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MRI-linear accelerator (MR-linac) devices have been introduced into clinical practice

in recent years and have enabled MR-guided adaptive radiation therapy (MRgART).

However, by accounting for anatomical changes throughout radiation therapy (RT)

and delivering different treatment plans at each fraction, adaptive radiation therapy

(ART) highlights several challenges in terms of calculating the total delivered dose.

Dose accumulation strategies—which typically involve deformable image registration

between planning images, deformable dose mapping, and voxel-wise dose

summation—can be employed for ART to estimate the delivered dose. In MRgART,

plan adaptation on MRI instead of CT necessitates additional considerations in the

dose accumulation process because MRI pixel values do not contain the quantitative

information used for dose calculation. In this review, we discuss considerations for

dose accumulation specific to MRgART and in relation to current MR-linac clinical

workflows. We present a general dose accumulation framework for MRgART and

discuss relevant quality assurance criteria. Finally, we highlight the clinical importance

of dose accumulation in the ART era as well as the possible ways in which dose

accumulation can transform clinical practice and improve our ability to deliver

personalized RT.

KEYWORDS

dose accumulation, MR-guided radiation therapy, adaptive radiation therapy, deformable
image registration, MR-linac
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1 Introduction

In the current era of image-guided radiation therapy (RT), many

technological advances in on-board imaging systems and treatment

delivery techniques have enabled the delivery of highly conformal RT

(1, 2). One major development in recent years has been the

integration of magnetic resonance imaging (MRI) with linear

accelerators (linacs) to form hybrid systems known as MR-linacs

(3–5). MRI offers enhanced visualization of both tumor and normal

tissue structures compared to other on-board imaging systems such as

kV or MV planar x-ray, computed tomography (CT), and cone beam

CT (6). The ability to clearly visualize the anatomy during patient

setup has accelerated the development of on-line adaptive RT (ART),

in which a new treatment plan is created each day based on the

patient’s daily setup image while the patient is on the treatment table

(7–9).

Daily MR-guided ART (MRgART) offers many dosimetric

advantages over the traditional single-plan RT workflow, including

the ability to conform the high-dose region to the tumor as the

anatomy changes throughout the course of RT (9, 10). However,

MRgART brings to the forefront a number of challenges in terms of

calculating and interpreting the delivered dose that have largely been

ignored in the past. In contrast to conventional RT, where dose

estimates are calculated on a single pre-treatment simulation image,

ART uses multiple plans created on longitudinal images reflecting

anatomical variations throughout the treatment course. Currently,

most clinical implementations of ART simply create new plans

meeting the original treatment constraints and do not use advanced

dose accumulation strategies to sum the doses from individual plans

and account for these anatomical changes. Without using deformable

image registration to truly sum the dose, the contributions of

individual plans cannot be interpreted in the context of the total

delivered dose and statements regarding over- or under-dosage of

tissues cannot be accurately made. The ability to accurately quantify

delivered dose allows clinicians to evaluate whether dosimetric

criteria are being met in aggregate over multiple fractions and

enables adaptation throughout RT to ensure that therapeutic goals

are achieved. Dose accumulation also allows us to relate delivered

dose to clinical outcomes when evaluating the clinical effectiveness of

any ART intervention. In MRgART, plan adaptation on MRI instead

of CT adds an additional layer of complexity to the dose accumulation

process because the pixel values of MR images do not contain electron

density information needed for dose calculation and are subject to

signal intensity fluctuations depending on coil setup, magnetic field

inhomogeneities, and other factors. Currently, a wide range of

research-grade solutions are available for dose accumulation (11–

16), but few have been thoroughly validated for clinical use and/or

implemented into commercial systems, and none have been

specifically optimized for MRgART.

Thus, the development of a robust and accurate dose

accumulation solution for MRgART is a subject of active research,

particularly within the MR-Linac Consortium (17). In this article, we

review and discuss the current status, practical challenges, and

potential role of dose accumulation for MRgART and outline a

framework for quality assurance of proposed solutions.
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2 Definition and clinical relevance of
dose accumulation

“Dose accumulation” is a term that encompasses a range of

techniques for summing multiple RT dose distributions for a single

patient (18, 19). The goal is to arrive at a better estimate of the

delivered dose compared to standard RT practices, in which a single

plan is generated and the dose is calculated only on a static pre-

treatment representation of the anatomy. Dose distributions in

conventional RT are modeled on the often-flawed assumption that

the tumor and surrounding anatomy remain static throughout the

course of RT. While it is well understood that the pre-treatment

planned dose is not equal to the true delivered dose due to both RT-

induced anatomical changes over time and positional uncertainties

during each RT fraction, our current treatment plan acceptability

criteria and clinical outcome models are based only on the planned

dose (19). Dose accumulation can help us arrive at a more realistic

depiction of the delivered dose, but uncertainties in the dose

accumulation process make the calculated dose distributions, at

best, estimates of the delivered dose. Nonetheless, dose

accumulation remains a vital mechanism for quantifying delivered

dose and evaluating the benefit of various ART strategies used in

clinical practice.

Dose accumulation is most often considered in the context of ART,

where adaptive plans are generated on either on-board setup images (i.e.

on-line ART) or simulation images acquired throughout RT (i.e. off-line

ART). In a general dose accumulation pipeline, the dose distribution for

each plan is scaled to the number of fractions delivered, the planning

images are co-registered, and the dose distributions are then mapped

according to the estimated displacements and added voxel-by-voxel (12,

16, 20). Dose accumulation most often utilizes deformable image

registration (DIR), which creates a spatial correspondence between two

images that accounts for anatomical deformations (21). Doses may be

mapped backward onto the pre-treatment anatomy or forward to any

time point during treatment, depending on the intended use case for the

accumulated dose. Furthermore, dose accumulation techniques may be

classified as either inter-fraction or intra-fraction approaches. Inter-

fraction dose accumulation uses only the setup image at each fraction

(12, 20, 22, 23), while intra-fraction methods account for motion during

beam delivery using continuous or periodic motion monitoring imaging

such as cine MRI (11, 14). Despite the broad range of methods to

perform dose accumulation, we will limit our discussions in this paper to

inter-fraction DIR-based methods, as, presumably, any multi-fraction

treatment regimen would profit from accurate serial dose estimation.

