism and expression levels increase the likelihood of
developing lung cancer.

(28)

UGT1A8 (high) breast cancer Breast cancel cells show increased malignancy. (25)

UGT1A8 (low) adrenocortical carcinoma The patients will have a poor prognosis. (38)

UGT8 (high) breast cancer Basal breast cancer cells showed increased malignancy.

UGT8 (high) colon cancer, gastric cancer and
esophageal cancer

The patients will have a better prognosis.

UGT1A7*1,
UGT1A7*2

liver cancer Is associated with an increased risk of liver cancer in patients. (32)

UGT1A7(high) lung cancer The patients will have a better prognosis.

UGT2A3 (high) kidney cancer The patients will have a better prognosis.

UGT2B15 (high) prostate cancer Promote lymph node metastasis. (35)

UGT2B15 (high) liver cancer The patients will have a better prognosis.

UGT2B17(low) prostate cancer Promoting the development of prostate cancer (37)
f
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have an impact on the alteration of the tumor phenotype (6). It

has been shown that a transcription factor promotes the high

expression of UGT8 in non-small cell lung cancer (NSCLC)

and that UGT8 upregulation maintains the malignancy of

NSCLC by enhancing glycolysis (29). UGT1 interact with the

rate-limiting enzyme of glycolysis pyruvate kinase (PKM2) in

colon cancer cells contributing to cancer cell metabolism and

tumor growth (45). Changes in the enzymatic activity of UGTs

may have an impact on the energy production of “aerobic

glycolysis,” which is essential for the growth of cancer cells. The

glucuronidation activity of UGTs may also affect UDP glucose

metabolic pathways, including UDP glucose, UDPGA, and

UDP xylose, which are derived from glucose-6-phosphate, an

intermediate product of glycolysis. According to a theory

formed in the context of prostate cancer advancement,

alterations in the enzymatic activity of UGTs may also

impact how well their byproducts perform, such as the many

functions of UDPGA in glucuronidation or the production of

UDP xylan and proteoglycan. UDPGA appears to be preferred

in the synthesis of proteoglycans (e.g., NOTCH1) in androgen-

independent cells, possibly to prevent inactivation of

intracellular testosterone depots, according to studies in

prostatic cancer cell types (46). Based on this, alterations in

the UGT enzyme family can affect not only their own functions

but also the functions of other enzymes of the glucuronate
Frontiers in Oncology 05
pathway or other metabolites, thereby affecting tumor

development. In turn, alterations in the glucuronate pathway

may affect the entire gluconeogenic pathway. As the center of

the metabolic network, changes in glucose metabolism are

inextricably linked to other metabolic pathways, such as lipid

metabolism and nucleotide metabolism. Therefore, UGTs

affect tumors by regulating metabolism, providing a new

direction for future research on the metabolic mechanisms

of tumors.
3.2 Roles of UGTs in tumors related to
lipid metabolism

UGTs do not only glucuronidate estrogens, androgens and

bile acids, which are common cholesterol-derived molecules.

They also react with some other fatty acid derivatives, altering

their biological activity and degrading many low molecular

weight endogenous molecules that alter some endogenous

substrates with oncogenic functions, such as vitamin A,

leukotriene B4, prostaglandins, and arachidonic acid

precursors (47–50). For example, it has been shown that

UGT2B17 can glucuronidate prostaglandin E2 (PGE2) thereby

affecting the frontal proliferation and migratory capacity of

leukemia cells (47).
FIGURE 2

Metabolic pathways involved in glucuronidation by UGTs. The glucuronate pathway is a branched pathway of sugar metabolism with a small
flux. The first stage of the glucuronate pathway is the isomerization of the glycolytic intermediate, glucose 6-phosphate, to produce glucose 1-
phosphate. This is then reacted with UTP to produce UDP-glucose. The catalytic enzymes are phosphoglucomutase (PGM) and UDP-glucose
pyrophosphorylase (UGP). UDP-glucose is an important branch point of sugar metabolism. It can be used for the synthesis of UDP-glucuronide,
UDP-galactose, and also as an entry point for polysaccharide synthesis. UDP-glucose is catalyzed by UDP-glucose dehydrogenase (UGDH) to
produce UDP-glucuronide. This reaction involves two successive oxidation steps that oxidize the terminal hydroxymethyl group of glucose to a
carboxyl group while generating two NADH. UDP-glucuronide is an important substance used by the liver for detoxification and can react with
many fat-soluble substances (Glucuronidation). this reaction is catalyzed by UDP-glucuronyl transferase (UGTs) in the endoplasmic reticulum
membrane, and the hemiacetal hydroxyl group of glucuronide can be combined with a variety of substances containing functional groups such
as hydroxyl, carboxyl, amino, and sulfhydryl groups to produce esters or glycosides, which are excreted from the bile and urine.
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Changes in lipid metabolism can have a profound clinical

effect on breast cancer since they can increase the spread and

recurrence of the disease (51). Ceramides can be galactosylated

by ceramide galactosyltransferase (UGT8) to form galactosyl

ceramides (GalCer), which are then converted to sulfate by

GalCer sulfotransferase (GST). UGT8 is a crucial enzyme in

the metabolism of sulfatidylcholine and is abundantly expressed

in the brain and nervous system. Additionally, a recent study

discovered that GalCer was a crucial glycosphingolipid for both

the central and peripheral nervous systems, and that UGT8

deficiency caused significant neurological impairment (52).

