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Radiotherapy remains the major therapeutic intervention for tumor patients.

However, the hypoxic tumor microenvironment leads to treatment resistance.

Recently, a burgeoning number of nano-radiosensitizers designed to increase the

oxygen concentration in tumors were reported. These nano radiosensitizers

served as oxygen carriers, oxygen generators, and even sustained oxygen

pumps, attracting increased research interest. In this review, we focus on the

novel oxygen-enrich nano radiosensitizers, which we call oxygen switches, and

highlight their influence in radiotherapy through different strategies. Physical

strategies-based oxygen switches carried O2 into the tumor via their high

oxygen capacity. The chemical reactions to generate O2 in situ were triggered

by chemical strategies-based oxygen switches. Biological strategies-based oxygen

switches regulated tumor metabolism, remodeled tumor vasculature, and even

introduced microorganisms-mediated photosynthesis for long-lasting hypoxia

alleviating. Moreover, the challenges and perspectives of oxygen switches-

mediated oxygen-enrich radiotherapy were discussed.
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1 Introduction

Radiotherapy remains a major treatment for tumor patients (1). It is reported that 50% of

tumor patients required radiotherapy (2). Oxygen serves as the fuel to stabilize DNA damage

caused by radiation and prevent a DNA self-repair process (3). However, the efficacy of

radiotherapy has been severely limited due to the hypoxia status in most solid tumors (4).

Hypoxia not only leads to limited treatment efficacy but also causes tumor recurrence and

metastasis after radiotherapy. The establishment of the hypoxia microenvironment is an

outcome for multiple reasons, including tumor cell proliferation, abnormal vascular
Abbreviations: PFC, perfluorocarbon; Hb. Perfluorocarbons; RBC, red blood cells; RBCM, red blood cell

membrane; Hf, Hafnium; Ce6, chlorin e6; RDT, radiodynamic therapy; CAT, catalase; EMs, E. coli membrane

vesicles; MnO2, manganese dioxide; NPs, nanoparticles; NO, nitric oxide; H2S, hydrogen sulfide; CO,

carbon monoxide.
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distribution, reprogrammed energy metabolism, etc. Oxygen-

enriched strategies are necessary for refueling cancer radiotherapy.

To relieve hypoxia in the tumor microenvironment, various

oxygen delivery strategies have been tested nowadays. Hyperbaric

oxygen (HBO) inhalation cannot meet the need for radiotherapy,

because the oxygen level only remained elevated for a short time (5).

What is worse, combining erythropoietin treatment and radiotherapy

for head and neck tumors resulted in significantly worse prognosis in

patients (6). This phenomenon presumably ascribes to that squamous

cell carcinoma tumor cells also express the erythropoietin receptor

(7). Artificial blood including perfluorocarbon and hemoglobin-based

oxygen-carrying solutions have been explored to increase the

effectiveness of radiotherapy in rodent tumors (8). But contentious

results for different doses and different schedules retarded clinical

translation. A more precise and intelligent oxygen delivery strategy

is needed.

To further improve the efficiency of radiotherapy, nano oxygen

modulators have raised global attention. As oxygen serves as the fuel

to fix radiation-induced DNA damage, radiotherapy could be boosted

by evaluating oxygen concentration. In this review, a variety of agents

introduced for oxygen modulation show magnifying effects for

radiotherapy. Thus, we collectively refer to these nano agents as
Frontiers in Oncology 02
“Oxygen Switch”, which allows precise and high performance in

