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DNA damage repair (DDR) genes are involved in developing breast cancer.

Recently, a targeted therapeutic strategy through DNA repair machinery,

including PARPi, has initially shown broad development and application

prospects in breast cancer therapy. However, few studies that focused on

the correlation between the expression level of DNA repair genes, prognosis,

and immune response in breast cancer patients have been recently conducted.

Herein, we focused on identifying differentially expressed DNA repair genes

(DEGs) in breast cancer specimens and normal samples using the Wilcoxon

rank-sum test. Biofunction enrichment analysis was performed with DEGs

using the R software “cluster Profiler” package. DNA repair genes were

involved in multivariate and univariate Cox regression analyses. After the

optimization by AIC value, 11 DNA repair genes were sorted as prognostic

DNA repair genes for breast cancer patients to calculate risk scores.

Simultaneously, a nomogram was used to represent the prognostic model,

which was validated using a calibration curve and C-index. Single-sample gene

set enrichment analysis (ssGSEA), CIBERSORT algorithms, and ESTIMATE

scores were applied to evaluate the immune filtration of tumor samples.

Subsequently, anticarcinogen sensitivity analysis was performed using the R

software “pRRophetic” package. Unsupervised clustering was used to excavate

the correlation between the expression level of prognostic-significant DNA

repair genes and clinical features. In summary, 56 DEGs were sorted, and their

potential enriched biofunction pathways were revealed. In total, 11 DNA repair

genes (UBE2A, RBBP8, RAD50, FAAP20, RPA3, ENDOV, DDB2, UBE2V2, MRE11,

RRM2B, and PARP3) were preserved as prognostic genes to estimate risk score,

which was applied to establish the prognostic model and stratified breast
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1085632/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1085632/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1085632/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1085632/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1085632/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1085632&domain=pdf&date_stamp=2023-01-11
mailto:yuanjian229@hotmail.com
mailto:wdg1225@163.com
mailto:bluestone2003@163.com
https://doi.org/10.3389/fonc.2022.1085632
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1085632
https://www.frontiersin.org/journals/oncology


Chang et al. 10.3389/fonc.2022.1085632

Frontiers in Oncology
cancer patients into two groups with high or low risk. The calibration curve and

C-index indicated that they reliably predicted the survival of breast cancer

patients. Immune filtration analysis, anticarcinogen sensitivity analysis, and

unsupervised clustering were applied to reveal the character of DNA repair

genes between low- and high-risk groups. We identified 11 prognosis-

significant DNA repair genes to establish prediction models and immune

responses in breast cancer patients.
KEYWORDS

breast cancer, prognostic model, immune filtration, immune response, DNA
damage repair
Introduction

Breast cancer is one of the most prevalent malignant diseases

among women, leading to high medical costs yearly. More than

two million new cases of breast cancer were diagnosed in 2020,

according to the World Health Organization (WHO) (1). Based

on its pathophysiology, breast cancer is a heterogeneous

malignancy that is subdivided according to histological and

molecular characteristics; the outcomes of treatment and

prognosis are different for each of these subtypes (2–4). Perou

et al. (5) reported that breast cancer cases could be classified into

four intrinsic types based on gene expression profiles; each of

them showed different characteristics of drug resistance,

metastasis, and other characteristics. Subsequently, the number

of intrinsic types was revised into six (6), which were basal-like,

ERBB2+, normal breast-like, luminal subtype C, luminal subtype

B, and luminal subtype A. Therefore, the potential prognostic

predictors of breast cancer deserve exploration due to

their heterogeneity.

DNA damage and DNA damage repair (DDR) play key roles

in breast cancer progression. Some known types of DNA damage

include single-strand breaks (SSBs), double-strand breaks

(DSBs), base mismatches, pyrimidine dimers, and interstrand

crosslinks. Different DNA repair mechanisms are applied to

amend these DNA damage subtypes, including base excision

repair (BER), nucleotide excision repair (NER), mismatch repair

(MMR), homologous recombination repair (HRR), and non-

homologous end joining (NHEJ) (7, 8). The balance between

DNA damage and DDR systems maintains genome integration

and stability. The defects or dysfunction of the DDR system

leads to the occurrence and drug resistance of breast cancer.

Mutations of the BRCA1 and BRCA2 genes in the germline were

considered resources of genetic susceptibility for breast cancer
02
(9). Approximately 50%–80% of hereditary breast cancer cases

involve BRCA1 or BRCA2 mutations.

Furthermore, 30% of breast cancer patients without heredity

were found to have methylation of the BRCA1 and BRCA2

promoter or dysfunctional upstream pathways, leading to

descending levels of BRCA1 and BRCA2 (10, 11). DDR-

targeted treatment has shown a significant improvement in

progression-free survival in breast cancer patients. One of the

most famous DDR-targeted drugs is the poly ADP-ribose

polymerase inhibitor (PARPi), which can interact with a key

upstream DNA repair enzyme, PARP.

DDR defect is cell damage, which may lead to genome

distortion and malignant transformation. In contrast, the

reduced DNA repair ability of cancer cells distinguished them

from normal cells, which could be a character for target drug

design (12). DDR genes provided doctors with broader

treatment options for breast cancer patients (13). For instance,

DDR polymorphism was independent of the treatment response

of PD-1/PD-L1 inhibitors, while it was correlated with tumor

mutation burden (14, 15). Harmful DDR mutations might

abrogate the resistance of platinum-based treatment schemes

for tumor tissues (16). Alteration of DDR genes might affect the

prognosis of patients with breast cancer. However, few studies

focused on the correlation between breast cancer prognosis and

the expression level of DDR genes. The RNA-sequencing data

were downloaded from The Cancer Genome Atlas (TCGA). The

prognosis-related DDR genes were screened using Cox

regression with the Wald X2 test. The prognostic model was

established based on a risk score calculated by sorted DDR genes

and other clinical features. Generally, 11 prognostic-significant

DDR genes were identified to establish a prediction model for

patients with breast cancer. The sorted prognostic genes could be

potential targets for novel breast cancer therapeutics.
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Methods

Acquisition of data from the TCGA

The RNA-sequencing (RNA-seq) data of breast cancer

specimens and the corresponding normal breast samples were

downloaded from the TCGA database (https://portal.gdc.cancer.

gov/), a famous cancer genomics database. The gene expression

levels of 1,104 breast cancer specimens and 113 correspondent

normal breast samples with their clinical information were

involved in this research. Fragments per kilobase of exon

model per million mapped fragments (FPKM) were used to

normalize the RNA-seq data. Clinical data from breast cancer

patients were downloaded from the TCGA database and

integrated into the expression matrix utilizing the Perl

software (Supplementary Table 1). Totally, 219 DNA repair

genes (17) were selected to screen the gene expression profiles

and establish a prognostic model.
Identification of DEGs and enrichment
analysis of biofunction

Differentially expressed genes (DEGs) were screened by the

Wilcoxon rank-sum test with false discovery rate (FDR)

correction. FDR <0.05 and |log2 fold change (logFC)| >0.5

were set as the cutoff points. The screened DEGs were

presented through a volcano plot, heatmap, and box plot.