UGT8 is a key enzyme in the synthesis of sulfatide, a

sphingolipid widely found in eukaryotic cells. Sulfatide is a

type of lipid that plays an important part in the development

of numerous diseases, such as disorders of the neurological

system, cardiovascular disease, diabetes, immunological

disorders, cancers (53). Sox10 acts as a transcription factor to

promote the expression of UGT8, which significantly promotes

ceramide metabolism leading to sulfatide formation and thus

increases the binding of integrin aVb5 to activate the TGF-b and
NF-kB pathways in basal-like breast cancer to encourage its

capacity to spread and migrate (38) (Figure 3). Many

malignancies exhibit reprogramming of lysosomal metabolism.

It has been discovered that UGT8 is linked with tumor

progression and that elevated UGT8 levels may be crucial for
Frontiers in Oncology 06
the emergence of lung metastases (54). UGT8 has also been

found to be substantially prevalent in cervical and oropharynx

malignancies through analysis of clinical samples (55, 56).

Ceramide functions differently in different cancer cells as a

second messenger of intracellular signaling, and there is clear

evidence that one of the causes of drug resistance is ceramide

glycosylation (57–59). These investigations demonstrate that

UGT8 can maintain intracellular ceramide levels, raise

glycosphingolipid levels, control drug transport, lessen cell

death, and combat drug resistance. Breast cancer cells with

high UGT8 expression exhibit sensitive to apoptosis caused by

adriamycin. According to these studies, increasing UGT8

expression can convert ceramide to GalCer and reduce

ceramide-induced apoptosis (60). The survival of cancer cells

may highly depend on this mechanism. By blocking the

glucuronidation of ceramide, or finding effective inhibitors of

UGTs, new ideas have been generated for studying the

development and prognosis of tumors.
3.3 Role of UGTs in the metabolism of
antitumor drugs

UGT family members, which are highly expressed in tissues

related to drug metabolism, promote drug metabolism in vivo
FIGURE 3

The synthesis pathway of sphingosine sulfatide. The first step is catalyzed by UGT8 on the endoplasmic reticulum to generate GalCer and
uridine diphosphate (UDP) from ceramide and uridine diphosphate galactose (UDP-galactose). The second galactoceramide transferase
(GAL3ST1) in this reaction converts galactoceramide to Sulfatide via a sulfonation reaction. Sphingosine sulfatide on the cell membrane is
involved in the regulation of proliferation, differentiation, apoptosis and senescence of cancer cells.
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through glucuronidation and play a key role in the metabolism

of some antitumor drugs, leading to improved drug function and

reduced drug toxicity. For example, the drug irinotecan, used to

treat small cell lung cancer, has serious drug toxicity. It is

converted to the active metabolite SN-38 via carboxylesterase,

and UGT1A1 mediates the conversion of SN-38 to an inactive

compound by binding to SN-38G, facilitating its excretion from

the body (61). An evaluation and analysis of a large body of

literature revealed a high occurrence of severe irinotecan-

induced toxicity in pure carriers of the UGT1A1 mutant

UGT1A1*28 or UGT1A1*6; hence, these UGT1A1 mutations

were predictive of irinotecan-related toxicity (62). UGT1A6 is

involved in the oxidative metabolism of benzo(a)pyrene (BaP)

and BaP quinone exerting a detoxifying effect, and the

combination of UGT1A6 and cytochromes (CYPs) can further

enhance its detoxifying effect and reduce the toxic effect of

carcinogens (63). Regarding polycyclic aromatic hydrocarbon

(PAH) carcinogens, UGT1A4 is the main active enzyme in the

glucuronidation of the nicotine secondary metabolite trans-30-

hydroxycotinine (64). It has been shown that resveratrol, as an

anticancer drug for breast cancer, can inhibit the development of

breast cancer cells by upregulating the expression of NRF2 and

UGT1A9, promoting the metabolism of estrogen in the body,

and inhibiting the cell damage caused by toxic metabolites

produced by estrogen (65). UGT2A1 counteracts the activity

of simple and complex PAHs, and has a mitigating effect on lung

cancer caused by long-term exposure to PAHs (66). UGT2A2 is

a splice variant of UTG2A1, which is expressed mainly in the

nasal mucosa and plays an important role in the local

detoxification of carcinogenic monohydroxy PAH metabolites

(67, 68). Unlike UGT2A1, UGT2A2 has no glucuronidation

activity toward TSNAs, HCA, or nicotine and does not possess

N-glucuronidation ability (69). UGT2A3 and UGT3A1 can only

detoxify simple PAHs because of their weak activity in the

human body (69, 70).

