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mutations in microtubule
dynamics-associated genes
in patients with WNT-
medulloblastoma tumors
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Medulloblastoma (MB) is themost common pediatric brain tumorwhich accounts

for about 20% of all pediatric brain tumors and 63% of intracranial embryonal

tumors. MB is considered to arise from precursor cell populations present during

an early brain development. Most cases (~70%) of MB occur at the age of 1–4 and

5–9, but are also infrequently found in adults. Total annual frequency of pediatric

tumors is about 5 cases per 1million children.WNT-subtype ofMB is characterized

by a high probability of remission, with a long-term survival rate of about 90%.

However, in some rare cases there may be increased metastatic activity, which

dramatically reduces the likelihood of a favorable outcome. Here we report two

cases of MB with a histological pattern consistent with desmoplastic/nodular (DP)

and classic MB, and genetically classified asWNT-MB. Both cases showed putative

causal somatic protein truncating mutations identified in microtubule-associated

genes: ARID2, TUBB4A, and ANK3.

KEYWORDS

medulloblastoma, exome sequence data, somatic mutation analysis, Wnt,
microtubule - associated proteins
Introduction

Medulloblastoma (MB) – is a solid neuroepithelial tumor arising from the

cerebellum. MB accounts for about 20% of all childhood brain tumors and 63% of

intracranial embryonal tumors (1). MB is considered to arise from precursor cell

populations present during an early brain development (2). Most cases (~70%) of MB
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occur at the age of 1–4 and 5–9, but are also found in adults (3).

Total annual frequency of pediatric tumors is about 5 cases per 1

million children (1).

WHO declares two classifications of MB according to the

method of diagnosis: histologically determined and genetically

determined (4). Both groups are divided into several subgroups

according to the immunohistochemical and genetic features,

respectively (4). For histologically determined MB there are the

following subgroups: 1) classic MB; 2) Desmoplastic/nodular

MB; 3) MB with extensive nodularity; 4) Large cell/Anaplastic

MB; 5) MB not otherwise specified (4). In turn, the following

subgroups are distinguished for genetically defined MB: 1)

WNT‐activated MB; 2) SHH‐activated, TP53‐wild‐type MB; 3)

SHH‐activated, TP53‐mutant MB; 4) Non‐WNT/non‐SHH MB

which is commonly divided into Group 3 and Group 4 MB (4).

Of all cases of MB, about 10% are of the wingless-type

(WNT) (5). WNT-MB are usually located along the brain

midline with involvement of the brainstem or cerebellar

bundle and cerebellopontine angle cistern (6). WNT-MB is

thought to arise from progenitor cells in the inferior rhombic

lip of the developing brainstem. The vast majority of WNT

tumors (~90%) contain a mutation affecting CTNNB1, which

encodes b-catenin. Mutations in the tumor suppressor gene APC

explain the majority of WNT-cases which do not have CTNNB1

mutations (2).

Some studies suggested the existence of two subtypes of

WNT: WNTa and WNTb. The WNTa subtype occurs mainly

in children and for 98% of cases is associated with chromosome

6 monosomy, whereas the WNTb subtype occurs in older

children and adults and infrequently (29%) has monosomy (7).

Here we present molecular diagnostics for two WNT-MB

cases without chromosome 6 monosomy or mutations in

CTNNB1 and APC.
Methods

Clinical and genetic data collection

Patients were observed at Almazov National Medical

Research Center in 2020-2022. Informed consent for

molecular genetic testing was provided by parents of patients.

The study was approved by the institutional ethics committee

(Protocol #3502-22 from 21.02.2020).

Hematoxylin-eosin staining analysis was used for the

purpose of histological classification of medulloblastomas.

A panel of three staining assays: 1) beta-catenin staining, 2)

filamin A, 3) GAB1 was used to obtain immunohistochemical

(IHC) confirmation of the diagnosis of MB and determine its

genetically defined subtype. Ki-67 was assessed as a marker of
Frontiers in Oncology 02
proliferation activity along with synaptophysin expression,

which is used to distinguish MB from embryonal tumor with

multilayered rosettes (ETMR) and most atypical teratoid

rhabdoid tumors (ATRT), which can potentially mimic

MB (4).

Genomic DNA samples were prepared for sequencing using

Kapa Biosystems (Roche) kits. To enrich the coding part of the

genome, the TruSeq Exome Capture kit (Illumina) was used. The

quality of the obtained libraries was controlled using the Fragment

Analyzer. Sufficiency of the DNA quantity was assessed with the

qPCR. After quality control and DNA quantity estimation, the pool

of libraries was sequenced on 2 lanes of the Illumina NovaSeq 6000.
Identification of putative causal variants

We assembled a list of 616 oncogenes, based on a broad list

of 565 known oncogenes (8), and an overlapping set of 87

previously reported MB susceptibility genes (Sup. Materials –

Susceptibility gene lists assembly; Sup. Table S1) (9–43).