reshaping the hypoxia microenvironment (Figure 1). The physical

strategies including hemoglobin-based and perfluorocarbon-based

oxygen carriers will be first introduced in this review, followed by a

detailed discussion of chemical strategies including in situ H2O2

catalytic decomposition and metallic oxide decomposition. Next, we

highlighted novel biological strategies such as in-situ photosynthesis

and tumor vasculature remodeling. The mechanism and applications

of these “oxygen switches” for radiotherapy enhancement are also

covered. Finally, the challenges and perspectives of oxygen switches

utilized in radiotherapy are presented.
2 Physical strategies

To relieve the hypoxia in the tumor microenvironment and

improve the efficacy of radiotherapy, delivering exogenous oxygen

into the tumor site as a radiosensitizer was first explored in the 1930s

(9). Physical strategies refer to directly delivering exogenous oxygen

via oxygen carriers without chemical or biological reactions. Though

physical only relieves hypoxia temporally, it is enough for the

radiation process via precise tumor targeting. To date,
A

B

FIGURE 1

The wrestling between tumor hypoxia and related alleviating strategies. (A) Tumor hypoxia remains established for multiple reasons, such as tumor cell
proliferation, abnormal vascular distribution, reprogrammed energy metabolism, and so on. Thus, physical strategies, chemical strategies, and biological
strategies are designed to relieve tumor hypoxia. (B) Oxygen switches increase O2 supply or decrease O2 consumption to combat treatment resistance
to radiotherapy.
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perfluorocarbons (PFCs) and hemoglobin (Hb) or their derivatives

are regarded as excellent oxygen carriers for their high oxygen

capacity and favorable biocompatibility, and emerging physical

strategies-based oxygen switches are established (Table 1).
2.1 PFC-based oxygen carriers

PFCs demonstrated an outstanding oxygen affinity due to their

fluorine atoms in the carbon skeleton (21). Of the high

biocompatibility and chemical stability, PFCs have been widely

used in the clinic, such as in organ transplantation and ultrasound

imaging. Once the high oxygen solubility of PFCs was found to

enable tumor hypoxia alleviation, PFC-based oxygen carriers were

developed to enhance radiotherapy (22). Wang et al. developed a

tumor-targeted 1H, 1H-perfluorooctylamine-modified hyaluronic

acid-coated perfluorocarbon oxygen carrier, O2@PFC@FHA

(perfluorooctylamine-modified hyaluronic acid) (10). For the

interaction between HA and CD44 and a large amount of oxygen

dissolved in the PFC core, O2@PFC@FHANPs not only improved the

tumor targeting but also enabled more oxygen to reach the hypoxic

area of the tumor. Moreover, the encapsulation of FHA reduced the

leakage of oxygen in circulation and thereby alleviating tumor

hypoxia and strengthening radiotherapy.

The platelet inhibition of PFC was neglected and might contribute

to increasing red blood cell infiltration into tumors and improving

oxygen supply. Zhou et al. screened all the perfluorocarbon

compounds and found that perfluorotributylamine (PFTBA)
Frontiers in Oncology 03
processed the strongest platelet inhibition effect (17). Thus, the

two-way O2 delivery system PFTBA@HSA was established, which

took advantage of the platelet inhibition effect of PFTBA (Figure 2A).

After the release of physical bound O2 (first step), PFTBA inhibited

platelet activation and led to an increase in red blood cell (RBC)

infiltration, which delivered oxygen to the tumor as the second step.

This work presented a simple but effective method to reverse the

resistance of tumor hypoxia to radiotherapy.

For the prolonged blood circulation time, endogenous biomimetic

methods were established (24). Gao et al. developed PFC@PLGA-

RBC membrane (RBCM) NPs, in which the PFC core showed

efficient loading of oxygen, as well as greatly prolonged blood

circulation time because of the coating of RBCM (18). The

treatment efficacy during radiotherapy was remarkably enhanced

for the greatly relieved tumor hypoxia. Furthermore, Yu et al.

reported a nano RBC is fabricated that replaces heme with

perfluorodecalin (FDC) and coated with RBCM (20). This method

enabled the delivery of FDC because it cannot be emulsified by any

FDA-approved emulsifiers.
2.2 Hemoglobin-based oxygen carriers

For the reversible and inherent oxygen-carrying capability of

hemoglobin (Hb), a higher Hb level helped improved the response

rate of radiotherapy (25). However, free Hb could not be directly

administrated for its poor stability, which breaks the redox

homeostasis and causes a severe systemic reaction. Thus, physical
TABLE 1 Physical strategies-based oxygen switches.

Oxygen
source

Oxygen
carrier

Agent Cancer cell types Advantage Ref.