Functional enrichment analyses, including Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG), were performed using the R software “cluster

Profiler” package (18). FDR <0.05 was established as the cutoff

point to recognize significant items.
Establishment of the Cox
regression model

The survival time and status of breast cancer patients from the

TCGA database were integrated into the expression matrix using

Perl software. The level of expression of DNA repair genes from

each breast cancer specimen with the survival of their patients was

involved in univariate Cox regression. The Wald X2 test for each

variable was performed. Genes with P <0.05 were considered

significant in prognosis. All prognosis-significant genes were

applied to construct a multivariate Cox regression model, which

was optimized by AIC value in a stepwise method to avoid

overfitting. Each patient risk score was calculated according to

the expression level, and the coefficient of each gene remained in

the optimized multivariate Cox regression model. Risk score =

h0(t)exp(o
n

j=1
Coef j � Xj) where n = quantity of sorted genes, Coefj

is the coefficient of each DNA repair genes, Xj is the relative
Frontiers in Oncology 03
expression level of each DNA repair gene, h0(t) is the baseline risk

function. Subsequently, the risk score was included in the

prognostic model with other clinical characteristics using

another multivariate Cox regression analysis.
Analysis of the risk score characteristics
of breast cancer patients

Breast cancer patients were stratified into high- and low-risk

groups using a median risk score. The survival of patients

between these groups was compared using the Kaplan–Meier

analysis with the log-rank test. Survival curves for the high- and

low-risk groups were drawn utilizing the R software “survminer”

package. A risk curve was drawn to show the distribution of risk

scores for each breast cancer patient. Patients with risk scores

less than the median were presented as green dots, while patients

with risk scores higher than the median were shown as red dots.

The correlation between risk score and the lifetime of each

patient was revealed using the survival state plot. Based on data

records, alive patients were displayed as green dots, and dead

patients were shown as red dots. The risk heatmap revealed the

expression level of prognostic DNA repair genes between the

low- and high-risk groups.
Receiver operating characteristic
curve analysis

The feasibility of prognostic prediction of independent risk

factors, including risk score and other clinical characteristics,

was investigated using the receiver operating characteristic

(ROC) curve with an area under the curve (AUC), which was

drawn using the package “survivalROC” of the R software. The

AUC of each prediction variable was compared at 1, 3, and 5

years. The AUC ranged from 0.5 to 1. The larger AUC indicates

better prediction feasibility of the variable.
Correlation analysis between clinical
features and prognostic DNA
repair genes

Correlations between the expression level of significant

prognostic DNA repair genes and clinical characteristics such

as gender, race, age, estrogen receptor, progesterone receptor,

HER2 receptor, clinical stage, and T, M, and N stages were

evaluated using t-test or Kruskal–Wallis test which depends on

the number of categories of the clinical feature. The risk score of

each type was also compared. The expression level of prognostic

DNA repair genes in each category of clinical features was

presented utilizing a box plot.
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External validation of risk score

The breast cancer sample gene expression level data matrix

with their clinical information data was downloaded from the

Gene Expression Omnibus (GEO) database (GSE20685) to

validate the prognostic model constructed using TCGA data.

The risk score of each breast cancer patient was calculated

according to the formula constructed before. Time-dependent

ROC curves were used to measure the feasibility of prognosis

prediction for risk score and other clinical features. Breast cancer

patients in the GSE20685 dataset were classified into high- and

low-risk groups based on the median risk scores, whose survival

was compared using the Kaplan–Meier analysis and log-rank

test. Univariate and multivariate Cox regression analyses were

applied to reveal whether the risk score is an independent

prognostic predictor.
Establishing and validating
the nomogram

Seven prognostic indicators, namely, gender, age, estrogen

receptor status, progesterone receptor status, pathologic stage, T

and N stages, and risk score calculated by DNA repair genes for

prognostic prediction, were selected to establish the nomogram.

Points for each prognostic factor were obtained for a concrete

breast cancer patient. The accumulation of points for each

clinical feature and risk score can predict the survival of breast

cancer patients in 1, 3, and 5 years after diagnosis. The

discrimination and calibration of the nomogram were

validated using C-index and calibration curve. C-index varied

from 0.5 to 1. The feasibility of discrimination increased with

increasing C-index. The calibration curve of the nomogram in 1,

3, and 5 years was displayed. The closer the calibration curve is

to the diagonal line, the more precise the calibration.
Immune and DNA repair genes in
breast cancer

Gene set variation analysis (GSVA) (19) was performed with

the single-sample gene set enrichment analysis (ssGSEA) method

(20, 21) to calculate the immune infiltration score of 16 immune

cells and 13 immune-related pathways. The infiltration scores

reflect the activity of immune cells or immune-related pathways.

The infiltrationscoresof the tumor sample in thehigh-and low-risk

groups were counted, respectively, and compared using the

Wilcoxon rank-sum test. The immune infiltration scores were

presented by a box plot. The annotated gene set file was applied

in the ssGSEA analysis (Supplementary Table 2).

Considering the density relationship with DNA repair and

immune pathway functions in the cancer microenvironment,
Frontiers in Oncology 04
CIBERSORT was appl ied to evaluate the immune

microenvironment. CIBERSORT (http://cibersort.stanford.edu/)

package in R software was invited by Newman et al. (22)

according to deconvolution, which can quantify the enrichment

of immune cells in many cases. The abundance of 22 kinds of

infiltrated immune cells (plasma cells, dendritic cells, CD4+ T cells,

CD8+ T cells, regulatory T cells, natural killer cells, mast cells, naive

B cells, memory B cells, and macrophages) was quantified in breast

cancer samples. Each of the specimens was estimated based on their

gene expression profile retrieved from the TCGA database. Breast

cancer patients were divided into low- and high-risk groups

according to the expression level of prognosis-related DNA repair

genes for CIBERSORT analysis.

The degree of tumor purity and the immunology infiltration

level were evaluated using the ESTIMATE algorithm (https://

bioinformatics.mdanderson.org/estimate/), which applied gene

expression profiles as the signature for stromal and immune

score estimation (23). ESTIMATE score was the sum of stromal

and immune scores, which revealed the tumor purity and the

immunology infiltration level. The FPKM normalized RNA-seq

expression profile of breast cancer specimens was downloaded

from the TCGA database to perform an ESTIMATE calculation.

Breast cancer patients were divided into low- and high-risk

groups using the risk score to compare tumor purity and

immune infiltration.
Anticarcinogen sensitivity analysis

In total, 12 types of anticarcinogen (bexarotene,

camptothecin, cisplatin, docetaxel, etoposide, gemcitabine,

imatinib, methotrexate, paclitaxel, rapamycin, vinorelbine,

vorinostat) were analyzed with their half-maximal inhibitory

concentration (IC50) in each breast carcinoma sample from

the TCGA gene expression level data. Samples from breast

cancer patients were divided into high- and low-risk groups

based on DNA repair gene expression level for analysis. The R

software “pRRophetic” (4) package was utilized to calculate the

IC50 of each drug, whose estimation was based on Genomics of

Drug Sensitivity in Cancer (GDSC; http://www.cancerrxgene.

org/) (5). The half-maximal inhibitory concentration of drugs

between the two groups was compared using the Wilcoxon

rank-sum test.
Consensus clustering for DNA
repair genes

Breast cancer specimens were clustered into k (2–9) groups

using the R software “ConsensusClusterPlus” package based on

their expression level of prognosis-significant DNA repair genes.