Finally, dose accumulation can be performed either as dose back

projection onto the pre-treatment anatomy or forward projection onto

the anatomy at any time during or after RT. Both scenarios will be

discussed in this article, but the general steps of a dose accumulation

workflow remain the same.

Dose accumulation is valuable from a clinical standpoint for a

number of reasons, both during and after RT. MRgART allows

physicians to set complex goals for treatment personalized for each

individual patient, and dose accumulation helps us determine

whether the intended goals are being met. These intentions may

include sparing dose to specific organs at risk (OARs), escalating dose
frontiersin.org
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to target structures, or modifying target volumes as the tumor shrinks

to spare tumor-adjacent OARs (24). During a course of treatment, the

ability to accumulate dose informs clinicians as to whether or not the

daily dose distributions are representative of the cumulative dose. For

example, if the dose to an OAR exceeds tolerance on one day, it is

clinically relevant to know whether the cumulative dose is in excess, as

this may inform the optimization strategy for subsequent fractions

(25–27). Alternatively, if OAR doses are sufficiently low after a certain

number of fractions, the physician may choose to increase the target

dose or add an extra fraction based on individualized treatment

response (28–30). When any adaptive modification is made during

a course of RT without using a validated dose accumulation method

to accurately quantify total delivered dose, potential risks to the

patient include overdosing OARs and underdosing target volumes

(thus increasing the risk of incomplete treatment response or cancer

recurrence). Dose accumulation can enable us to evaluate the safety

and efficacy of various ART strategies, which will allow clinicians to

personalize RT for each patient while maintaining our field’s

commitment to safe, evidence-based treatment approaches.

Dose accumulation may also lead to opportunities to reevaluate

normal tissue complication probability (NTCP) and tumor control

probability (TCP) models (31–35). The existing dose-response

models are largely based on doses calculated on the pre-treatment

simulation anatomy, which is often assumed to be static. If we can

more accurately quantify the delivered dose after the conclusion of RT

in a systematic way, there is an opportunity to refine the current

NTCP and TCP models and develop a novel set of planning

constraints for the era of ART and personalized medicine (18, 36).
3 Considerations for dose
accumulation with on-line MR-guided
adaptive RT

There are currently twoMR-linac systems commercially available:

the Elekta Unity (Elekta AB; Stockholm, Sweden) and the ViewRay

MRIdian (ViewRay, Inc.; Cleveland, OH, USA). The Unity system

combines a modified 1.5 T Philips diagnostic MRI scanner (Philips

Healthcare; Best, Netherlands) with a 7 MV flattening filter-free (FFF)

linac, while the MRIdian system uses a 0.35 T MRI with a 6 MV FFF

linac. Although the specific workflows of the two systems differ, both

systems are capable of on-line ART by registering a prior reference

(i.e. planning) image to the daily setup image and adapting the

reference plan. The MRIdian workflow offers the choice between

adapting the reference plan to the current anatomy and delivering the

reference plan without modification (8). After the reference and setup

images are registered, the user views the predicted dose of the

reference plan on the current anatomy and decides whether to treat

with the reference plan or adapt. In contrast, the Unity workflow

provides two workflow options: Adapt to Position (ATP) and Adapt

to Shape (ATS) (9). ATP virtually accounts for the isocenter shift by

rigidly registering the reference and setup images but recalculates the

dose on the reference image (which can be either a CT or MRI), while

ATS involves a full plan adaptation on the setup image (MRI). In

either workflow, the original multileaf collimator segments and
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monitor units can be kept the same to deliver the reference plan

without modification.

Although the end-to-end MRgART process differs among MR-

linac platforms, these workflows can be summarized as three general

classes of solutions: i) treat with the initial plan (e.g. ViewRay

MRIdian workflow or Elekta Unity workflows), ii) shift the

reference plan to a new position (virtual isocenter shift) and

recalculate the dose on the reference plan anatomy (e.g. Elekta

Unity ATP workflow), and iii) perform a full re-optimization of the

treatment plan on the anatomy of the day (e.g. ViewRay MRIdian

workflow or Elekta Unity ATS workflow).

In the absence of commercially available dose accumulation tools

that can be run in parallel with the on-line MRgART workflows, there

is currently no standardized mechanism for summing and tracking

delivered dose over the course of RT. In this section, we will outline a

general framework for a potential dose accumulation process for on-

line MRgART and discuss considerations and challenges for

each step.

A possible workflow for an inter-fraction DIR-based dose

accumulation for on-line MRgART would include the following

four steps:
1. Autosegmentation of daily setup images for electron density

mapping (optional)

2. Recalculation of adaptive plan doses on daily images (optional)

3. DIR between daily images & reference image

4. Deformable dose mapping and dose summation
For each step of the general framework (Figure 1), there may be

multiple techniques that may be used to accomplish the same goal,

each of which must be thoroughly evaluated for each anatomical site

and application. (Depending on the on-line adaptive workflow used,

steps 1 and 2 may or may not be necessary; they are most relevant in a

virtual isocenter shift workflow where adaptive plan doses are

calculated on the reference image rather than daily image. In this

case, the delivered dose can be calculated on the daily setup image by

segmenting the image to produce an electron density map and

recalculating the dose.) We present many of the common

approaches that are being investigated for each dose accumulation

step as well as considerations for each technique in the realm

of MRgART.
3.1 Step 1: Autosegmentation of daily
setup images for electron density
mapping (optional)

To generate an adaptive treatment plan on MRI, the target

volume(s) and OARs must be segmented on the image used for

dose calculation to create planning constraints and to approximate an

electron density map for dose calculation on MRI. Depending on the

on-line MRgART workflow used, an autosegmentation step may be

necessary for electron density mapping to accurately reconstruct the

delivered dose on the daily images prior to implementing a DIR-based

dose accumulation approach. This step is particularly relevant in on-
frontiersin.org
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line workflows where the daily image is not contoured and the dose is

calculated on the reference image rather than the daily image (e.g.

virtual isocenter shift workflow) (9). Otherwise, if segmentation is

done during the on-line workflow, this step would not be necessary.