Raw sequencing data in the form of FASTQ files were

obtained using bcl2fastq v2.20 Conversion Software (Illumina).

Germline and somatic variant calling were performed in

accordance with GATK and Mutect2 best practices (44, 45).

Identified putative somatic variants were subjected to the

quality filtration using the following thresholds based on GATK

metrics: 1) DP>30, 2) GERMQ>90, 3) TLOD>3, 4) POPAF≥4,

5) ROQ>85.

We took extra caution in interpreting long indels. They often

could be unreliably called and require a specialized approach for

analysis (46, 47). Therefore, for indels greater than 10

nucleotides that could potentially be nominated as “causal” in

both patients, we manually checked the alignment of the short

reads with IGV. Such an approach was carried out consistently

with common standards in the field (48).

All variant coordinates mentioned are based on the reference

genome version of GRCh38 and are declared according to

HGVS requirements (49). In assessing the functional effect of

the variants found, we rely on the joint recommendations of

Clinical Genome Resource (ClinGen), Cancer Genomics

Consortium (CGC), and Variant Interpretation for Cancer

Consortium (VICC) (Sup. Materials – Strategy for variant

oncogenicity classification) (50).

To evaluate the functional importance of identified variants,

we used databases of oncogenic variants. For this purpose, we

used COSMIC (51) and PeCan (52) focused on pediatric

oncology. Furthermore, we use PeCan’s built-in Pathogenicity

Information Exchange (PIE) (53) tool, which estimates the

pathogenicity of variants based on its sample cohort and

additional estimates as Sorting Intolerant From Tolerant
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(SIFT) (54) score, likelihood ratio test (LRT) and Combined

Annotation Dependent Depletion (CADD) (55) assessments.

Results

Report of cases

The patients were a female and a male of 10 years old

(hereafter Patient #1 and Patient #2) presented with complaints

of headache, vomiting and visual impairments. Both patients

underwent MRI analysis, surgical removal of the tumors,

histological and immunohistochemical analysis. An exome

sequencing from the blood and tumor DNA was performed

and followed by germline and somatic variant calling. The

sequencing data analysis was then performed to identify the

likely genetic causes for the disease.
Frontiers in Oncology 03
Patient #1

A multi-spiral CT scan (MSCT) of the brain revealed a

formation in the cerebellum and brainstem as well as

triventricular hydrocephalus and periventricular oedema. A

magnetic resonance imaging (MRI) of the brain confirmed the

results of the MSCT and additionally revealed a mass in the IV

ventricle of the brain (Figure 1A); MRI screen of the spinal cord

showed no signs of metastasis (Figure 1B). An additional

optometric exam revealed signs of optic disc stasis. The patient

was prescribed dexamethasone, which had a positive effect on

reducing the headaches.

After 17 days of observation, a suboccipital bone-plastic

craniotomy was performed under neurophysiological

monitoring, with microsurgical removal of tumors of the

cerebellum, IV ventricle and brainstem.
B C

D E F

G H I

J K L

A

FIGURE 1

Clinical and histological characteristics. (A, B) – MRI screens in Patient #1: (A) brain; (B) spinal cord; (C) Hematoxylin-eosin staining of sample
from Patient #1. (D-F) Immunohistochemical (IHC) staining of tumor sample from Patient #1: (D) beta-catenin; (E) filamin A; (F) GAB1. (G, H)
MRI screens in Patient #2: (G) brain; (H) spinal cord. (I) Hematoxylin-eosin staining of sample from Patient #2. (J–L) IHC staining of tumor
sample from Patient #2: (J) beta-catenin; (K) filamin A; (L) GAB1.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1085947
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Skitchenko et al. 10.3389/fonc.2022.1085947
Further histological examination of the tumor fragments

showed a highly cellular tissue sample of small cells with

polymorphic hyperchromatic nuclei, with poor eosinophilic

cytoplasm. Areas of nodular structure of light-colored cells

were also present. The formation of Homer-Wright-type

rosettes was noted. The sample was characterized by an

increased number of mitoses, including atypical ones, and

endothelial proliferation (Figure 1C). As a result, the tumor

from Patient #1 was assigned to the desmoplastic/nodular type

of MB according to the WHO classification (4).