An unsupervised clustering method was applied to optimize the

number of cluster groups (k-value). Principal component
frontiersin.org
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analysis (PCA) of the total gene expression matrix for breast

cancer was applied to validate the consensus-clustered groups.

The survival and clinical features of breast cancer patients in the

two clusters were compared utilizing the Kaplan–Meier analysis

with log-rank test and X2 test, presented using the Kaplan–Meier

curve and heatmap.
Real-time quantitative PCR

The total RNA from each sample was purified using the Easy

Fast Tissue/Cell Kit RNA (TIANGEN Biotech Co., Ltd., Beijing,

China). Then, RNA was transcribed into complementary DNA

(cDNA) utilizing 5×FastKing-RT SuperMix (TIANGEN Biotech

Co., Ltd., Beijing, China). RT-qPCR was performed with 2×

PerfectStart II Probe qPCR SuperMix (TransGen Biotech,

Beijing, China) to detect the relative expression level of DNA

repair (DEGs). ABI Prism7500 was employed to perform the RT-

qPCR. The expression level of each gene was normalized using

endogenous glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) with 2−△△Ct algorithms. Sangon Biotech (Shanghai,

China) provided the primers for each gene. Supplementary

Table 3 shows the sequences of the qPCR primers.
Cell culture

The breast cancer cell lines MDA-MB-231, MCF-7, and

T47D and the normal breast cell line MCF-10a were

purchased from the American Type Culture Collection

(ATCC). Cells were grown in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal bovine serum

(FBS) and 1% penicillin–streptomycin with 5% CO2 at 37°C.

MCF-10a cell lines were maintained in Ham ’s F-12,

supplemented with 10% horse serum, insulin (10 mg/ml),

epidermal growth factor (20 ng/ml), cholera toxin (100 ng/ml),

and hydrocortisone (0.5 mg/ml) with 5% CO2 at 37°C.
Results

Sorting DEGs and performing
biofunctional enrichment analysis

The gene expression level profiles of 113 normal breast and

1,104 breast cancer specimens were downloaded from the TCGA

database. Totally, 56 DEGs were retrieved (Table 1). The

expression level of 55 genes was upregulated, and one gene

was downregulated in the tumor specimens compared with the

normal samples. Heatmap and box plot were employed to

identify the relative expression level of DEGs. A volcano plot

was utilized to indicate the fold change of DEG expression level
Frontiers in Oncology 05
in the tumor group compared with the normal group

(Figures 1A–C). In the GO analysis, for the biological process

(BP) category, DEGs were mainly enriched in double-strand

break repair and DNA replication and recombination. For the

cellular components (CC) category, DEGs were mainly enriched

in the chromosome (telomeric region), nuclear chromosome, and

DNA polymerase complex. For the molecular function (MF)

category, DEGs were mainly enriched in catalytic activity acting

on DNA, damaged DNA binding, and nuclease activity

(Supplementary Figures S1A–C). In the KEGG pathway

analysis, DEGs were mainly enriched in the base excision repair

pathway, homologous recombination, and DNA replication

(Supplementary Figures S1D–F). These pathways help cancer

cells live a better life under DNA damage due to the toxicity of

chemotherapy drugs or ionizing radiation therapy.
Retrieving prognostic-significant DNA
repair genes

Univariate Cox proportional hazard regression with the Wald

X2 test identified 30 DNA repair genes (XRCC3, DNPH1, RNF4,

XRCC4, ERCC1, RAD23B, ALKBH2, HLTF, UBE2A, MUS81,

XRCC1, RBBP8, RAD1, NUDT18, RAD50, PNKP, FAAP20,

RPA3, ENDOV, DDB2, POLL, RAD54B, ERCC5, UBE2V2,

MRE11, MPG, RRM2B, PARG, PARP3, and BRCA1) as

prognosis indicators for breast cancer (Figure 2A). They were

involved in constructing a multivariate Cox regression model

optimized by the AIC value to avoid overfitting. Finally, we

studied 11 DNA repair genes (UBE2A, RBBP8, RAD50, FAAP20,

RPA3, ENDOV,DDB2,UBE2V2, MRE11, RRM2B, and PARP3) in

the multivariate Cox regression model (Figure 2B; Table 2). The

hazard ratio offive genes (RBBP8, PARP3, ENDOV, UBE2V2, and

DDB2) was <1, which plays a protective role in developing breast

cancer. The hazard ratio of other six genes (FAAP20, RRM2B,

UBE2A, RAD50, MRE11, and RPA3) was >1, regarded as risk

factors indevelopingbreast cancer. The coefficient of these 11 genes

and their expression level were combined to calculate the risk score

for each patient. Breast cancer patientswere classified into the high-

risk group (n = 545) and the low-risk group (n = 545) using the

median risk score. Kaplan–Meier analysiswith log-rank test proved

that the overall survival (OS) betweenpatients in the high- and low-

risk groups is statistically significant (median time = 12.2 vs. 8.1

years, log-rank P < 0.001) (Figure 2C).
Prognostic hazard curves and heatmap

To evaluate the difference in the survival of breast cancer

patients between the two groups and their relationship with risk

score, the risk curves for breast cancer patients were drawn to

visualize the risk score for each breast cancer patient. The
frontiersin.org

https://doi.org/10.3389/fonc.2022.1085632
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chang et al. 10.3389/fonc.2022.1085632
TABLE 1 The expression level of differentially expressed DNA repair genes between normal breast tissues and breast cancer tissues.