In addition to the beneficial role of drug detoxification, UGT

has a detrimental effect on the human body. When UGT1A9

interacts with bisphenols, it leads to intracellular calcium overload,

which induces mitochondrial stress, leading to dysregulation of

mitochondrial homeostasis, and promoting bisphenol-induced cell

death (71). UGT1A10 has also been associated with

glucuronidation of the acridone derivatives C-1305 and C-1311

antitumor drugs, significantly increasing the cytotoxicity of C-

1305, enhancing its pro-apoptotic properties in HCT116 cells and

leading to inactivation of exogenous substances (72). Bitter almond

phenol, which has anticancer effects, can form three metabolites

(M1-M3) after glucuronidation. UGT1A10 mainly catalyzes the

formation of M2, which can affect the clearance of its metabolites

and affect their bioavailability (73). The UGT2B11 mRNA affects

the IC50, EC50, and AUC of anti-prostate cancer drugs and

confers resistance to cisplatin-based drugs (74–76). UGT2B17 is

involved in the glucuronidation of exemestane, an aromatase

inhibitor against breast cancer, and its copy number variation
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leads to individual differences in drugmetabolism (77, 78). It is also

involved in the inactivation of the anti-leukemia drugs fludarabine

and ibrutinib, leading to the development of resistance to these

drugs in patients (10, 79). Unlike other UGTs, UGT1A7 has a dual

role: it inhibits irinotecan and erlotinib for rectal and small cell lung

cancers and is also involved in the inactivation of various

carcinogens including hydroxybenzopyrene metabolites. In

contrast, it can promote the action of ketoconazole so that it can

be used for infections caused after chemotherapy (80) (Table 2).

Thus, members of the UGTs mainly function in the metabolism of

drugs and carcinogens by participating in their glucuronidation.

However, some members are involved in the metabolism of these

substances by other means. They have both beneficial and

detrimental effects on the organism, which are closely related to

the polymorphism of the UGTs gene and the enzymes that act in

concert with it. Elevated UGT2B11 expression during the

treatment of prostate cancer with cisplatin-based drugs may

indicate that the body has developed resistance to these drugs

and that androgen deprivation therapy or immunotherapy may be

used to treat the prostate cancer (81, 82). In addition, after treating

breast cancer with exemestane, the polymorphism of the

UGT2B17 gene leads to individual differences in the drug and

the upregulation of UGT2B17 expression in some patients may be

related to the development of drug resistance (78). The treatment

of radiotherapy or endocrine therapy, or integrated treatment may

be a good alternative therapy (84). Elevated expression of

UGT2B17 also occurs in the treatment of leukemia with

fludarabine or ibrutinib, which may also suggest the exists of

drug resistance (10). Taken all together, Tyrosine kinase inhibitors

(TKI) targeting BCR-ABL1 tyrosine kinase, monoclonal antibodies

targeting cell surface antigens (CD19, CD20, and CD22), bispecific

antibodies, and chimeric antigen receptor (CAR)-T therapymay be

good alternative treatments (85).
3.4 Role of UGTs in hormone metabolism

Members of the UGTs play an important role in hormone

metabolism. UGT1A1 plays an important role in estrogen

metabolism. It is highly expressed in the uterus and is involved

in the elimination of estrogen (61). After menopause, women gain

weight and fat content, with a subsequent increase in estrogen

sources, which leads to a decrease in bone transformation and an

increase in bone loss (61). Analysis of postmenopausal women

with osteoporosis revealed that UGT1A1*28 can be used as a

marker of bone loss for the timely assessment of bone tissue

changes, and that pureton mutations in UGT1A1*28 can reduce

the risk of bone loss and osteoporosis in postmenopausal women

(25, 61). Excessive accumulation of estrogen and its toxic

metabolites can stimulate abnormal proliferation of breast cells,

which causes breast cancer, while UGT can react with estrogen,

which promotes the metabolism of estrogen and play a certain

detoxifying effect (86). In vivo, UGT1A7 and UGT1A8 can
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participate in the glucuronidation of estrogen and promote

estrogen metabolism. UGT1A7 can also participate in the

glucuronidation of estrogen metabolites catechol estrogen and

methoxyestradiol metabolites (65). In breast cancer tissues,

polymorphisms in specific UGTs genes regulate the exposure to

toxic estrogen metabolites. UGT1A8 expression is regulated by

NRF2 and reduced UGT1A8 expression leads to estrogen

accumulation in the body and increased cellular damage (25,

65). UGT2B11 plays a catalytic role in the glucuronidation of

androgens (74–76). It is also involved in the glucuronidation of

steroids and promotes the excretion of toxic substances from

target cells (87). UGT2B28 is abundantly expressed in the human

liver and kidney and is involved in the metabolism of estradiol

and androstenedione. Its altered function can interfere with HBV

replication by affecting the metabolism of sex hormones (34, 88).

One study showed using multivariate analysis that UGT2B28

gene mutations are closely associated with the development of

hepatocellular carcinoma, the ability to metastasize to distant

sites, and the age of onset, which may be related to its

involvement in HBV replication (34). UGT2B28 also acts as a

regulator of steroid hormones and alters testosterone

dihydrotestosterone levels. In primary prostate cancer, if

androgen expression is elevated, UGT2B28 expression is also

elevated (89), therefore, UGT2B28 can be a good predictor of

prostate cancer. UGT2B15 and UGT2B17 play an important role
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in the metabolism of androgens and are involved in the

inactivation of testosterone and dihydrotestosterone (36, 90).