Exogenous
oxygen

PFC O2@PFC@FHA
NPs

Colon cancer Safe and specific oxygen delivery (10)

Exogenous
oxygen

PFC PFCE@fCaCO3-
PEG

Colon cancer and breast
cancer

Chemically modulating tumor hypoxic and acidic microenvironments (11)

Exogenous
oxygen

Hb Cur@Hb Hepatocellular carcinoma Inhibit migration and vascular mimics (12)

Exogenous
oxygen

PFC PFC-Q1@PLGA Breast cancer Synergistic whole-body therapeutic responses (13)

Exogenous
oxygen

Hb Hb@Hf-Ce6 NPs Breast cancer RT-RDT in combination with immunotherapy (14)

Exogenous
oxygen

PFC pHPFON-NO/O2 Glioma On-demand temperature-controlled photothermal and oxygen-elevated
radiotherapy

(15)

Exogenous
oxygen

Hb Au-Hb@PLT Breast cancer Combination of oxygen carrier and radiosensitizer (16)

Exogenous
oxygen

PFC PFTBA@HSA Colon cancer and breast
cancer

Two-stage oxygen delivery (17)

Exogenous
oxygen

PFC PFC@PLGA-
RBCM

Breast cancer Effectively deliver oxygen into tumors (18)

Exogenous
oxygen

PFC mPEG–PLGA–
PFOA

Breast cancer Continuous supply of oxygen (19)

Exogenous
oxygen

PFC FDC@Glo NPs Colon cancer The first method for FDC delivery (20)
fron
RT, Radiotherapy; RDT, Radiodynamic therapy.
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encapsulation or chemical conjugation is conducted to overcome

these shortcomings.

Gao et al. reported that Hb and curcumin formed self-assembled

nanoparticles (12). The self-assembly process was driven by hydrophobic

forces and contributed to a higher cell absorption rate and lower

cytotoxicity than free curcumin. Combined with the radiosensitivity of

curcumin and the oxygen delivery of Hb, these nanoparticles effectively

enhanced the radiotherapy for hepatocellular in vivo.

Hafnium (Hf), a high-Z radiosensitizer, coordinated with chlorin

e6 (Ce6), and Hb was encapsulated to modulate the oxygen balance in

the hypoxic TME byWei et al. (14). The radioluminescence excited by

Hf under X-ray irradiation was used to activate Ce6 for ROS

generation by radiodynamic therapy (RDT). Such a multifunctional

nanoplatform in the combination of oxygen supply and radiotherapy-

RDT might provide a new therapeutic option for cancer eradication.
3 Chemical strategies

Oxygen can be generated in a large number of chemical reactions

in nature. However, producing O2 in vivo by decomposing
Frontiers in Oncology 04
oxygenated chemicals safely and steadily is not easy. Different kinds

of oxygen switches were developed, including an oxygen catalyzer or

being decomposed (Table 2).
3.1 Oxide-based oxygen generator

Early leakage of delivering exogenous O2 into the tumor site

remains a challenge for physical strategies. Thus, delivering the

precursors of oxygen to the hypoxic area and generating O2 in situ

is attractive.

Chen et al. utilized CuO nanoparticles to generate O2 under

microwave irradiation in the tumor microenvironment (38).

Decorated with MW sensitizer 1-butyl-3-methylimidazolium

hexafluorophosphate (IL) and radiosensitizer of Quercetin (Qu), the

mesoporous sandwich SiO2@ZrO2 nanoparticles (SiO2@ZrO2 NPs)

persistently released oxygen under MW irradiation, which

significantly increased the re-oxygenation ability of tumor cells.

Due to the reshaping of the tumor microenvironment, a high

inhibition rate of 98.62% was witnessed in the in vivo anti-

tumor experiment.
A

B

C

FIGURE 2

The fabrication of oxygen switches. (A) Schematic illustration of PFTBA@HSA preparation (17). Copyright© 2021, The Author(s). (B) Schematic illustration
of EMs preparation (3). Copyright© 2021, American Chemical Society. (C) Schematic illustration of CAT-SAHA@PLGA preparation (23). Copyright© 2021,
The Author(s).
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TABLE 2 Chemical strategies-based oxygen switches.

Oxygen
source

Chemical reaction Agent Cancer cell types Advantage Ref.