Gene conMean treatMean logFC P-value FDR

CHEK1 0.98877 1.785238 0.796468 1.49E−41 1.29E−40

RMI1 1.903181 2.758283 0.855102 1.07E−41 9.75E−41

PARPBP 0.638258 1.31578 0.677522 7.57E−44 7.57E−43

CDK7 3.163296 3.688101 0.524805 1.88E−27 7.38E−27

DNPH1 3.278147 4.065005 0.786859 5.84E−20 1.60E−19

POLD4 2.032654 2.736838 0.704183 9.79E−28 4.00E−27

POLD2 4.176734 4.776556 0.599822 3.17E−29 1.35E−28

MAD2L2 2.533546 3.223759 2.0.690213 1.08E−29 4.79E−29

BLM 0.520341 1.298436 0.778095 2.83E−45 2.98E−44

CHAF1A 1.970806 2.751902 0.781097 2.60E−38 1.80E−37

H2AFX 2.926563 4.517459 1.590896 5.12E−53 8.54E−52

FANCF 2.1997 2.941967 0.742266 6.75E−36 4.22E−35

DNA2 0.726904 1.54369 0.816786 1.81E−45 2.01E−44

EXO1 0.411267 1.951769 1.540502 5.77E−58 3.44E−56

FANCA 0.433598 1.081486 0.647887 3.35E−40 2.48E−39

FANCD2 1.073689 1.915102 0.841413 4.54E−41 3.63E−40

FAAP24 1.185788 1.891448 0.705661 1.12E−51 1.61E−50

FAAP100 2.666604 3.341689 0.675085 1.02E−31 5.22E−31

BRIP1 0.436727 1.224791 0.788064 1.27E−42 1.21E−41

LIG3 1.678692 2.275165 0.596474 5.62E−27 2.08E−26

PRPF19 5.398201 6.038054 0.639853 6.47E−32 3.50E−31

SWI5 3.199491 3.706935 0.507444 1.79E−25 6.16E−25

GEN1 0.859216 1.376169 0.516953 4.17E−33 2.39E−32

NEIL3 0.164244 1.061309 0.897066 1.62E−58 1.62E−56

POLQ 0.214743 0.890601 0.675859 3.48E−51 4.64E−50

BRCA2 0.444422 0.949933 0.50551 4.36E−34 2.56E−33

SEM1 2.391233 2.962014 0.570781 2.77E−31 1.38E−30

UBE2T 1.724791 4.250674 2.525883 5.87E−64 1.17E−61

CHEK2 1.440398 2.008462 0.568064 4.72E−25 1.52E−24

BARD1 1.261635 1.977508 0.715873 7.70E−33 4.28E−32

PNKP 2.389707 2.996326 0.606618 2.99E−25 9.98E−25

POLD1 1.86593 2.562465 0.696535 7.76E−26 2.72E−25

POLE2 0.856138 1.648147 0.792009 3.33E−48 3.92E−47

EME2 1.004433 1.71542 0.710987 4.30E−24 1.32E−23

RPA3 2.432154 3.027863 0.595709 1.41E−38 1.00E−37

PRKDC 3.823971 4.343951 0.519981 3.63E−13 7.18E−13

EME1 0.365843 1.262187 0.896343 8.87E−56 2.53E−54

(Continued)
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relationship between risk score and survival duration after breast

cancer diagnosis was displayed by a scatter plot (Figures 2D, E).

These results revealed that patients with higher risk scores live

shorter after a breast cancer diagnosis. The risk heatmap was

drawn to validate the expression level of significant prognostic

genes in the tumor tissues of high- and low-risk patients.

According to the risk heatmap, RBBP8 was downregulated in

the high-risk group, indicating its tumor suppression potential

in breast cancer, and UBE2A acted as a tumor-accelerating gene

because it was upregulated in the high-risk group (Figure 2F).
Screening prognostic factors and
constructing a predictive model for
OS of breast cancer patients

Univariate Cox regression analysis was performed with a

risk score and other clinical factors to investigate their

prognosis prediction value. Age [hazard ratio (HR) = 1.033,

P < 0.001], estrogen receptor (HR = 0.670, P = 0.048),
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progesterone receptor (HR = 0.672, P = 0.037), pathologic

stage (stage III vs. stage I, HR = 3.115, P < 0.001; stage IV vs.

stage I, HR = 10.534, P < 0.001), T stage (T4 vs. T1, HR = 4.608,

P < 0.001), M stage (M1 vs. M0, HR = 6.657, P < 0.001), N stage

(N1 vs. N0, HR = 1.538, P = 0.048; N2 vs. N0, HR = 2.725, P <

0.001; N3 vs. N0, HR = 5.290, P < 0.001), and risk score (HR =

1.418, P < 0.001) were correlated with OS of breast cancer

patients (Figure 3A). Multivariate Cox regression analysis of

these clinical features showed that age (HR = 1.028, P < 0.001),

pathologic stage (stage IV vs. stage I, HR = 7.895, P = 0.004),

and risk score (HR = 1.397, P < 0.001) were independent risk

factors for survival (Figure 3B).

Moreover, we assessed the feasibility of each prognostic

predictor to discriminate between alive or dead patients using

the AUC values in the ROC curve. The AUC of risk score was

more significant than age, stage, and T stage in both 1 and 5

years. The AUC of risk score was similar to T stage in 3 years and

larger than any other clinical features, indicating that risk score

was a better prognostic predictor than other clinical features

(risk score AUC = 0.812, 0.717, and 0.728 for 1, 3, and 5 years,

respectively) (Figures 3C–E).
TABLE 1 Continued

Gene conMean treatMean logFC P-value FDR

XRCC2 0.562176 1.334904 0.772728 4.22E−41 3.52E−40

CETN2 4.726436 5.334299 0.607863 3.84E−31 1.87E−30

PARP1 4.265424 5.342225 1.076801 8.45E−56 2.53E−54

RECQL4 1.025358 2.749565 1.724207 6.88E−58 3.44E−56

POLB 2.552774 3.243129 0.690355 1.76E−23 5.35E−23

APEX2 3.109617 3.825526 0.715909 1.37E−40 1.06E−39

NUDT1 2.161085 2.932469 0.771384 7.94E−31 3.69E−30

RAD54L 0.433436 1.578687 1.145251 2.63E−54 5.85E−53

FANCG 2.201891 2.805572 0.603681 2.58E−27 9.94E−27

NABP2 3.570932 4.278414 0.707482 6.95E−49 8.69E−48

NTHL1 2.044396 2.919381 0.874986 2.58E−29 1.12E−28

REV3L 2.545592 1.732446 −0.81315 1.86E−37 1.20E−36

PCNA 5.043073 6.284849 1.241775 1.00E−52 1.54E−51

FANCI 1.405207 2.723608 1.318401 2.54E−54 5.85E−53

FEN1 2.723662 4.02405 1.300388 1.21E−53 2.42E−52

MPG 3.375279 4.065658 0.690379 1.53E−26 5.48E−26

RAD51 0.647756 1.967774 1.320018 2.50E−57 1.00E−55

LIG1 2.062727 2.940332 0.877605 7.01E−32 3.69E−31

BRCA1 1.10724 1.666588 0.559348 8.74E−23 2.53E−22

LogFC, log2 (fold change); FDR, false discovery rate.
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A nomogram was drawn to display the constructed

prognostic model for breast cancer patients. Gender, age,

estrogen receptor, progesterone receptor, tumor stage, T and

N stages, and risk score were selected to establish the nomogram

(Figure 3F). Results revealed that the C-index of the constructed

nomogram was 0.810. Figures 3G–I display the calibration curve

of the nomogram in 1, 3, and 5 years. The C-index and

calibration curve demonstrated that the nomogram could

partially predict the prognosis of breast cancer patients.
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Correlation analysis between clinical
features and DNA repair-related
gene predictor