UGT2B17 expression is negatively regulated by the androgen

receptor. In prostate cancer cells, androgens can inhibit

UGT2B17 expression by activating the androgen receptor, and

glucuronidation leads to increased androgen secretion in the

body, which will promote prostate cancer progression, forming

a vicious cycle (37).

Members of the UGTs also play an important role in the

metabolism of bile acids. UGT2A1 and UGT2B4 are highly

responsive to bile glucuronidation (91). UGT2B28 is involved in

bile acid metabolism and can explain the correlation between

bilirubin levels and high alcohol consumption (89). UGT3A1, in

contrast, is involved in the metabolism of ursodeoxycholic acid,

a therapeutic drug for patients with cholestatic liver disease, and

catalyzes the detoxification of bile and urine by ursodeoxycholic

acid, which plays an important function in patients with

cholestasis (39). Recently, it has been found that UGT8 also

plays an important role in the metabolism and clearance of bile

acids, not only in the maintenance of bile acid homeostasis in

vivo but also in bile acid signaling (42). As a conjugating enzyme

in the endocrine system, UGTs play a major role in the

metabolism of catecholamine hormones as a conjugating

enzyme in the endocrine system and is involved in the

development of these hormone-related cancers (92). (Table 3)
TABLE 2 Relationship between UGTs expression and adverse drug effect.

UGTs
expression

Type of
Disease

Targeted
drugs

Route of action Alternative treatment
options

Reference

UGT2B11
(high)

Prostate Cancer Cisplatin-
based drugs

affect the IC50, EC50, AUC of this class of drugs Androgen deprivation therapy,
immunotherapy

(81, 82)

UGT2B17
(high)

Breast Cancer Exemestane Affects the glucuronidation of this class of drugs Radiotherapy, endocrine therapy (78)

UGT1A9
(low)

Breast Cancer Resveratrol Resveratrol upregulates the expression of NRF2
and UGT1A9 to promote estrogen metabolism in
vivo

Radiotherapy, endocrine therapy (65, 78)

UGT2B17
(high)

Leukemia Fludarabine,
Ibrutinib

Involvement in drug inactivation TKI, monoclonal antibodies
targeting cell surface antigens, CAR-
T

(10)

UGT1A1
(low)

Small cell lung
Cancer

Irinotecan Mediated conversion of SN-38 to an inactive state Immunotherapy, cisplatin-based
drugs

(61, 83)

UGT1A1*28,
1A1*6(high)

Small cell lung
Cancer

Irinotecan Not yet reported Immunotherapy, cisplatin-based
drugs

(62, 83)

UGT1A7
(high)

Small cell lung
Cancer, Rectal
Cancer

Irinotecan Affects the glucuronidation of drugs Small cell lung cancer: As above,
Rectal Cancer: Neoadjuvant
radiotherapy

(32, 80)

UGT1A7
(low)

Post-
chemotherapy
infection

Ketoconazole Affects the glucuronidation of drugs Change to other antimicrobials (32)
f

* is the allelic variation of UGT gene.
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4 UGTs are regulated by multiple
regulatory mechanisms

The UGTs plays an important role in the metabolism and

clearance of a wide range of substances, and there is growing

evidence that the UGTs plays a functional role in the

development of many diseases, particularly in cancer

development. Moreover, the UGTs is controlled at multiple

levels by a variety of factors, including epigenetic modification,

transcriptional regulation, post-transcriptional regulation and

post-translational regulation. Therefore, this review provides an

in-depth study and summary of their regulatory networks.
4.1 Epigenetic modification

UGTs expression is tissue-specific. For example, UGT1A7,

UGT1A8, and UGT1A10 are only expressed in the

gastrointestinal tract, whereas UGT1A9 is stably expressed in

the liver and kidney (93). In addition, the expression of some

UGTs isoforms has been shown to be closely associated with

DNA methylation (14). The CpG-enriched region near the

UGT1A1 promoter is highly methylated in the kidney and

hypomethylated in the liver, and DNA methylation is

negatively correlated with UGT1A1 expression (14, 15). This

could partly explain the tissue-specific expression of UGT1A1.
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Similarly, the tissue-specific expression of UGT1A10 in the liver

and intestine may also be associated with methylation (94).

It has been shown that histone modifications can regulate

UGT1A1 expression in the liver. For example, the enrichment of

the transcriptional activation marker H3K4me2 in the adult liver

is closely associated with high expression of UGT1A1, while the

enrichment of the UGT1A1 transcriptional repression marker

H3K4me3 is consistent with repression of fetal UGT1A1

expression, both of which are the result of histone

modifications (95). By way of comparison, it is reasonable to

surmise that histone modifications may synergistically regulate

gene expression with DNA methylation, such as histone

modifications and DNA methylation synergistically regulating

the expression of UGT1A1 in the kidney (16).

Studies show that there are significant gender differences in

disease occurrence. The mechanism underlying these

phenomena is probably related to differences in the regulation

of gene expression, especially that related to sex hormones (96).

Some scientists have studied the relationship between estrogen

receptor a (ERa) and the sex-specific expression of UGT1As.

Studies have shown that ERa binds to the xenobiotic response

element (XRE) of UGT1As by recruiting histone deacetylases 1

and 2, thus significantly inhibiting the transcription of UGT1A

(97). This indicates that chromatin remodeling induced by

histone modifications is involved in the sex differential

expression of UGT1As.
TABLE 3 Relationship between expression of UGTs and hormone metabolism.