Several autosegmentation methods are appropriate for MRgART,

including DIR-based contour propagation from the reference image

as well as atlas-based and deep learning approaches. In the first

method, DIR is used to generate a spatial correspondence between the

daily image and the reference image or some other prior image, and

the contours are mapped according to the established transformation

(37). The quality of the segmentations depends on the DIR algorithm

performance; specific considerations for DIR with MRgART are

discussed in Step 3 below.

Next, atlas-based autosegmentation uses a small collection of

contoured image sets (i.e. “atlases”) which serve as templates for

contouring the image set of interest (i.e. “patient”) (38). Each atlas is

aligned with the patient, and contours are propagated via DIR to

produce one structure set per atlas on the patient. These intermediate

results are combined into a final structure set using either a method to

combine all structure sets such as a STAPLE algorithm (38–40) or a

voting mechanism which selects the best contour for each structure

such as Majority Vote (38, 41) or Random Forest (42, 43). Atlas-based

approaches have historically used atlases from other patients (i.e.
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“inter-patient”), but serial imaging for on-line ART introduces the

possibility of using a patient’s own images from prior fractions as

atlases (i.e. “intra-patient”) (44). Using multiple intra-patient atlases

has the potential to improve performance over both inter-patient

atlas-based approaches and intra-patient DIR from the reference plan

image—especially for later fractions when anatomical changes from

the simulation image may be quite large—but requires further

validation. Intra-patient methods can also produce comparable

performance to inter-patient methods with fewer atlases, which

speeds up execution time considerably.

Another promising autosegmentation approach, deep learning,

uses a large number of contoured image sets to train a computer

algorithm called a deep neural network to contour unlabeled input

images (45–47). Most deep learning autosegmentation methods use a

convolutional neural network architecture such as U-Net (48), which

is formed by stacking multiple hidden layers, including convolutional

layers, that each learn a feature of the training data. After a model is

trained and validated, it can be used to contour unseen input images

at rapid speeds. While atlas-based approaches typically reach peak

performance using 5-15 atlases (49–52), deep learning generally

requires dozens to hundreds of images as training data for optimal

performance (53, 54). As more patients are treated on MR-linac

devices with standardized MR sequences, we can leverage vendor-
A B

DC

FIGURE 1

The proposed dose accumulation framework for MRgART. (A) Step 1 (virtual isocenter shift workflow only): Because the virtual isocenter shift workflow
calculates dose on the reference image rather than the daily setup MRI, the daily images are not contoured during the treatment and must be
segmented off-line. (B) Step 2 (virtual isocenter shift workflow only): The doses for each fraction must be recalculated on the daily setup images off-line
to reconstruct the delivered dose at each fraction. (C) Step 3 (all workflows): The geometric correspondence between each daily image and the
reference image set (i.e. simulation or any other established time point) is created via deformable image registration (DIR) and represented by a
deformation vector field (DVF). (D) Step 4 (all workflows): The DVFs are applied to the corresponding dose distributions to map the doses onto the
reference image set, then the doses are summed to calculate the final accumulated dose. (This figure describes a general workflow where a
transformation is established that links the daily image to the reference image through a DVF for the purpose of dose mapping. The details of the
implementation depend on the DIR algorithm and mechanism for mapping the dose. The DVFs in this figure are demonstrating the direction of the
mapping from the daily images into the reference frame. Whether the dose is “pushed” or “pulled” and whether an inverse DVF is required depend on the
implementation of the algorithm created by the user).
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supported data repositories such as the MOMENTUM study (55) to

aggregate curated, high-quality imaging data in a coordinated,

efficient manner to train these models (56).

There are a few nuances to autosegmentation on MR rather than

CT. MR demonstrates enhanced soft tissue contrast, rendering many

OAR boundaries more clearly visible on MR than on CT and thus

potentially improving the quality of autosegmentation (57). However,

unlike CT, pixel values in T1- and T2-weighted MRIs are not

inherently quantitative and are subject to variations due to coil

positioning, radiofrequency and electronic noise, and magnetic field

inhomogeneities (58–60). The arbitrary pixel value scaling and image

intensity variations may affect the performance of autosegmentation

algorithms, which rely on intensity and/or contrast similarities

between training data/atlases and the image sets to be segmented.

These effects can be minimized on the acquisition side by using

consistent pulse sequence parameters, immobilization, and coil setup

during MRgART and on the post-processing side by performing

image intensity standardization on the images (61, 62). Furthermore,

while one advantage of MR is the wide array of image contrast

mechanisms obtained by using different pulse sequences, each of the

aforementioned autosegmentation techniques is pulse sequence-

specific, meaning that they should be trained and executed on

images with identical pulse sequence parameters for optimal

performance (63, 64). However, aggregating data across different

patients and/or institutions for deep learning models will require

adoption of consistent protocols across sites or the implementation of

data augmentation techniques to generalize trained models to

multiple sequences (65, 66).
3.2 Step 2: Recalculation of adaptive plan
doses on daily images (optional)

Depending on the workflow used, the dose distributions for

adaptive plans may need to be recalculated on the daily setup

image off-line prior to accumulating the doses. Like Step 1, this step

would be required if the dose is calculated on the reference image

rather than the daily setup image during on-line plan adaptation (e.g.

virtual isocenter shift workflow).

Unlike CT, where the pixel values represent physical

measurements of photon attenuation in Hounsfield units (HU) and

are easily converted to relative electron density (ED) maps to calculate

dose, dose calculation on MRI requires approximation of the ED

values for each voxel. Currently, the most common ED

approximation method is called bulk density assignment: for each

structure contoured on the planning CT, the mean ED value of the

structure on CT is assigned to all voxels in the structure onMRI (8, 9).