According to the number of categories of clinical features, we

applied a t-test or Kruskal–Wallis test to evaluate the

correlations between the risk score or expression level of 11

prognostic DNA repair genes and clinical features. The results

showed that the expression level of PARP3, ENDOV, and
A

B

C

FIGURE 1

The expression level of differentially expressed genes (DEGs) between the normal and tumor groups. (A) The heatmap shows the expression
levels of DEGs; downregulated genes are shown in green, and upregulated genes are presented in red. (B) The volcano plot presents the
expression levels and expression fold changes of DEGs; one downregulated gene is shown as a green dot; 55 unregulated genes are presented
as red dots. (C) The box bar presents the expression levels of DEGs in normal and tumor tissues.
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UBE2A was distributed distinctively between men and women

(P = 0.031, 0.021, 0.004, Supplementary Figure S2A). The

expression level of ENDOV, FAAP20, MRE11, PARP3,

RAD50, RBBP8, RPA3, RRM2B, UBE2A, and UBE2V2 and the

risk scores were distributed distinctively between the different

races (P = 0.002, 1.653e−11, 0.009, 0.046, 1.296e−19, 1.921e−05,

2.942e−06, 4.286e−09, 7.451e−05, 0.011, 0.021) (Supplementary

Figure S2B). The expression level of RRM2B, RPA3, PARP3, and

RAD50 was increased with the ascending age of patients
Frontiers in Oncology 09
(Supplementary Figure S2C). The expression level of RBBP8

decreased with the increasing age of patients. In estrogen

receptor-positive breast cancer patients, the expression level of

RRM2B, RPA3, RBBP8, RAD50, PARP3, ENDOV, DDB2, and

FAAP20 was higher than in estrogen-negative breast cancer

patients. In estrogen receptor-negative breast cancer patients,

the expression level of UBE2V2, UBE2A, and MRE11 was higher

than in estrogen-positive patients (Supplementary Figure S2D).

In progesterone receptor-positive breast cancer patients, the
A B

D
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C

FIGURE 2

DNA repair genes and Kaplan–Meier curve forest plot of the hazard ratio for the high- and low-risk groups. Breast cancer patients were
stratified into high- and low-risk groups using risk scores counted by the expression level of prognosis-related DNA repair genes for
analysis. (A) Forest plot of 30 prognosis-related DNA repair genes retrieved using univariate Cox regression. (B) Forest plot of 11
prognosis-related genes retrieved using multivariate Cox regression model after optimizing by the AIC value. (C) KM curve of OS for breast
cancer patients in the high- and low-risk groups stratified by the median of risk scores. (D) The dotted line displays the individual inflection
point of the risk score curve and shows that patients are divided into low- and high-risk groups using median risk score; red dots
represent patients with high risk; green dots represent patients with low risk. (E) Risk score scatter plot of the high- and low-risk patient
groups; red dots show dead patients; green dots show alive patients; the survival time of dead patients decreased with the risk score
ascending. (F) Risk score heatmap of 11 prognosis-related DNA repair genes; the expression level of 11 DNA repair genes increased with
color varied from green to red.
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expression level of PARP3, RAD50, ENDOV, FAAP20, RRM2B,

DDB2, RBBP8, and RPA3 was higher than in progesterone

receptor-negative breast cancer patients. In progesterone

receptor-negative breast cancer patients, the expression level of

UBE2V2 and UBE2A was higher than in patients with

progesterone receptor-positive breast cancer. Furthermore, the

risk score was higher in patients with progesterone receptor-

negative breast cancer than in positive patients, which might

indicate that PR-negative breast cancer leads to a higher risk of

death in patients (Supplementary Figure S2E). The expression

level of PARP3, RBBP8, and DDB2 was higher in breast cancer

patients withoutHER2 receptors than in patients positive for the

HER2 receptor. The risk score was higher in HER2-positive

patients (Supplementary Figure S2F). The expression level

decreased with advanced clinical stage (P = 7.397e−04 and

8.969e−04, respectively). The protective role of RBBP8 and

PARP3 in developing breast cancer, implied by utilizing

multivariate Cox regression, was validated. The risk score was

higher in advanced pathologic stage patients than in elementary

pathological stage patients (P = 8.231e−05), implying that the

advanced pathology stage plays a dangerous role in breast cancer

patients with the development of disease (Supplementary Figure

S2G). The expression level of RBBP8 decreased with ascending T

stage, implying its protective role for the breast cancer patient.

The expression level of FAAP20 was increased with ascending T

stage, indicating its important role in tumor growth. The risk

score was increased with the ascending of T stage. It means that

patients with a lower T stage have a better prognosis

(Supplementary Figure S2H). The expression level of RBBP8

was lower in M1-stage breast cancer patients than in M0-stage
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patients. Accordingly, RBBP8 may prevent breast cancer cells

from organ metastasis (Supplementary Figure S2I). The

expression level of DDB2, RPA3, RAD50, RRM2B, and UBE2A

was higher in breast cancer tissues with lymph node metastasis

compared with breast cancer tissues without lymph node

metastasis, which was estimated by the distribution of their

expression level between N0 and N1–N3 stages. Similarly, the

risk score increased with a higher N stage (Supplementary

Figure S2J).
External validation of risk score

The risk score for each breast cancer patient in the validation

set was estimated according to a formula constructed by the data

downloaded from the TCGA database and the expression level

of prognostic DNA repair genes in the GSE20685 dataset. The

patients in GSE20685 were divided into high- and low-risk

groups according to the median risk score. The difference in

OS between the high- and low-risk groups was statistically

significant (Figure 4A) (log-rank test P = 5.484e−03). The

AUC of the ROC curve estimated the feasibility of prognosis

prediction for risk score time-dependent at 1, 2, and 3 years

(Figure 4B). Risk curves and prognosis hazard heatmaps were

drawn to analyze the risk role of sorted prognostic DNA repair

genes (Figures 4C–E). Univariate and multivariate Cox

regression revealed that risk score is an independent prognosis

indicator for breast cancer patients (Figures 4F, G). A similar

result could be drawn for the GSE20685 cohort compared with

the TCGA breast cancer cohort.
TABLE 2 Prognosis-related DNA repair genes.

ID coef HR HR.95L HR.95H P-value

UBE2A 0.375195 1.455275 0.94118 2.25018 0.091539

RBBP8 −0.45532 0.634247 0.507224 0.79308 6.52E−05

RAD50 0.423817 1.527782 1.058641 2.204825 0.023547

FAAP20 0.278518 1.32117 0.90733 1.923766 0.1463

RPA3 0.707966 2.029859 1.364873 3.018834 0.000472

ENDOV −0.44476 0.640979 0.450874 0.911239 0.01322

DDB2 −0.27012 0.76329 0.529641 1.100011 0.147412

UBE2V2 −0.34671 0.70701 0.492544 1.014859 0.06011

MRE11 0.47965 1.615509 1.090373 2.393557 0.016788

RRM2B 0.358795 1.431603 1.058847 1.935585 0.019725

PARP3 −0.45253 0.636017 0.478138 0.846027 0.00188

Eleven DNA repair genes were related to the overall survival of breast cancer patients and applied to calculate the risk scores which stratify the patients into high - and low-risk groups.
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FIGURE 3