UGTs Expression Affecting
hormones

Specific Mechanisms Reference

UGT1A1 (high) Estrogen Involved in estrogen conjugating and elimination (61)

UGT1A1*28 pure
mutation

Estrogen Reduce the risk of bone loss and osteoporosis in postmenopausal women (61)

UGT1A7 (high) Estrogen, Catechol
estrogen

Participate in their glucuronidation and promote their metabolism (65)

UGT1A8 (low) Estrogen Causes estrogen build-up in the body and increased cell damage (65)

UGT2B11 (high) Androgen Catalyzing the glucuronidation of androgens (75)

UGT2B11 (high) Steroid hormones Participates in glucuronidation of steroid hormones and promotes the excretion of toxic
substances

(87)

UGT2B15 (high) Androgens Involving in the inactivation of testosterone and dihydrotestosterone (36)

UGT2B17 (high) Androgens Involving in the inactivation of testosterone and dihydrotestosterone (36)

UGT2B28 (high) Estradiol, Androstenediol Affects sex hormone metabolism, which in turn interferes with HBV replication (34, 88)

UGT2B28 (high) Androgen Altered testosterone dihydrotestosterone levels may predict prostate cancer (89)

UGT2B28 (high) Bile acids Explain the correlation between bilirubin levels and patients after heavy alcohol
consumption

(89)

UGT3A1 (high) Ursodeoxycholic acid Participates in the metabolism of ursodeoxycholic acid and catalyzes its detoxification (39)

UGT8 (high) Bile acids Maintenance of bile acid homeostasis and signaling (42)
f

* is the allelic variation of UGT gene.
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In summary, studies confirm that histone modifications do

play a crucial role in UGTs gene expression and that UGTs

expression is clearly regulated by DNA methylation. However,

the current understanding of the epigenetic mechanism of UGTs

is very limited and further studies are needed to elucidate the

association between other isoforms of UGTs and epigenetics.
4.2 Transcriptional regulation

The promoter upstream of UGTs, as well as the enhancer,

comprise the sites of transcription factor binding that induce

and regulate UGTs expression. The regulation of UGTs by

transcription factors varies in different tissues, and in the liver

UGTs expression is regulated by the transcription factors HNF1

and HNF4, PXR, CAR, PPARa, and the Ah receptor (AhR) (17).
It has been shown that HNF1 is able to interact with CAR, PXR,

AhR, and GR as a regulator essential for their promotion of

UGT1A1 expression, while HNF4 can further reduce UGT1A1

expression in vivo by inhibiting the expression of these receptors.

AhR is expressed in almost all UGT1 members and in the

nucleus by binding to ARTN and promoting HSP90

dissociation from AhR and binding to XRE located in the

promoter of its target gene, thereby promoting the expression

of UGT family members and thus stimulating their

glucuronidation ability. Nrf2 also regulates UGTs expression

through binding to ARE. PXR and CAR can be involved in

cholesterol metabolism and it has been shown that they are

abundantly expressed in the liver as nuclear receptors, and that

UGTs are their effective target genes. They can regulate their

own activity in a cell cycle-dependent manner, thus affecting the

expression of UGT family members. They can also be activated

by a variety of anti-lipid drugs, which in turn promote UGTs

expression, facilitating drug glucuronidation, reducing drug

toxicity, and decreasing damage to the organism (98). GR may

be synergistically involved when UGT1A1 is involved in the

metabolism of exogenous substances, whereas CAR/PXR

regulates UGT1A1 expression and influences the regulation of

exogenous responses by UGT1A1 (98, 99). The regulators of

UGT expression form a feedback loop with UGTs substrates. For

example, UGT1A1 promotes the glucuronidation of bile acids,

facilitating their metabolism in the body and reducing bile acid

accumulation in the body. Bile acids in the body can also act on

the transcription factors PXR, CAR, and AhR of UGTs to

stimulate their activity and further promote the expression of

UGT. The same feedback loop also occurs between hepatotoxic

bile acids, UGT2B4, UGT2B7, and FXP, PPARa; between some

eicosanoids, PPARa and UGTs; and between dietary

polyphenols, UGTs and Ah receptors, which would provide a

new basis for further investigation of the characteristics of UGTs

action on substrates. However, the interactions between UGTs

transcription factors in the loop are unclear that still need to be

further explored (100).
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4.3 Post-transcriptional
regulation – MicroRNA

MiRNAs are endogenous non-coding RNAs consisting of

19-25 nucleotides that regulate gene expression by translational

repression or degradation of mRNA through incomplete base

pairing with the target mRNA (101). Growing evidence shows

that miRNAs play a role in essential cellular functions and, as

such, abnormal miRNA regulation is associated with the

development and progression of a wide range of diseases.

Studies have confirmed that mir-491-3p binds to the 3’UTR

of UGT1A, and that its overexpression can significantly inhibit

the mRNA levels of UGT1A1, UGT1A3, and UGT1A6. In

contrast, inhibition of mir-491-3p expression leads to an

increase in UGT1A mRNA level and activity (18). Similarly,

mir-141-3p downregulated the mRNA expression and activity of

UGT1A1 and UGT1A6 in LS180 and human hepatocytes (19).