These values may be overridden with user-defined values when

corrections are needed or if no CT is available in an MR-only RT

workflow. Bulk density assignment has been shown to be accurate

across disease sites, resulting in minimal deviations in dose volume

histogram parameters compared to doses calculated on CT (37–39),

but may not adequately handle largely heterogeneous volumes such as

spinal vertebrae (40), femoral heads (39), or lung (41). An alternative

approach is to deformably register the planning CT into the MR

frame of reference to create an ED map (42, 43). While this method

preserves the heterogeneity of ED values throughout each structure,
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CT-to-MR DIR may have limited accuracy due to the different signal

and contrast characteristics of the two modalities (44, 45), and it will

likely fail in situations with large deformations such as lung collapse.

As researchers move toward MR-only treatment planning,

alternative ED approximation methods are also being explored that

do not require any CT input and would eliminate the need for

segmentation of daily MRIs for ED mapping (46). Synthetic CTs

can be generated directly from MRIs using specialized MR sequences

such as Dixon MRI, which separates signal from fat and water and

enables clusters of voxels to be assigned discrete tissue classes with

associated ED values, similar to the bulk density assignment (47, 48).

Another option is to apply a calibration curve relating MRI signal

intensities to HU values on a voxel-wise basis to generate a synthetic

CT that preserves tissue inhomogeneities (49, 50). This method can be

used directly on the T1- or T2-weighted images used for setup and

plan reoptimization rather than requiring an additional MR sequence.

However, MR pixel values are subject to intensity variations, and

depending on the contrast mechanism of the pulse sequence, the

calibration curve is unlikely to follow a simple linear or logarithmic

fit. Deep learning models may also be trained to generate

heterogeneous synthetic CTs from Dixon or T1- or T2-weighted

MRIs. Several studies have demonstrated excellent performance of

such models (51–54).

It should also be noted that a shift invariance approach, which

involves a simple shift of the dose distribution to account for the

isocenter shift, may be used instead of a full dose recalculation. This

approach has been shown to be a good approximation of the delivered

dose for many deep lying tumors but fails for shallow tumors in the

build-up region and when anatomical changes are substantial

(55, 56).
3.3 Step 3: DIR between daily images &
reference image

Once the dose distributions for each adaptive plan have been

accurately calculated on each daily setup image, the next step is to

establish a geometric transformation between each daily image and

the reference image via DIR. This step of dose accumulation is

required regardless of the on-line MRgART workflow used.

There are several DIR approaches with varying degrees of

complexity, which are summarized in the literature (57–59). Most

implementations of DIR share three main components: 1) a

transformation, or a mathematical model, that establishes the

geometric correspondence between the source and target images; 2)

an objective function, which typically includes a similarity metric

used for evaluating the alignment between the images and a

regularization term to impose constraints on the deformation field;

and 3) an optimization method that optimizes the parameters of the

transformation model to maximize the similarity between the source

and target images under the imposed constraints (57–59). In this

section, we will focus on the first two elements and their implications

for dose accumulation in MR-guided adaptive RT.

A number of transformation models are available for DIR,

including B-spline and several non-parametric models. The B-

spline transformation is a commonly used non-linear parametric

model generated using a weighted sum of a set of spline functions
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defined at a set of control points spaced evenly throughout the source

and target images (21, 57, 60). In contrast, non-parametric models

such as elastic, fluid and optical flow and finite element methods can

generate much more complex transformations to model anatomical

changes (58, 59, 61–64). Unlike B-spline models, which represent the

image deformation using parameters defined at each control point,

non-parametric transformation models are usually represented by

more complex deformation vector fields (DVFs) where the

displacement in all three directions is defined for each individual

image voxel. When selecting a transformation model to use for dose

accumulation, one must consider the expected degree of deformation

in the anatomical site of interest as well as the complexity and

underlying assumptions of the model. This choice is particularly

important for dose accumulation, as the transformation model

impacts the registration accuracy within contrast-devoid regions

and, implicitly, the accuracy of the accumulated dose.

The second component of any registration algorithm is the

similarity metric, which is used to evaluate the alignment between

the registered images throughout successive iterations in the

optimization process. Similarity metrics are classified as either

intensity-based or feature-based (58, 59). Intensity-based metrics

evaluate the alignment of intensity patterns (i.e. gray-scale

information) between the source and target images. Feature-based

metrics use anatomical landmarks such as points, lines, and surfaces

to obtain the correspondence between the source and target images.

The choice of similarity metric depends on the intensity ranges

and modalities of the source and target images. In the context of MR-

guided adaptive RT, intensity-based metrics such as sum of squared

intensity differences (65) and/or cross correlation (66) typically work

well for images of the same modality and intensity range, such as the

daily MRIs, as long as the same MRI pulse sequence is used for setup

at each fraction of a patient’s treatment. Registration across

modalities such as CT-to-MR and registration across different MR

sequences such as T1-to-T2 present a more complex problem due to

intensity inconsistencies between the images. Despite the different

contrast mechanisms and intensity ranges, most of the recently

developed multi-modality registration approaches still use certain

intensity-based metrics such as normalized mutual information (67)

over feature-based metrics. Normalized mutual information is based

on global histogram matching (i.e. the distribution of intensity values

across the entire image). Several alternative approaches have been

proposed for multi-modality registration, including normalized

gradient fields and modality independent descriptors. The

normalized gradient fields metric uses the gradient (i.e. derivative)

of the intensity in each image rather than the image intensities

themselves (68, 69). In the modality independent descriptors

approach, the images are pre-processed into a modality-

independent format that preserves local image feature information

and can be directly compared using established similarity metrics

(70, 71).

While the field of multi-modality DIR has made great progress in

recent years, many of these newer techniques have yet to be

implemented into commercial treatment planning systems for

MRgART. Recent studies have shown that the CT-to-MR

registration currently used for the 1.5T MR-linac workflow

underperforms compared to same-sequence MR-to-MR registration

in both prostate (45) and head and neck cancers (72). This
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discrepancy has implications for daily plan adaptation and dose

accumulation. Many clinics create the reference plan on the CT

simulation, while others acquire a CT for electron density

information but create the reference plan on the MR simulation.