Retrieving survival indicators, evaluating their discrimination, and constructing a prognostic nomogram. (A) Forest plot for risk score and clinical
features in the univariate Cox proportional risk regression model. (B) Forest plot for risk score and clinical features in the multivariate Cox
proportional risk regression model. (C) Receiver operating characteristic (ROC) curves for evaluating the discrimination of survival indicators in 1
year. (D) ROC curves to evaluate the discrimination of survival indicators in 3 years. (E) ROC curves for evaluating the discrimination of survival
indicators in 5 years. The risk score has better prognosis discrimination feasibility than other clinical features; the discrimination feasibility
increased with the ascending of AUC. (F) Nomogram for breast cancer with gender, age, clinical stage, T and N stages, estrogen receptor,
progesterone receptor, and risk score calculated by prognosis-related DNA repair genes predicting survival in 1, 3, and 5 years. (G) Calibration
curves of the prognostic nomogram prediction in 1 year. (H) Calibration curves of the prognostic nomogram prediction in 3 years. (I) Calibration
curves of the prognostic nomogram prediction in 5 years.
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Analysis of the immune filtration score
and anticarcinogen sensitivity

Based on the “ssGSEA” method, included in the R package

“GSVA,” the enrichment scores of 16 immune cell subgroups

and 13 immune functions were estimated. Two kinds of immune

cell subpopulations (macrophages and Tregs) showed higher

scores in the high-risk group than in the low-risk group. IDC

immune cells showed a higher score in the low-risk group than

in the high-risk group (Figure 5A). Furthermore, the immune

functions of two types (APC cosimulation and T-cell co-
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inhibition) revealed a higher score in the high-risk group.

Type II IFN responses were higher in the low-risk group

(Figure 5B). CIBERSORT analysis indicated that risk score was

positively correlated with activated CD4 memory T cells, gamma

delta, and macrophages M2. Nonetheless, the risk score was

negatively correlated with B cells naive, regulatory T cells, and

NK cells activated (Figures 5C, D). The ESTIMATE evaluation

explained that the distinction of ESTIMATE score, immune

score, stromal score, and tumor purity between the high- and

low-risk groups was statistically insignificant (P > 0.05)

(Figure 5E). The expression level of immune checkpoint genes
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FIGURE 4

Validating risk score calculated by prognosis-significant DNA repair genes in GSE20685. (A) Kaplan–Meier analysis of patients from the high-
and low-risk groups. (B) ROC curve of the risk score in 1, 3, and 5 years. (C) Risk score heatmap of 10 prognosis-related DNA repair genes; the
expression level of eight DEGs increased with color varied from green to red. (D) Risk score scatter plot of the high-risk and low-risk patient
groups. (E) The dotted line displays the individual inflection point of the risk score curve. (F, G) Forest plot of univariate and multivariate Cox
regression for prognosis indicators including risk score.
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FIGURE 5

Box plot for the single-sample gene set enrichment analysis (ssGSEA) immune score, CIBERSORT immune cell fraction, and ESTIMATE immune
filtration analysis between patients in the high- and low-risk groups categorized by a median risk score. (A) The scores of 16 immune cells are
estimated by ssGSEA. (B) The scores of 13 immune-related functions are calculated by ssGSEA. (C) The fraction of each immune cell is
estimated by CIBERSORT. (D) Linear correlation analysis between the fraction of each immune cell and risk score. (E) ESTIMATE score, immune
score, stromal score, and tumor purity. (F) The expression level of immune checkpoint genes is statistically different between the high- and low-
risk breast cancer groups. NK, natural killer; DCs, dendritic cells; iDCs, immature DCs; pDCs, plasmacytoid dendritic cells; TIL, tumor-infiltrating
lymphocyte; CCR, cytokine–cytokine receptor; APC, antigen-presenting cell. Adjusted P-values are shown as ns (not significant), *P < 0.05,
**P < 0.01, ***P < 0.001.
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was expressed differently between breast cancer patients in the

high- and low-risk groups (Figure 5F). The expression level of

ADORA2A, TNFRSF18, TNFRSF14, TNFRSF25, TMIGD2,

TNFRSF4, TNFRSF8, VTCN1, BTNL2, CD160, and CD44 was

higher in the low-risk group. However, the expression level of

TNFRSF9, CD86, HAVCR2, PDCD1LG2, ICOS, TNFSF4, CD80,

and CD28 was higher in the high-risk group. These

results indicated the response to immune checkpoint

inhibitor treatment.

Anticarcinogen sensitivity analysis demonstrated that

vinorelbine, rapamycin, paclitaxel, gemcitabine, imatinib,

bexarotene, docetaxel, etoposide, methotrexate, and

camptothecin were equipped with higher IC50 levels in the

high-risk group. This analysis revealed that patients in the

low-r i sk group could be more sens i t ive to these

anticarcinogens (Supplementary Figures S3A–L).
Breast cancer molecular subgroup
divided by DNA repair genes

To investigate the characteristics of DNA repair genes in

breast cancer, we divided the TCGA breast cancer samples into

different subgroups depending on the expression similarity of 11

DNA repair-related genes utilizing the R package software

“ConsensusClusterPlus.” Based on the expression similarity of

DNA repair-related genes, k = 3 appeared to be an adequate

choice, with clustering stability rising from k = 2 to 9 for the

TCGA datasets. The subgroups were named cluster 1, cluster 2,

and cluster 3 (Figures 6A–D). The PCA analysis indicated that

the total gene expression matrix could be validated by the

consensus cluster of breast cancer samples by the expression

level of prognostic DNA repair genes (Figure 6E). The Kaplan–

Meier analysis showed that the OS of breast cancer patients in

cluster 3 was the lowest among the three clusters (Figure 6F) (P =

3.691e−05). Further analysis revealed that histology types, N and

T stages, progesterone receptor, estrogen receptor, and age

differed significantly between these three subgroups (Figure 6G).
Expression levels of DEGs in breast
cancer tissues and cell lines

To verify the sorted DEGs between breast cancer samples

and normal breast tissues, RT-qPCR was performed on six

breast cancer specimens with corresponding para-carcinoma

tissues. The RT-qPCR results showed that the expression levels

of nine DEGs, namely, UBE2T, NEIL3, EXO1, RECQL4, RAD51,

EME1, PARP1, RAD54L, and FANCI, retrieved from the TCGA

database, were upregulated in the tumor group compared with

the adjacent normal tissues (Figures 7A–I). The breast cancer

cell lines (MCF7, T47D, and MDA-MB-231) showed the same
Frontiers in Oncology 14
results as the normal breast cell line MCF-10a (Supplementary

Figures S4A–I). These results revealed that DNA repair was

strengthened when normal tissues were translated into tumor

tissues. These genes should be validated in larger-scale clinical

studies in the future. The molecular biological function of these

genes deserves further exploration.
Discussion

Cells store vital genetic information in DNA whose integrity

and stability impact their viability. DNA damage factors,

including chemical substances and iron radiation, might

produce fatal effects on cells. Many DDR mechanisms have

been developed to defend against these factors (24–26).