This indicates that both mir-491-3p and mir-141-3p are among

the factors regulating the expression of UGT1A in the liver. It

was also found that miR-216-5p downregulated the expression

of UGT2B4, UGT2B10, and UGT2B15, and luciferase assays

showed that miR-216b-5p bound to the MRE on the 3’UTR of

UGT2B7, UGT2B4, and UGT2B10 (102). Similarly, miR-135a

and miR-410 downregulated UGT2B4 expression in HepG2 and

Huh-7 cells by binding the 3’UTR, and miR-3664 downregulated

UGT2B7 expression by binding the 3’UTR (33).

In addition, miRNAs can also regulate the UGTs expression

profile through indirect mechanisms. It was found that the

expression level of mir-375 in the low UGT1A activity group was

significantly higher than that in the high UGT1A activity group. At

the same time, it was found that the binding site of differentially

expressed mir-375 was not on the UGT1A 3’UTR, but on the AhR

mRNA. This is a transcription factor that has been clearly shown to

regulate UGT1As. Similarly, overexpression of mir-137 in LS180

cells decreased the expression of AhR target genes UGT1A1 and

UGT1A6. Thus, miR-137 andmiR-375 can indirectly downregulate

the expression and activity of UGT1A1 by inhibiting the expression

of the transcription factor AhR (20).

The expression of miRNAs often differs markedly between

healthy individuals and patients, and aberrant regulation of

miRNAs is closely associated with disease, further making them a

focus of biomarker research (103). UGT1A1 plays a crucial role in

the metabolism of ketamine in vivo, while mir-548D-5p mainly

binds to the 3’UTR of UGT1A1 and inhibits the expression of

UGT1A1 mRNA and protein in hepatocytes. Based on this, it was

found that in patients with low ketamine treatment efficacy, the low

expression of mir-548D-5p led to high UGT1A1 activity and high

level of glucuronidation in hepatocytes, thereby accelerating the

metabolic clearance of ketamine drugs and reducing the therapeutic

effect (104). Similarly, in patients with hepatocellular carcinoma

treated with sorafenib after surgery, those with good prognosis had

high UGT1A9 expression. Gene monitoring assays confirmed a

negative post-transcriptional regulation of UGT1A9 expression by
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miR-200a/-183, with low levels of miR-200a/-183 suggesting high

levels of UGT1A9, thereby increasing sorafenib b-diglyceride
formation in HCC and enhancing drug efficacy (105). miRNA

regulation of UGT expression and activity also plays an important

role in tumor development. Several groups have reported the

importance of miR-376c in downregulating UGT2B15 and

UGT2B17 in prostate cancer. Luciferase assays showed that miR-

367c directly binds to the 3’UTR of UGT2B15 and UGT2B17, and

that overexpression of miR-376c downregulated UGT2B15 and

UGT2B17, further reducing testosterone and androgen

glucuronidation in prostate adenocarcinoma cells in response to

elevated residual androgen levels in the organism. Prostate cancer

cell proliferation was enhanced (36, 106).

To better understand the post-transcriptional regulation of

UGTs, more in-depth and comprehensive studies targeting

miRNAs are needed (Figure 4).
4.4 Post-translational modifications

The only post-translational modifications of UGTs are N-

linked glycosylation and phosphorylation (21). The post-

translational modifications of UGT1A6, 1A9, 2B7, 2B15, and
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2B17 include glycosylation. N-linked glycosylation plays an

important role in the correct folding of these proteins and

preservation of enzymatic activity and can also affect the

interaction of UGTs with other proteins of the endoplasmic

reticulum (21, 22). Owens et al. found that the phosphorylation

regulation with Protein kinase Ca and Src kinase as the core

plays a key role in maintaining the activity levels of UGT1A7,

UGT2B7, and UGT2B15. In addition, mutations in the predicted

site of PKC and the Src site likewise greatly reduce enzyme

activity, together elucidating the kinases and mechanisms

involved in UGTs phosphorylation (107, 108). In summary,

the complex pattern of glycosylation and phosphorylation

regulation in the organism is necessary for homeostasis. The

phosphorylation of UGT2B is tyrosine-dependent, and it has

been shown that mutations in the phosphorylation sites of

UGT1A7, UGT1A10, UGT2B7, and UGT2B15 reduce the

activity of these enzymes. The optimal activity of UGTs is

maintained by phosphorylation (21, 22).
4.5 Involvement in protein–protein
interactions

UGTs family proteins can interact with proteins of the same

isoform and also with proteins of different isoforms. Interactions

between UTG isoforms affect their activity (21, 23). UGT1A1 is

able to interact with UGT1A3, UGT1A4, UGT1A6, UGT1A7,

UGT1A8, and UGT1A9, and the interaction of UGT1A1, 1A9,

and 2B7 affects enzyme activity and also alters their

regioselectivity for substrates (22). In patients with

hyperbilirubinemia with low UGT1A1 activity, UGT1A1

enhances the metabolism of UGT1A9 for the anticancer drug

sorafenib (21, 109). In vivo UGT2B7 activity decreases and the

metabolism of its specific substrate isoproterenol by UGT1A9 is

reduced (21). The activity of UGT1A4, UGT2B4, and UGT2B7 is

also affected by the inhibition of UGT1A9 expression (21, 110).