The latter method may improve the quality of the DIR in the on-line

workflow, which will likely reduce the time spent manually editing

contours. For dose accumulation, if doses are mapped back to the pre-

treatment time point for comparison to the reference plan, the DIR

quality may improve if the daily MRIs and daily fraction doses are

registered to the MR simulation image or first fraction MRI rather

than the CT. However, the implementation of state-of-the-art

algorithms may improve the performance of multi-modality image

registration, and rigorous evaluation of both CT-to-MR and MR-to-

MR DIR quality is needed for all organ sites.

In addition to the similarity metric, DIR algorithms must impose

constraints on the deformation field by adding a regularization term

to the objective function. When a regularization term is used, the final

solution (i.e. the estimated deformation field) will be a tradeoff

between maximizing the similarity between the source and target

images and satisfying the constraints. Some examples of constraints

include preserving topology, ensuring a smooth deformation field,

and penalizing non-physical deformations given prior knowledge of

the underlying anatomy (e.g. preventing the warping of rigid

structures such as bones) (59, 73). In anatomical regions with

sliding tissues such as the lung and chest wall, regularization terms

that allow a discontinuity in the DVF can be used (74, 75). Another

constraint with particular relevance to dose accumulation is inverse

consistency, which ensures that the forward and backward

transformations, computed simultaneously, are direct inverse

mappings of one another. Inverse consistency would be an

important consideration if clinicians are interested in evaluating

accumulated dose in both the forward and backward directions.

(See “Interpretation of Accumulated Dose” section for a more

detailed discussion on forward and backward mapping.)

While the myriad of deformable image registration algorithms

enable us to model anatomical changes in a wide range of clinical

scenarios, these algorithms are all based on fundamental assumptions

about the anatomy that do not always hold true throughout a course

of RT. For example, assumptions that the deformations are smooth/

continuous and invertible are violated in scenarios such as organ

sliding and tissue gain/loss. While these assumptions are necessary for

estimating deformations in an anatomically plausible matter, they

also fundamentally limit the ability of DIR to accurately characterize

the true anatomical changes.

An additional consideration for DIR in the context of dose

accumulation for daily MRgART is that image sets from up to

dozens of fractions will need to be registered, but image registration

occurs as a separate operation between only two sets of images. If all

doses are being mapped back to the simulation image, the simplest

options for composing registrations are 1) registering each daily

image to the reference image, or 2) registering each image onto the

previous fraction’s image in a sequential fashion to create a “DVF

chain” (76). The second option is particularly advantageous when

anatomical changes between the beginning and end of the course of

RT are substantial because it minimizes the change between each

image set being registered. However, if the performance of the DIR

algorithm is poor despite the minimal anatomical change from day to
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day, this approach compounds the error throughout the chain of

registrations and dose deformations (76).
3.4 Step 4: Deformable dose mapping and
dose summation

Once the daily image sets are registered, the doses are mapped by

applying the transformations defined by the image registrations to the

dose grids. If the doses of each adaptive plan are scaled to the

prescription dose throughout the entire course of RT, then they

must be scaled down to the dose delivered at each fraction. Finally,

the mapped doses are summed voxel-by-voxel to calculate the

delivered dose distribution. (If large variations exist in the dose

delivered to each structure from day to day, fractionation effects

should also be taken into account using linear quadradic models.)

While this process is, in effect, a simple computational task after

the DVFs between each corresponding image set have been

calculated, the discrete nature of voxels/dose grids and the

deformations occurring between each time point make it infeasible

to assume that the same individual cells are contained within the same

matched voxels from day to day. For this reason, tri-linear

interpolation is often employed: each voxel is divided into sub-

volumes before dose mapping, and the values of the mapped sub-

volumes corresponding to the same voxel on the reference dose grid

are averaged and assigned to that voxel (21, 77, 78). The interpolation

method is fast, which may be highly advantageous in the context of

MRgART when there is a different treatment plan for each fraction.

However, this method is less accurate in steep dose gradients and

treats dose as an imaging voxel intensity rather than a physical

quantity (i.e. energy per unit mass) (79, 80).

It’s important to note that the details of the algorithm that

performs the DIR and dose mapping will specify the direction of

the DVF and whether the dose mapping is done by “pushing” the dose

from the image it’s calculated on to the summed image or “pulling” it.

In many scenarios, one direction of the DVF is sufficient for DIR and

dose mapping, but how that is implemented depends on the specifics

of the algorithm. The combination of the DIR algorithm and dose

mapping mechanism will dictate whether an inverse DVF is required.

While this issue is not unique to MR-guided therapy, no

discussion on dose accumulation would be complete without

mentioning the difficulties in accurately accumulating dose when

tumors or OARs exhibit volumetric changes throughout RT.

Conceptually, one must consider what happens to the dose

delivered to a small volume of tissue if that tissue disappears before

the end of treatment, which routinely occurs for certain tumor types

such as human papillomavirus-positive oropharyngeal cancers (16).

This dilemma is illustrated mathematically by Zhong & Chetty (79),

who demonstrate that simply deformably mapping dose violates the

fundamental physics principle of conservation of energy. Energy/

mass transfer methods have been proposed to account for

conservation of energy, whereby the energy deposited in each voxel

and the mass of each voxel are mapped separately onto the reference

dose grid then divided to calculate the dose (21). The initial

implementations of energy/mass transfer-based dose accumulation

used Monte Carlo methods to simulate the energy deposition in each

voxel (81, 82), which required significant computational power. In
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more recent years, these approaches have been extended to non-

Monte Carlo techniques that can be interfaced with commercial

treatment planning systems (83) and run in real-time (84).

Finally, it is important to remember when designing a dose

accumulation workflow that translation of the couch after the

image acquisition must be incorporated into the dose accumulation

process. The MR-linac on-line treatment adaptation workflows

already account for this through either a physical couch shift

(ViewRay MRIdian) or a virtual isocenter shift (Elekta Unity).