Malignant transformation of cells is usually accompanied by

genome instability, which leads to the accumulation of

mutations in genetic material. The most famous mutation is

BRCA1/2, whose upstream or downstream gene mutation leads

to the “BRCAness” phenotype (13, 27). In normal cells, DNA

repair prevents malignant transformation (7). However, with the

origin of the tumor and its expansion or metastasis, DDR

becomes the mechani sm of chemores i s tance and

radioresistance for cancer cells, which can lead to tumor

relapse after treatment (28, 29). Compared with cells in

normal tissues, some DDR pathways may have become

inactive, making the left DDR pathway more active (29).

Synthetic lethality is a widely accepted conception obtained

from this phenomenon, which showed that inhibition of one

active DNA repair pathway kills the efficiency of cancer cells

when another DNA repair pathway has become inactive (30–

32). Herein, we screened 11 breast cancer-related DNA repair

genes that could efficiently predict breast cancer prognosis.

Furthermore, a functional analysis of immune cells and

immune pathways was performed according to the groups

stratified by this model. The genes sorted could be potential

diagnostic markers or treatment targets for further research.

We retrieved the breast cancer dataset from the TCGA

RNA-seq database and found that 55 DNA repair genes were

unregulated, while only one was downregulated in breast cancer

compared with normal breast tissues. A total of 11 DNA repair

genes, namely, UBE2A, RBBP8, RAD50, FAAP20, RPA3,

ENDOV, DDB2, UBE2V2, MRE11, RRM2B, and PARP3, were

involved in the prognostic model for breast cancer patients. The

risk score for breast cancer patients proved to be valuable in

determining the feasibility of survival distinction. We visualized

and validated the prognostic model as a nomogram utilizing the

C-index and the calibration curve.

The PARP family includes 17 members and involves many

biofunctions, including DNA repair, apoptosis, histone binding,

and synthetic lethality. Presently, PARPi mainly concentrates on

parp1 protein, a nuclear enzyme. When a single-strand break
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FIGURE 6

The R “ConsensusClusterPlus” package is applied to stratify breast cancer samples into three clusters equipped with different prognoses.
(A) Consensus matrix legend. (B) Consensus clustering matrix for k = 3. (C) Consensus clustering cumulative distribution function (CDF)
for k = 2–9. (D) Relative change in AUC of CDF. (E) PCA of the expression profiles of DNA repair genes from clusters 1, 2, and 3. (F)
Kaplan–Meier curve of OS of patients between clusters 1, 2, and 3. (G) Heatmap of clinical features and three clusters of breast cancer
patients. *P < 0.05, ***P < 0.001.
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occurs in DNA, PARP1 is activated, and the broken wound on

the DNA strand is recognized. Then, XRCC1, POLb, and DNA

ligase III are recruited into the broken wound, after which the

SSB is repaired. Some parp1 inhibitors, including rucaparib and

niraparib, are successful PARP-targeted treatments (33, 34).

Parp1 is responsible for more than 90% of the work for DNA

SSB repair (35). Herein, we discovered that PARP3 expression

plays a protective role in the development of breast cancer (HR <

1). The role of PARP3 in DNA repair remains unclear. PARP3

can recruit the aprataxin-like factor (APLF) to the DNA damage

site (36). The interaction between APLF and PARP3 accelerates

the recruitment or retention of XRCC4/DNA ligIV at the DNA

break site, which promotes the efficiency of DSB repair.

Therefore, the biofunction of PARP3 in the progression of

breast cancer deserves further research.

RAD50 and MRE11 participate in forming the MRN

(MRE11-RAD50-NBS1) complex, playing an essential role in

DDR (37). The MRN complexes worked as sensors and
Frontiers in Oncology 16
responders for DNA damage, repairing DSBs, replication

fork (RF) collapse, dysfunction of telomeres, and virus

infection (38). The initiation of DNA repair is usually

accompanied by a cell cycle halt. The MRN complex

activates ATM and ATR proteins which trigger cell cycle

checkpoint response and play a key role in subsequent DNA

repair pathways (30, 39, 40). Homologous recombination (HR)

and NHEJ are the two main pathways to repair DSB, and they

compete with each other when DSB repair is activated. The

activity of the MRN complex is prone to choose the HR

pathway using the MRE11 endonuclease cut, which could

inhibit NHEJ by producing 3′ ssDNA overhangs. Then, HR

was triggered by MRE11 exonuclease and EXO1/BLM

bidirectional resection (41). The collapse of the replication

fork is another reason for DNA damage, which ATR primarily

regulates (42). The MRN complex plays a dual role in treating

RF collapse. It could bind to the stalled RF, mediate ATR

activation, and promote HR initiation (43–45).
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FIGURE 7

RT-qPCR validation of the relative expression level of DEGs between breast cancer and adjacent normal tissues. Total RNA is isolated from six
pairs of clinical breast cancer and adjacent normal tissues. Relative mRNA expression was analyzed by qPCR. (A) UBE2T, (B) NEIL3, (C) EXO1, (D)
RECQL4, (E) RAD51, (F) EME1, (G) PARP1, (H) RAD54L, and (I) FANCI.
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Although the MRN complex may lead to fork degradation

(46), knocking out an arbitrary component of MRN in mice is

fatal to embryos (47–49). Similarly, mutation of any component

of MRN leads to genome instability and is the origin of many

diseases, including ataxia-telangiectasia-like disorder (ATLD)

and Nijmegen break syndrome (50). As a component of the

MRN complex, RAD50 mutates in acute myeloid leukemia (51),

Burkitt lymphoma (52), and endometrial carcinoma (53).

Many studies have focused on the mechanism of DDR in

both normal and cancer cells. Some creative DNA repair gene-

targeted treatments have been invited to benefit breast cancer

patients. We excavated the TCGA database to provide a list of

DNA repair genes related to prognosis to predict prognosis in

breast cancer patients. This prognostic model may contribute to

the tertiary prevention of breast cancer. We hope that our study

can provide physicians and scientists with a new horizon for

breast cancer research.

This study has some shortcomings. First, the number of

patients is limited, which might affect the precision of the

prognostic model. A larger cohort of breast cancer patients

could be involved in the construction of a better prognostic

model. Second, Cox regression is a conventional method for

clinical research that has been widely applied for 10 years.

Artificial intelligence (AI) has been involved in medical

applications nowadays. Combining the prognostic model and

AI could provide us with a more precise survival prediction in

the future. Third, we should have estimated the degree of

deficiency of DNA repair based on the expression level of the

DNA repair gene. DNA repair pathways may be strengthened or

impaired in tumor cells, which could be a valuable potential

indicator for survival prediction.
Conclusions

DEGs between breast cancer and normal breast samples

were investigated and validated using bioinformatic analysis and

qPCR experiments. Eleven prognosis-related DNA repair gene

signatures were retrieved, which could construct a novel survival

prediction model and divide breast cancer patients into high-

and low-risk groups. The different survival rates between the two

groups were statistically significant. Immune analysis and

anticancer drug sensitivity analysis were performed between

the two groups. Finally, the tumor subgroups were clustered

using the expression level of prognostic DNA repair genes.
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SUPPLEMENTARY TABLE 1

Clinicalpathological data of patients from TCGA database.