Immunohistochemical (IHC) analysis for the sample

obtained from Patient #1 revealed: 1) positive membrane-

cytoplasmic and nuclear beta-catenin staining (Figure 1D); 2)

positive cytoplasmic filamin A staining (Figure 1E); 3) negative

GAB1 staining (Figure 1F). Therefore, the tumor was assigned to

the WNT subtype, according to the genetically defined WHO

classification (ICD-10-CM:C71.8; G97.9). Additionally, the

proliferative activity of Ki-67 was assessed, which was about

25-30%, as well as synaptophysin expression (Figure S1A),

which distinguished MB from ETMR and most ATRT, which

can potentially mimic MB (4).
Patient #2

MRI of the brain showed formation in the IV ventricle and

right hemisphere of the cerebellum and internal hydrocephalus

(Figure 1G). In addition, MRI of the spinal cord showed signs of

spinal metastasis (Figure 1H).

After 5 days, a partial surgical removal of a tumor of the right

cerebellar hemisphere, IV ventricle, was performed.

Histological examination revealed a monotonous, dense-,

small- and blue-cellular malignant tumor with rosettes and little

stroma and numerous mitoses (Figure 1I). As a result, in the

course of histological examination, the preparation from Patient

#2 was assigned the classical type of MB according to the WHO

classification (4).

Patient #2 had the same set of IHC confirmations as Patient

#1: 1) positive membrane-cytoplasmic and nuclear beta-catenin

staining (Figure 1J); 2) positive cytoplasmic filamin A staining

(Figure 1K); 3) negative GAB1 staining (Figure 1L). Thus, the

results of IHC analysis suggest that the tumor should be assigned

to the WNT subtype, according to the genetically defined WHO

classification (ICD-10-CM: C71.8; G91.1, G96.8, G83.2).

Additional IHC analysis yielded the following: 1) positive

expression of synaptophysin (Figure S1B); 2) Proliferative

activity Ki-67 on level 20-30%.
Molecular diagnosis

Somatic variant calls were subjected to quality filtration to

ensure only high-confidence somatic mutations entered the
Frontiers in Oncology 04
analysis (Methods). The chromosome 6 monosomy was ruled

out for both patients using heterozygosity analysis that indicated

presence of the two copies of the chromosome 6 (Figure S2). In

total there were 50 and 37 good quality somatic variants for

analysis in Patient #1 and Patient #2 respectively (Sup. Tables

S2, 3). Out of these variants, 26 and 17 were eliminated from the

analysis as non-coding, 3 and 1 as inframe indels, 2 and 1 were

eliminated as synonymous for Patient #1 and Patient #2,

respectively. Furthermore, 9 and 11 variants each with

ambiguous or missing annotation were excluded from the

analysis for Patient #1 and Patient #2, respectively.

Initially, we focused our analysis on missense variants and

protein truncating variants (PTV). In the data, there were five

and two missense variants and five PTV for each Patient #1 and

Patient #2, respectively.

Patient #1 had only one variant in a gene from the list of MB

susceptibility genes (87 genes list). For Patient #2, the genes

from the MB susceptibility gene list did not contain

any mutations.

None of the identified somatic missense variants was found

in the two examined gene sets in both patients. Six of seven

missense variants outside the lists of known oncogenes were

eliminated as unlikely to affect any important conservative parts

of the gene, as their missense deleteriousness (MPC) (56) score

was ≤2 (Sup. Table S4).

Patient #1 had only one mutation in a known oncogenic

gene from the analyzed list – a stop gain somatic mutation

(NC_000012.12:g.45849701C>T, NM_152641:p.Gln613Ter) in

ARID2 (Figure 2A), which disrupts cell cycle regulation and

has previously been identified as a MB risk gene (87 genes list)

(10, 11). Variant was found to be in a close proximity to RFX

DNA-binding protein domain (the domain boundary is at

amino acid 601). For Patient #1 it was the only PTV within

the MB susceptibility gene list (87 genes list) and/or expanded

gene list (616 genes list).

Four other PTVs found in Patient #1 were located in

NOBOX, SRRM2, CTCF, RAB11FIP4. Upon screening of these

variants in IGV (57), frameshifts in SRRM2 and RAB11FIP4

were eliminated because of the poor mapping quality (Methods

– Identification of putative causal variants). Frameshift variant

in NOBOX was excluded from consideration because of its

specific expression only in testis and ovarian tissues as was

indicated by GTEX (58) (Sup. Table S5).

CTCF is an evolutionarily conserved gene responsible for the

spatial properties of chromatin, including its accessibility to

chromatin, so the frameshift indel (NC_000016.10:

g.67611435_67611436insA, NM_006565:p.Thr204AsnfsTer26)

(Figure 2B) in CTCF can potentially be considered as a

secondary priority cause of MB in Patient #1.