However, if images and doses are exported outside of the closed

system of the MR-linac device and its associated treatment planning

system, one must ensure that the dose accumulation algorithm

accounts for the isocenter shift prior to dose mapping.
4 Validation and quality assurance of
DIR for dose accumulation

4.1 General considerations

To use DIR within the dose accumulation workflow, the employed

DIR algorithms must fulfill particular validation benchmarks and must

be subjected to stringent quality assurance (QA) criteria to ensure

patient safety and the attainment of the therapeutic endpoint. A

distinction has to be made, however, whether the aim is the

commissioning of a DIR solution prior to clinical use or whether the

QA of the estimated deformations at the time of treatment needs to be

ensured. Depending on the situation, different criteria may be

considered in favor of others. For example, criteria which require

known inputs such as expert contours, landmarks and/or deformations

are more suitable for commissioning, whereas QA at the time of

treatment preferably relies on criteria with a higher degree of

automation. In this section, we will briefly describe several classes of

criteria which can be used for this purpose, while, where applicable, also

indicating value ranges for these criteria where DIR algorithms may be

considered reliable. It is important to note, however, that while the

discussed criteria provide a practical starting point for evaluation of

DIR, acceptability criteria for any metric are necessarily driven by

specific application considerations. A summary of the criteria discussed

below and recommended tolerances are provided in Table 1.
4.2 Qualitative criteria

A simple approach for both validation and QA of DIR is visual

inspection of the post-registration alignment of organ boundaries

and/or high-contrast anatomical landmarks (73, 85, 98). This can

typically be performed by the radiation oncologist, physicist, and/or

radiation therapy technologist as soon as the registration step is

completed and can help identify gross potential mis-registrations. For

same-contrast images, this may be complemented by a visualization

of intensity-based maps such as the absolute image difference or

structural similarity (99–101), which contain brighter or darker

voxels, depending on the degree of alignment between the

registered images. However, visual inspection is typically subject to

interpretation, and two registrations can be visually identical while
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having completely different anatomical mappings. While visual

assessment of the DIR result is necessary, it alone is not sufficient,

and therefore additional objective complementary criteria

are required.
4.3 Contour-based criteria

A feasible solution towards the commissioning of DIR is the

evaluation of the algorithm’s capability for aligning organ boundaries.

If a DIR algorithm consistently fails to provide a satisfactory

boundary alignment, then that is a good indicator that its

performance may be insufficient for an accurate dose accumulation.

In this sense, the Dice similarity coefficient (DSC) (73, 102, 103) and

the Jaccard index (103, 104) provide an objective manner of

evaluating an algorithm’s capability for organ boundary alignment.

Using the DSC and the Jaccard index as a DIR validation criterion

requires expert-drawn contours of the same anatomical structure(s)

on the images to be registered for ground truth comparison. The DIR-

estimated deformations are used to map the contour(s), and the two

criteria can be used to evaluate the overlap between the expert-drawn

and the DIR-mapped contour(s). The values of both the DSC and the

Jaccard index range from zero to one, with zero indicating no overlap

and one corresponding with perfect overlap. In the scope of image-

guided radiotherapy, a DIR algorithm that provides consistent DSC

and Jaccard index values of 0.8 – 0.9 is generally considered to be

reliable (73, 85–88). However, the values of the DSC and Jaccard

index depend heavily on the volume of the structure; a large structure

such as brain could have a DSC or Jaccard index close to 1 and a small

structure such as the optic chiasm close to 0 for the same geometrical

distance. Therefore, tolerance values for DSC and Jaccard index

should be based on structure size and cannot be generalized.

In addition to the DSC and the Jaccard index, complementary

criteria such as the Hausdorff distance (HD) (103, 105) and the mean

distance to agreement (MDA) (73, 86, 103) are also recommended for
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inclusion. Instead of evaluating the post-registration contour overlap,

the HD and the MDA are used to compute an actual distance between

the mapped and the expert-drawn contours, providing further

information on the validity of the DIR-estimated deformations in

the vicinity of organ boundaries. Acceptable values for both the HD

and MDA should be within the uncertainty of the contouring process,

typically in the 2 – 3 mm range (73, 85). However, it should be noted

that the HD represents the maximum distance between associated

boundary points in the contours and is therefore more prone to

outliers than the MDA; alternatively, the 95% HD, which reports the

95th percentile of distances between boundary points, can be used

instead to limit the effects of outliers.

As previously stated, criteria such as the DSC, Jaccard index, HD

and/or MDA provide an evaluation of the organ boundary alignment

and/or volume overlap capabilities of DIR algorithms. However, they

are limited in their ability to provide a comprehensive evaluation of

the estimated deformations because they provide no information

about the accuracy within organ boundaries. Moreover, criteria such

as the DSC and the Jaccard index are strongly dependent on the size

of the evaluated contours and may thus lead to an interpretation bias.

On the other hand, it has to be taken into consideration that the MR-

Linac allows for a more accurate definition and delineation of

anatomical structures due to the high soft tissue contrast present in

the MR images. This is a considerable advantage in areas containing a

large number of small anatomical structures (e.g. head and neck), thus

allowing a more consistent evaluation of the DIR algorithm

performance via contour-based criteria.
4.4 Criteria employing known
displacements/deformations

The target registration error (TRE) (73, 106) allows a quantitative

evaluation of a DIR method’s accuracy and precision in any

anatomical region showcasing identifiable anatomical landmarks
TABLE 1 Summary of quality assurance metrics for deformable image registration (DIR) and recommended tolerances.

Metric Tolerance/Ranges Reference

Dice Similarity Coefficient
Structure size-dependent
(~ 0.8 – 0.9)

(73, 85)

Jaccard Index
Structure size-dependent
(~ 0.8 – 0.9)

(86–88)

Hausdorff Distance,
Mean Distance to Agreement

Maximum voxel size
(~2 – 3 mm)

(73, 85)

Target Registration Error
Maximum voxel size
(~2 – 3 mm)

(73, 85)

Distance to Discordance Metric
Maximum voxel size
(~2 – 3 mm)

(89, 90)

Jacobian Determinant
Tissue-dependent
(~0.8 – 1.2 for biological soft tissues)

(73, 91, 92)

Curl Magnitude
Tissue-dependent
(~0 – 0.2 for biological soft tissues)

(91, 93)

Biomechanical Criteria with Thresholds on Mechanical Stresses Tissue-dependent (91)

Dosimetric criteria Application-dependent (94–97)
f
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and is thus not limited to organ boundaries. The calculation of the