SUPPLEMENTARY TABLE 2

The annotation of 16 immune cells and 13 functions in ssGSEA.

SUPPLEMENTARY TABLE 3

The sequences of qPCR primers.

SUPPLEMENTARY FIGURE 1

Differentially expressed DNA repair genes are applied in GO and KEGG

enrichment analysis. (A, D) GO and KEGG enrichment analysis were shown
in bar plot respectively. The significant degree of enrichment was measured

by length of bar and depth of color. (B, E)GO and KEGG pathway enrichment
analyses were presented in circle images respectively. The inside of circle

represents the Z-score. The red color represented that the increased

expression of genes contributed to significant enrichment primarily. The
blue color represented that the decreased expression of gene contributed

to significant enrichment primarily. The outer circle standed for various
pathways, in which the down-regulated genes presented as blue dots and

the up-regulated genes presented as red dots. (C, F) GO and KEGG
Frontiers in Oncology 18
enrichment results were presented in heatmaps respectively. The up-
regulated genes were presented in red color. The down-regulated genes

were presented in blue color.

SUPPLEMENTARY FIGURE 2

Box plot for displaying relationship between prognostic DNA repair genes
or risk score and clinical features. (A) Gender; (B) Race; (C) Age;(D)
Estrogen receptor; (E) Progesterone receptor; (F) HER2 receptor; (G)
Stage; (H) T stage; (I) M stage; (J) N stage.

SUPPLEMENTARY FIGURE 3

The evaluated half maximal inhibitory concentration (IC50) for each of 16

anti-cancer drugs between high-risk group and low risk group were
displayed in box plots. (A) Bexarotene; (B) Camptothecin; (C) Cisplatin;
(D) Docetaxel; (E) Etoposide; (F) Gemcitabine;(G) Imatinib; (H)
Methotrexate; (I) Paclitaxel; (J) Rapamycin; (K) Vinorelbine; (L)
Vorinostat; Each dot stands for the estimated IC50 value of

corresponding drug in breast cancer sample. The higher IC50 is the less
sensitive breast cancer is to this drug.

SUPPLEMENTARY FIGURE 4

RT-qPCR validation of relative expression level of differentially expressed
DNA repair genes between breast cancer cell lines and normal breast cell

line. Total RNA was isolated from breast cancer cell lines (MCF7, T47D and
MDA-MB-231) and normal breast cell line (MCF-10a). Relative mRNA

expression was analyzed by qPCR. (A) UBE2T; (B) NEIL3; (C) EXO1;(D)
RECQL4; (E) RAD51; (F) EME1; (G) PARP1; (H) RAD54L; (I) FANCI.
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Glossary

PARPi poly ADP-ribose polymerase inhibitor

AIC Akaike information criterion value

UBE2A ubiquitin conjugating enzyme E2 A

RBBP8 retinoblastoma-binding protein 8

FAAP20 Fanconi anemia core complex-associated protein 20

RPA3 replication factor A protein 3

ENDOV endonuclease V

DDB2 damage-specific DNA binding protein 2

UBE2V2 ubiquitin-conjugating enzyme E2 variant 2

MRE11 Meiotic recombination 11 homolog A

RRM2B ribonucleotide reductase M2 B

BRCA1 breast cancer 1

BRCA2 breast cancer 2

PD-1 programmed death 1

PD-L1 programmed cell death-ligand 1

HER2 human epidermal growth factor receptor-2

PCA principal component analysis

XRCC3 X-ray repair complementing defective repair in Chinese
hamster cells 3

DNPH1 2′- deoxynucleoside 5′-phosphate N-hydrolase 1

RNF4 ring finger protein 4

XRCC4 X-ray repair complementing defective repair in Chinese
hamster cells 4

ERCC1 excision repair cross-complementing 1

RAD23B RAD23 homolog B

ALKBH2 AlkB homolog 2

HLTF helicase-like transcription factor

UBE2A recombinant ubiquitin conjugating enzyme E2A

XRCC1 Xray repair complementing defective repair in Chinese
hamster cells 1

RBBP8 retinoblastoma binding protein 8

NUDT18 nudix hydrolase 18

PNKP polynucleotide kinase 3′-phosphatase

FAAP20 Fanconi anemia core complex-associated protein 20

RPA3 replication protein A3

DDB2 damage-specific DNA binding protein 2

POLL DNA polymerase lambda

(Continued)
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RAD54B RAD54 homolog B

ERCC5 excision repair cross-complementing rodent repair deficiency
complementation group 5

UBE2V2 ubiquitinconjugating enzyme E2 variant 2

MPG N-methylpurine DNA glycosylase

RRM2B ribonucleoside-diphosphate reductase subunit M2 B

PARG poly ADP-ribose glycohydrolase

PARP3 poly ADP-ribose polymerase 3

FAAP20 Fanconi anemia core complex-associated protein 20

RPA3 replication protein A3

PR progesterone receptor

IDC interdigitating cell

IFN interferon

NK natural killer

ADORA2A adenosine A2a receptor

TNFRSF18 TNF receptor superfamily member 18

TNFRSF14 TNF receptor superfamily member 14

TNFRSF25 TNF receptor superfamily member 25

TMIGD2 transmembrane and immunoglobulin domain containing 2

TNFRSF4 TNF receptor superfamily member 4

TNFRSF8 TNF receptor superfamily member 8

VTCN1 V-Set domain containing T-cell activation inhibitor 1

BTNL2 butyrophilin-like 2

TNFRSF9 TNF receptor superfamily member 9

HAVCR2 hepatitis a virus cellular receptor 2

PDCD1LG2 programmed cell death 1 ligand 2

ICOS inducible T-cell costimulator

TNFSF4 TNF superfamily member 4

UBE2T ubiquitin conjugating enzyme E2 T

NEIL3 Nei-like DNA glycosylase 3

EXO1 exonuclease 1

RECQL4 RecQ-like helicase 4

EME1 essential meiotic structure-specific endonuclease 1

PARP1 poly ADP-ribose polymerase 1

RAD54L RAD54-like

FANCI FA complementation group I

ATM ataxia-telangiectasiamutated gene

ATR ataxia-telangiectasia and rad-3-related protein

(Continued)
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BLM BLM RecQ-like helicase

SSB single-strand break

DSB double-strand break

BER base excision repair

NER nucleotide excision repair

MMR mismatch repair

HRR homologous recombination repair

NHEJ non-homologous end joining

DDR DNA damage repair

FPKM fragments per kilobase of exon model per million mapped
fragments

DEGs differentially expressed DNA repair genes

FDR false discovery rate

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

ROC receiver operating characteristic

AUC area under the curve

GSVA gene set variation analysis

ssGSEA single-sample gene set enrichment analysis

IC50 inhibitory concentration

MF molecular function

OS overall survival

APLF aprataxin-like factor

RF replication fork

ATLD ataxia-telangiectasia-like disorder

AI artificial intelligence
F
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