The effect of UGT1A4 and UGT1A6 on UGT1A1 activity upon

their interaction with UGT1A1 depends on the substrate on

which they act (111). The identical isoforms UGT2B4, UGT2B7,

and UGT2B17 can also interact. Their interaction mostly affects

some of their specific substrates and is influenced by cross splicing

and genetic metabolism (112).

When bound to UGT1A1, UGT1A1 and UGT1A7,

CYP3A4 is able to promote the glucuronidation of these

UGTs to their substrates and accelerate the rate of reaction

between them (113). In prostate cancer, UGT2B17 can interact

with the kinase c-Src, which is associated with the ability of c-

Src to activate the receptors of various steroid hormones (114).

UGT1A can generate its isoform protein UGT1A_i2s through

alternative splicing, and in colon cancer cells UGT1A_i2s can

interact with PKM2 to affect cellular energy levels, redox

homeostasis and proliferative (115). And more importantly

UGT1A_i2s can weaken the scavenging activity of catalase and
FIGURE 4

Summary of the targets of miRNAs associated with UGTs.
miRNAs regulate gene expression by translational repression or
degradation of mRNAs through incomplete base pairing with
target mRNAs. By summarizing the direct regulatory role of
miRNAs, their indirect regulatory role and their role in drug
metabolism and tumor progression, the most important UGTs
targets are listed here.
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peroxidase by interacting with them (116).UGT8 can interact

in the endoplasmic reticulum with SLC35A2 to affect the

balance between endoplasmic reticulum-localized lipid

galactose and Golgi-localized protein galactose reactions.

Furthermore, in the endoplasmic reticulum UGT8 also binds

to the sigma-1 receptor (Sig-1R), and Sig-1R knockdown

prolongs the lifespan and enhances the activity of UGT8 in

the endoplasmic reticulum (23). UGT also interacts with

microsomal proteins such as epoxide hydrolase 1,

carboxylesterase 1, alcohol dehydrogenase and glutathione S-

transferase, but the effects of these on the organism need

further study (21–23) (Figure 5).
5 Inhibitors and inducers of UGTs

This review also focuses on the regulation of UGTs in cells.

Thus, we want to explore whether there are clear drugs that can

regulate UGTs. According to their effects on the expression and

activity of UGTs, they were divided into two parts: inducers and

inhibitors, and further clarified according to their drug types.
5.1 Inhibitors of UGTs

5.1.1 Histone deacetylase inhibitors
Belinostat, a Histone deacetylase inhibitor, inhibits UGT1A1

in a dose-dependent manner, resulting in reduced elimination of

SN-38, the active metabolite of irinotecan.Therefore, the efficacy
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can be enhanced in the small dose and will lead to severe drug

toxicity at high doses (117).

5.1.2 Tyrosine kinase inhibitors
It has been reported that many tyrosine kinase inhibitors

have lower IC50 values than their clinical steady-state maximum

concentrations in UGT1A1 inhibition assays in vitro, in contrast

showing a higher incidence of hyperbilirubinemia in vivo

experiments. It is concluded that UGT1A1-mediated

inhibition of glucuronidation plays an important role (118).

5.1.3 New uses for traditional medicines
Cao et al. found that zoledronic acid, a direct inhibitor of

UGT8, effectively blocked the production of two downstream

metabolites in the thiosemicarbazone biosynthetic pathway in a

concentration-dependent manner, while significantly inhibiting

the migration and invasion of breast cancer cells. These studies

demonstrate that UGT8 is a potentially valuable target for tumor

therapy (27, 119).
5.2 Inducers of UGTs

Studies have shown that estrogen upregulated UGT2B15

mRNA levels in a time-dependent and dose-dependent manner.

Estrogen induced upregulation of UGT2B15 feedback regulate

estrogen and androgen concentrations. As a consequence,

estrogen regulate signaling in cancer cells and further exert

regulatory functions (120) (Table 4).
FIGURE 5

Effects of UGTs interacting with isotypic or heterotypic proteins on their function. UGTs can interact with proteins of the same isoform and
different isoforms and the activity of UGTs will be altered and consequently the metabolism and capacity of the substrate will be altered.
Through protein interactions, there are members of the UGTs family whose regioselectivity for substrates is also altered, and there are also
interactions of UGTs with other proteins that can also localise the site of biochemical reactions. The figure lists which proteins UGTs can
interact with, as well as predicting the way in which some of these proteins interact with each other.
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6 Conclusions

The exploration of the connection between UGTs and cancer

and the 22 recognized UGTs encoded by genes contained in the

human genome provides basic information regarding the functional

diversity of UGTs. The expression of UGTs is either high or low in

different cancer types, and there are different prognostic

manifestations in patients with different cancer types. The

underlying mechanisms leading to the progression of such

different cancers need to be studied and summarized in depth.

Therefore, it is uncertain if UGTs have a positive or negative impact

on cancer.

We can only hypothesize that an organism’s biological diversity

may have various effects on cancer progression as more research

shows that different UGTs in organisms alter their biological

functions. For example, UGTs genes generate diverse protein

variants through selective splicing. Gene splicing can be

dynamically controlled since it is typically tissue-specific and can

be quickly adjusted to the needs of cancer cell proliferation.