For Patient #2, none of the variants were found in the 87

genes list. Next, we considered an extended list of 616

oncogenes in which the long frameshift in MAP2K4 was

detected. We performed visual control of this PTV with IGV
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and eliminated this candidate variant due to poor mapping

quality. In a further analysis, we considered variants in all

genes and found 4 PTVs in AP003062.1, KLHL4, ANK3,

TUBB4A. After visually screening all 4 variants in IGV (57),

we discarded 2 long frameshifts in AP003062.1 and KLHL4 due

to poor mapping quality (Methods – Identification of putative

causal variants; Sup. Table S6).
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The remaining pair of PTVs were stop gain somatic mutation

(NC_000019.10:g.6495928G>A, NM_006087:p.Gln191Ter) in

TUBB4A (rs1376427129, gnomAD_AF=6.57x10-6) (Figure 2C)

and frameshift indel (NC_000010.11:g.60073812_60073813insT,

NM_020987:p.Glu2357ArgfsTer15) in ANK3 (Figure 2D).

Conclusively, taking into account clinical symptoms, IHC

and genetic analyses the diagnosis was defined as WNT-b
B

C D

A

FIGURE 2

Candidate somatic protein truncating variants (GRCh38): (A, B) – coverage and functional effects of PTVs on DNA, RNA and protein level in
Patient #1. (A) NC_000012.12:g.45849701C>T in ARID2 (NM_152641:p.Gln613Ter); (B) NC_000016.10:g.67611435_67611436insA in CTCF
(NM_006565:p.Thr204AsnfsTer26); (C, D) – coverage and functional effects of PTVs on DNA, RNA and protein level in Patient #2. (C)
NC_000019.10:g.6495928G>A in TUBB4A (NM_006087:p.Gln191Ter); (D) NC_000010.11:g.60073812_60073813insT in ANK3 (NM_020987:
p.Glu2357ArgfsTer15).
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medulloblastomas without chromosome 6 monosomy and no

known mutations in CTNNB1 and APC. Novel identified risk

variants align well with the previous knowledge of ANK3,

TUBB4A, ARID2 and CTCF functionality in cancer but the

specific variants that were identified in these patients have not

been observed previously. In addition, the role of these variants

in pediatric tumors of the central nervous system has not been

previously reported.
Discussion

Patient #1

The ARID2 is a highly conservative gene (pLI=1) involved in

various biological processes, including the cell cycle control,

regulation of transcription and modification of chromatin

structure and is a known tumor suppressor gene (8). The

ARID2 gene product functions as a subunit of the PBAF

(SWI/SNF-B) chromatin remodeling complex, which promotes

ligand-dependent transcriptional activation by nuclear

receptors. It was previously known that ARID2 co-

immunoprecipitates with a-tubulin and that ARID2 localizes

to the spindle pole during mitosis (59). Rare somatic mutations

in ARID2 can lead to severe phenotypes, including MB. For one-

third of WNT-MB cases, functional annotation of the

recurrently altered genes revealed somatic dysregulation of

chromatin modeling genes of the SWI/SNF family, which also

includes ARID2 (10, 60). PeCan (52) did not show an exact

match for the p.Gln613Ter in ARID2 in pediatric oncology

reports. However, PeCan’s (52) built-in PIE classified

p.Gln613Ter as “GOLD” [“truncation in gold gene (tumor

suppressor)”], likewise based on LRT (“Deleterious”) and

CADD (CADD=38, CADDraw=11.70) estimates. According to

COSMIC, p.Gln613Ter in ARID2, has been reported several

times in the database as a variant found in various cancer types,

though not in the central nervous system (61–63). We categorize

g.45849701C>T as “oncogenic” according to accumulated

evidence, as suggested by Horak et al. (Sup. Materials –

Strategy of variant oncogenicity classification) (50).

Considering CTCF as a secondary finding in Patient 1 it is

worth noting its properties of regulating chromatin spatial

regulation. It is known that CTCF-binding sites often define

topological associating chromatin domains (TAD) boundaries

and removal of these sites can lead to a moderate upregulation

of a nearby gene. Therefore, alterations in CTCF genotype may

potentially lead to significant gene expression alterations (64–66).