TRE requires an expert to manually indicate the location of the same

anatomical landmarks on the images to be registered. The DIR-

estimated deformations are then used to map the landmarks

annotated on one of the images onto the second image. The

distance between the mapped and the manually annotated

landmarks on the second image is then calculated to evaluate the

registration errors. For a DIR algorithm to be considered reliable for

clinical use, the average TRE calculated for the annotated landmarks

should consistently reside under the maximum image voxel size,

typically in the 2-3 mm range (73, 85). Similar to defining anatomical

boundaries, the manual annotation of anatomical landmarks is also

facilitated by the high soft tissue contrast provided by MR images. In

turn, this may lead to an improved landmark-based evaluation of a

DIR solution compared to imaging modalities such as CT/CBCT, in

the absence of contrast administration. Still, while such an approach

can aid in evaluating the typical accuracy and precision of DIR

methods in the vicinity of high-contrast anatomical landmarks, it

has limited validation capabilities for homogeneous image areas due

to the intrinsic difficulty of defining and annotating landmarks in

such regions. Also, many landmarks are defined at extreme positions

of an organ and can therefore represent different anatomy if the organ

slides or rotates (107, 108). Moreover, the landmarks themselves are

often used by the data similarity term of the DIR algorithm and

therefore may not be a completely independent measure.

These limitations can be addressed, for example, by the use of

physical (96, 109–111) and/or digital phantoms (92, 111, 112).

Physical phantoms typically consist of tissue mimicking materials

which are displaced/deformed in a controlled manner under the effect

of a mechanical actuator (e.g. a piston) such that the displacements/

deformations of the phantom are (partially) known (potentially by the

use of implanted fiducials). While physical phantoms which can be

effectively and safely operated within an MR-Linac are commercially

available, the design, development and optimization of MR-visible

phantoms is an ongoing area of investigation.
4.5 Criteria based on tissue biomechanics

The QA of DIR algorithms can also be performed by employing

criteria based on the mechanical properties of the observed anatomy

(87, 91). Depending on individual physical properties, the

deformations of the various anatomical tissues have a limited

number of degrees of freedom. For example, elastic biological soft

tissues are near-incompressible due to their high water content, and

therefore, strong compressions and expansions within such regions

are anatomically implausible. In effect, if such implausible

deformation patterns are estimated by the employed DIR

algorithm, a misregistration has most likely occurred.

To determine the amount of compression or expansion present in

the estimated deformations, a voxel-wise evaluation of the Jacobian

determinant of the deformations can be performed (73, 92). It is

known from continuum mechanics that the Jacobian determinant of

incompressible materials is equal to 1. Thus, large deviations from 1

within the deformations estimated for elastic biological soft tissues are

indicative of misregistration. Similarly, during typical anatomical

motion, strong local torsions are not expected to occur deep within
Frontiers in Oncology 09
the boundaries of elastic soft tissues and can also indicate the

occurrence of misregistration. Such torsions can be quantified, for

example, by evaluating the curl magnitude of the deformations, with

large local deviations from zero being anatomically implausible (93).

Typical values of these metrics for the liver and kidneys have been

determined to be between 0.8-1.2 for the Jacobian and 0-0.2 for the

curl magnitude (91). We do not expect the deformations within other

elastic soft tissues to deviate significantly from these values.

Alternatively, QA criteria relying on the biomechanical properties

of the observed anatomy can be even further individualized for

specific tissues. By providing the elastic modulus and Poisson ratio

of the structures of interest as input during the planning/re-planning

phase of treatment, the mechanical stress occurring as a result of the

estimated deformations can be evaluated within these regions (91).

The two parameters can be extracted either from look-up tables,

following mechanical tests performed in previous studies, or from

quantitative functional imaging such as MR elastography (113).

During typical anatomical motion, the mechanical stress within the

observed tissues is not expected to lead to tissue rupture or occlusion

of blood circulation. Therefore, if such occurrences are detected

within the DIR-estimated deformations, they are most likely

indicative of misregistration and have been shown to be correlated

with errors within the accumulated dose map (91). Such tissue-

damaging mechanical stress limits are tissue-specific and can again

be extracted from look-up tables generated on the basis of previous

studies which have performed the required mechanical tests.
4.6 Dosimetric criteria

While it is generally agreed that geometric DIR uncertainties play

a determining role in the accuracy of deformable dose accumulation,

the precise manner in which such uncertainties relate to dose

accumulation errors is the topic of ongoing research. For example,

DIR errors within isodose areas will most likely have less of an impact

on the overall accumulated dose compared to registration errors

occurring within regions containing steep dose gradients. In this

sense, previous studies propose establishing a non-linear relationship

between the DIR and the warped/accumulated dose uncertainties (94,

95). The challenge is hereby the selection of the criteria used to

evaluate the DIR accuracy as well as the dosimetric parameters to be

used as an input for the non-linear model. An additional challenge is

determining the model itself, which could, for example, imply an

empirical selection of a composition of a set of mathematical

functions or an estimation of the model by means of machine

learning. An alternative approach, which bypasses the construction

of such a model, consists of the use of deformable phantoms made of

radiosensitive gels (96, 97). The design paradigm for such phantoms

is similar to the one used for phantoms evaluating DIR uncertainties

(as described above) with, for example, the additional inclusion of

radiosensitive materials whose MR signal is dependent on the

absorbed radiation dose. Irradiating such phantoms while

undergoing deformations, followed by an MR-based readout of the

delivered dose, provides a theoretical gold standard for the warped

dose, which can be subsequently compared to the one estimated by

the DIR algorithm. For the purpose of commissioning DIR algorithms

for dose accumulation, this provides a direct estimation of the
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expected dose accumulation errors of the algorithm under evaluation.