Dysregulation of UGTs splicing may affect the regulation of tiny

signaling molecules that increase the risk or progression of cancer

because selective splicing dysregulation is a defining characteristic of

cancer. Therefore, predicting the mechanisms affecting

tumorigenesis during UGTs gene expression (including selective

shearing, transcriptional, and post-transcriptional regulation) will

provide new directions for early clinical tumor diagnosis

and prevention.

In recent years, the investigation of tumor metabolism has

focused heavily on the impact of UGTs on the pathways for glucose

and lipid metabolism. We suggest that the mechanism may be

related to UGTs and multiple non-UGTs protein interactions. The
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proteomics-identified UGTs-interacting proteins have an impact on

glycolysis/glycogenesis and fatty acid breakdown. The observation

that several UGTs conjugate various lipids, such as saturated fats,

inflammatory cytokines, prostaglandins, citronellal, ceramides,

diacylcyclohexanol, and triglycerides, is consistent with reports on

the interaction of UGTs with lipid metabolism proteins, which

suggest that they may have a broad role in basal lipid metabolism.

As a component of the homeostatic system, UGTs may also control

other pathways involved in the synthesis and utilization of UDP

carbohydrates by protein–protein interactions. We presented how

UGTs affect cancer metabolism based on the existing literature. If

UGTs affect cancer development through other pathways is

unknown to us.
7 Future perspectives

As we mentioned above, the expression of UGTs varies

among different cancers at different stages of progression.

Abnormal UGTs expression undoubtedly affect the cellular

response to endogenous or exogenous factors, and influence

the cancer risk and progression of commonmalignancies, as well

as their drug response. Therefore, early monitoring of expression

of UGTs in vivo can provide a better understanding of the state

of tumorigenesis and progression, which can provide new early

diagnostic options for UGTs-related cancers. Such studies

include monitoring UGTs mRNA and protein levels in

different cancers and at different stages of cancer. And, the

differences in UGTs expression in people in healthy and disease

states should be considered. This would be a new means of early

diagnosis of cancer (Figure 6A).
TABLE 4 Summary of inhibitors and inducers of UGTs.

Name or type of the drugs Object of
action

Mode of action Effect Reference

Histone deacetylase inhibitor—
Belinostat

UGT1A1 Inhibit UGT1A1 activity Induce adverse drug reactions (117)

Antiretroviral protease inhibitor—
Atazanavir

UGT1A1 Inhibit UGT1A1 activity Hyperbilirubinemia and Jaundice (121)

Tyrosine kinase inhibitor—
Nilotinib、Dabrafenib

UGT1A1、A7、
A8、A9

Inhibit UGT1A activity Increased risk of liver damage (122, 123)

Chinese herbal—Ginseng saponin
Rc

UGT1A9 Inhibit UGT1A9 activity Not quite clear (124)

Chinese herbal—Licochalcone A Broad spectrum
inhibition

Inhibit UGT1A、2B activity
and expression

Induce adverse drug reactions (125)

Zoledronic acid UGT8 Inhibit formation of
intermediate products

Inhibit the migration and
invasion of breast cancer

(38, 119)

Estrogen UGT2B15 Induce UGT2B15 expression Regulate sex hormone concentrations and tumor
signal transduction pathways

(120)

Neobavaisoflavone 、Isoflavone
puerarin

UGT1A1 Induce UGT1A1 expression Reduce therapeutic- related side effects (126, 127)
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Currently, the development of selective UGTs inhibitors is in

its infancy. Since endogenous and acquired drug glucuronidation

is a new form of chemoresistance that is not easily overcome.

Therefore, determining the increased or decreased expression of

UGTs in specific cancers may help predict which class of drugs

will experience glucuronidation. This will potentially help direct

the selection of appropriate anti-cancer drugs. For cancer therapy,

approaches that directly or indirectly target UGTs (e.g., UGT1A7,

UGT1A8, UGT1A9, UGT8) may ultimately prove useful in

slowing cancer progression, increasing drug-related responses,

avoiding drug resistance, and ultimately improving patient

prognosis. This would be a new cancer therapy option to

consider (Figure 6B).

UGTs are highly expressed in tissues related to drug

metabolism, promote drug metabolism in vivo through

glucuronidation, and play a critical role in the metabolism of

some antitumor drugs, thereby improving drug function and

reducing drug toxicity. In some cancers, the deficiency of UGTs

(e.g., UGT1A1, UGT1A8, UGT2B17, UGT1A1, UGT1A7) can

lead to the development of tumor malignancy. Therefore,

exogenous supplementation of UGTs is beneficial for cancer

therapy. This would be a therapeutic modality that would help

improve patient prognosis (Figure 6C).
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FIGURE 6

The possible directions of UGTs-related cancer therapy prospects. (A) By detecting the expression of UGTs to do early diagnosis of cancer; (B)
Through the exploration of beneficial and safe UGT-targeted drugs with promising pharmaceutical applications to prevent and therapeutic
UGTs-related cancers; (C) By injecting appropriate volumes of UGTs in cancer patients who were deficient in UGTs to supplement the deficient
UGTs in the body.
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