Variant p.Thr204AsnfsTer26 was found to have an exact match

with ClinVar and was assessed as “pathogenic” (Variation ID:

280869). PeCan (52) has shown that variant p.Thr204AsnfsTer26

has already been reported several times in pediatric oncology

studies of lymphoblastic leukemia and solid tumors (67–69). PIE

classified p.Thr204AsnfsTer26 as “GOLD”. Additionally,
Frontiers in Oncology 06
COSMIC shows multiple lines of evidence in studies involving

various tumor types (65, 70, 71). The abundance of evidence in the

database allows this variant to be identified as a cancer hotspot.

CTCF is a very conservative gene, with almost no PTVs observed

in germline DNA in large population-based cohorts (pLI=1), yet,

there was no specific linkage to pediatric brain tumors reported to

date. The accumulated evidence for g.67611435_67611436insA

indicates that this is an “oncogenic” variant (Sup. Materials –

Strategy of variant oncogenicity classification) (50).
Patient #2

In a previous survival analysis study, TUBB4A expression in

tumors was found to be associated with MB patients survival,

suggesting that TUBB4A may have oncogenic properties (72).

Interestingly, observed PTV is found in the last exon of the gene.

Previous studies indicated that in other genes, including cancer

genes, such mutations result in gain-of-function effect (73–75).

This is consistent with the observation of lower expression of

TUBB4A benefiting the survival. TUBB4A is non-conservative

gene (pLI=0.11), which could potentially reduce the effect of

PTV on viability. Missense mutations in TUBB4A are known to

affect various neurological phenotypes, including those

associated with cerebel lar atrophy, ear ly infant i le

encephalopathy, which may be due to the selective effects of

different mutations on cells and microtubule dynamics (76).

Microtubules are components of the cytoskeleton that

contribute to the morphology of axons and dendrites in

neurons and facilitate the transport of cell cargos. In dividing

cells, microtubules of polymerized a-/b-tubulin dimers control

the process of mitosis at different stages of its course, which has

been previously well studied (77, 78). Microtubules are prone to

constant phases of polymerization and depolymerization, and

changes in microtubule dynamics can lead to errors in

chromosome segregation and chromosome instability, a key

feature of oncological cells (78–81).

In cancer cells, changes in microtubules dynamics, often

associated with cancer-specific tubulin isotypes and tubulin

post-translational modifications, are involved in metastatic cell

migration, drug resistance, and tumor vascularization (81, 82). It

is important to clarify that the hyperfunction of tubulin motility

in mitosis is also a molecular target for numerous “antitubulin

agents”, which have been shown to interact with multiple sites

on a- or b-tubulin and have been successfully used as

chemotherapeutic agents to induce mitotic arrest and cancer

cell death (83, 84).

The ANK3 regulates the mitogen−activated protein kinase

(MAPK) pathway related to extracellular matrix organization,

cell motility through PTK2 signaling and somatodendritic

inhibitory synapses, which determines its high conservativity

(pLI=1) (85). Abnormalities in MAPK signaling are known to be

associated with the process of metastasis and have long been
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proposed as targets for selective therapy for oncologies, since the

presence or absence of metastasis often determines the prognosis

of survival (85). But, even more importantly, that brain-specific

Ank3 is linked to microtubule dynamics through a GSK3/

CRMP2-dependent mechanism, which has been confirmed

using mouse models (86). There is evidence that increased

ANK3 expression in cancer tissues correlates with better

survival in prostate cancer, suggesting that ANK3 is a tumor

suppressor gene (87).

Early gene expression studies in the hippocampus of Ank3

+/- and Ank3+/+ mice revealed altered expression of 282 genes

that were enriched with microtubule-related functions (86).

ANK3 binds microtubules directly or through the binding of

microtubule-associated proteins at the plus-end stabilization

cap, which prevents depolymerization and directly affects

microtubule dynamics (88–90).

COSMIC and PeCan did not show an exact match with the

p.Gln191Ter in TUBB4A and p.Glu2357ArgfsTer15 in ANK3,

which makes it impossible to classify them as cancer hotspots.

PIE has added evidence of p.Gln191Ter in TUBB4A

oncogenicity through SIFT (“Damaging”), CADD (CADD=36,

CADDraw=10.41) and LRT (“Deleterious”). PIE did not have

sufficient information about p.Glu2357ArgfsTer15 in ANK3.

Given involvement of these variants in oncological processes,

the severity of the functional effect on the protein, and the

available data from the survival analysis incline us to classify

g.6495928G>A in TUBB4A as “variant of uncertain significance”

and g.60073812_60073813insT in ANK3 as “oncogenic” (Sup.

Materials – Strategy of variant oncogenicity classification) (50).

Conclusively, we identified four candidate somatic

mutations potentially explaining the MB onset in two pediatric

patients and providing new biological insights into the

mechanisms of the pediatric tumor development.
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