However, it is important to take into consideration the high sensitivity

of existing gels to environmental factors such as temperature, as well

as phantom deformations in the absence of irradiation. This can in

turn introduce uncertainties within the readout process and therefore

bias the evaluation of the DIR algorithm. Consequently, the

construction of robust radiosensitive phantoms is the subject of

ongoing research.
5 Interpretation of accumulated dose

For simplicity, we have assumed until this point that the dose

distributions from each adaptive plan are always mapped back onto

the reference (i.e. simulation) image for comparison between the

planned and delivered doses. In clinical practice, doses may be

mapped either forward or backward to any time point (i.e.

simulation, any fraction during RT, or post-RT), as illustrated in

Figure 2. However, the aforementioned issues in dealing with

volumetric changes and tissue gain/loss will inevitably cause

differences in the accumulated dose depending on the direction of

dose mapping (79). Rather than considering which direction is “more

accurate,” we can regard forward- and backward-mapping as two

distinct perspectives for understanding accumulated dose, each

designed to answer different clinical questions.

When doses are mapped backward and accumulated in the pre-

treatment simulation image frame of reference, it is straightforward to

compare the planned dose to the accumulated dose over the entire

course of RT. For an individual patient, this type of analysis primarily

serves to determine whether the intended goals of therapy were met in

the aggregate of all adaptive plans. In cases where the intent of

adaptive RT was to reduce dose to OARs or escalate dose to the

tumor, comparison to the planned dose on the pre-treatment

anatomy can also determine whether OAR doses were indeed

lowered or whether tumor doses were indeed increased,

respectively. One drawback of such a comparison, performed for an

individual patient post-RT, is that it is too late to modify the

treatment if the intended goals were not met. Still, such

comparisons may inform clinicians as to how to approach future

patients by establishing a relationship between dose of the day and

accumulated dose.

Instead, the post-RT backward-mapped accumulated dose is

perhaps a more useful quantity when analyzing side effects and

treatment response on large cohorts of patients. Although we have

already entered the era of daily MR-guided adaptive replanning,

many questions remain regarding the degree of OAR dose sparing

and reduction in clinical side effects that can be achieved with this

technique, as well as how we can identify the individual patients who

stand to benefit the most from treatment on an MR-linac. To answer

these questions, we may analyze cumulative delivered dose in the

same perspective in which we have historically conceptualized RT: in

the frame of reference of the pre-treatment simulation scan.

Furthermore, as previously mentioned, the OAR dose constraints

and prescription doses that we use for planning are derived from

NTCP and TCP models, respectively, which are based on planned

doses on the pre-treatment simulation anatomy. In the era of adaptive
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whether these models remain accurate for delivered dose and whether

dose constraints should be redefined in the context of adaptive RT

(18, 36).

While this type of post-treatment analysis may be advantageous

for answering many research questions, there may still be instances

when we want to use a patient’s cumulative delivered dose at some

point during RT to adapt the remaining fractions. Backward mapping

may be used in this scenario, whereby the accumulated dose over a

certain number of delivered fractions can be compared to the

proportion of the total planned dose for the same number of

fractions. However, if the ultimate intention is to use the

accumulated dose to modify the treatment plans for subsequent

fractions, it may be more appropriate to map the dose forward into

the frame of reference in which the next fraction will be planned.

If forward dose mapping can be automated and integrated into

the MR-linac on-line clinical workflow, it may radically change how

we approach daily MRgART. In current commercial MR-linac

systems, adaptive plans are currently generated via warm start

optimization using the reference plan as a starting point (9, 13,

114). A previous adaptive plan may be used as a new reference plan

rather than the pre-treatment reference plan, but the IMRT objectives

and dose constraints remain the same for each adaptive plan unless

they are manually modified. We have seen with this process that there

is a reasonable degree of dosimetric variability between plans from

day to day despite the same objectives being used for planning. For

example, even if an OAR dose constraint is violated in one or more

fractions, that constraint may still be met in the cumulative delivered

dose if doses to that OAR fall far enough below the constraint

threshold for all other fractions (72). If we could accumulate the

dose at each fraction in the frame of reference of the daily setup

image, then we could adapt the plan using modified and/or re-

prioritized planning objectives based on knowledge of the

cumulative delivered dose. In other words, a dose constraint that is

routinely met may be de-prioritized in the set of IMRT planning

objectives in favor of a dose constraint that is routinely violated. This

approach may also be useful if the clinical intent is to escalate dose to

the tumor because the physician can make an informed decision

about how much the tumor dose can be increased without exceeding

the OAR constraints.

In summary, we propose that dose accumulation for purposes of

toxicity assessment should be reported on the planning image, as that

represents the anatomy at the time of planning and is necessary for

useful implementation of toxicity models. However, for ART

purposes, we propose that the accumulated dose should be

represented on the most recent anatomy so that replanning can be

assessed and applied.

As a final note, as with every step of the radiation therapy process,

cumulative dose has an associated uncertainty that is a combination

of the uncertainties in each step of the dose accumulation process.

Understanding these uncertainties and how they impact the use of the

cumulative dose is critical to clinical decision making. Thus, prior to

clinical implementation of any dose accumulation workflow, it is

essential for clinicians to clinicians to fully understand the process

and the inherent uncertainties so that they can make the best

decisions for their patients.
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6 Discussion

High-frequency on-treatment imaging and target volume serial

assessment with MR-linac devices now affords clinicians the

opportunity to move past the historical concept of planned dose

into an era where delivered dose can be used for individual response

assessment and dose-optimized adaptive RT. However, the

implementation of dose accumulation requires a basic

understanding of key considerations and careful validation of dose

accumulation solutions tailored to distinct clinical scenarios. In this

review article, we have outlined four general steps for dose

accumulation—autosegmentation, dose calculation, deformable

image registration, and dose mapping/summation—and discussed

considerations specific to MR-linac/MRgART workflows. Additional

efforts to standardize best practices are imperative to ensure that we

move towards a future of adaptively optimized dose as patient-specific

precision radiotherapy evolves.
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FIGURE 2

Examples of different dose accumulation perspectives. (A) Doses from all fractions are mapped backward onto the pre-treatment simulation anatomy. (B)
Doses from all fractions are mapped forward onto the anatomy from the last fraction. (C) At a given time point during RT, all previous doses are mapped
forward onto the anatomy for the current fraction. The summed dose is used as an input for dose-optimized adaptive replanning. All doses are scaled to
the total prescription dose.
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