Endogenous
H2O2

Cu catalyzes the decomposition
reaction of H2O2

RuCu NPs Breast cancer Combine the intrinsic nature of high-Z elements
and the advantages of nanozymes

(26)

Endogenous
H2O2

MnO2 catalyzes the decomposition
reaction of H2O2

Bio-MnO2 NPs NSCLC Convert endogenic H2O2 to O2 and enhanced the
cGAS-STING activity

(27)

Endogenous
H2O2

MnO2 catalyzes the decomposition
reaction of H2O2

PVCL-Au-MnO2 NGs Pancreatic cancer “Full-process” sensitized tumor Radiotherapy (28)

Endogenous
H2O2

MnO2 catalyzes the decomposition
reaction of H2O2

UCNPs/CuS MnO2 Hepatocellular
carcinoma and colon
cancer

Destroy the reinforce the therapeutic effects of
radiotherapy

(29)

Endogenous
H2O2

Decomposition reaction of H2O2 Ce6@Leu Hepatocellular
carcinoma

LAP/GSH-driven disassembly and size shrinkage (30)

Endogenous
H2O2

Decomposition reaction of H2O2 PB reservoir and release
controller

Breast cancer Combination thermoradiotherapy (31)

Endogenous
H2O2

Pt catalyzes the decomposition
reaction of H2O2

PtCo nanosphere Lung cancer The hollow structure amplifies the catalytic reaction (32)

Endogenous
H2O2

MnO2 catalyzes the decomposition
reaction of H2O2

Mn-Doped Ag2Se
nanozymes

Breast cancer Precise radiotherapy that continuously produces
oxygen

(33)

Endogenous
H2O2

MnO2 catalyzes the decomposition
reaction of H2O2

MnFe2O4-PEG Breast cancer Relieve hypoxia and reduce GSH concentration (34)

Endogenous
H2O2

Pt catalyzes the decomposition
reaction of H2O2

BiPt-PFA Breast cancer Combination of photothermal therapy and
enhanced radiotherapy

(35)

Endogenous
H2O2

MnO2 catalyzes the decomposition
reaction of H2O2

HSA-MnO2-CQ NPs Bladder cancer Enhanced autophagy inhibition and radiation
sensitization

(36)

Endogenous
H2O2

MnO2 catalyzes the decomposition
reaction of H2O2

Cancer cell vesicle-coated
MnO2 nanoparticles

Breast cancer Induce cell cycle arrest in the S-phase and increases
the radio-sensitivity

(37)

CuO Decomposition reaction of CuO IQuCs@Zr-PEG NSPs Lung cancer Increase the reoxygenation capacity of tumor cells (38)

Endogenous
H2O2

CeO2 catalyzes the decomposition
reaction of H2O2

CuS@CeO2 Hepatocellular
carcinoma

Combination of self-supplied oxygen, photothermal
ability, and RT sensitive

(39)

Endogenous
H2O2

Pd catalyzes the decomposition
reaction of H2O2

Two-dimensional Pd@Au Breast cancer Sustainable and robust production of O2 (40)

Endogenous
H2O2

MnO2 catalyzes the decomposition
reaction of H2O2

MPDA-WS2
MnO2

Breast cancer oxygen self-supplementing (41)

Endogenous
H2O2

Pt catalyzes the decomposition
reaction of H2O2

Porous platinum
nanoparticles

Large cell lung cancer Combined advantages of a high-Z element and
oxygen generation capability

(42)

Endogenous
H2O2

Cu catalyzes the decomposition
reaction of H2O2

Cu2(OH)PO4

nanocrystals
Cervical carcinoma X-ray-triggered Fenton-like reaction (43)

Endogenous
H2O2

MnO2 catalyzes the decomposition
reaction of H2O2

ACF@MnO2 Breast cancer Tumor oxygenation and HIF-1 functional inhibition (23)

Endogenous
H2O2

Catalase catalyzes the
decomposition reaction of H2O2

ACF-CAT@Lipo Esophageal cancer Oxygen enrichment and HIF-1 inhibition (44)

Endogenous
H2O2

Pt catalyzes the decomposition
reaction of H2O2

AVPt@HP@M Colon cancer Relieving hypoxia, enhancing tumor apoptosis, and
X-ray-induced photodynamic therapy

(45)

Endogenous
H2O2

Catalase catalyzes the
decomposition reaction of H2O2

Catalase containing E.
coli membrane vesicles

Colon cancer Catalase protection and immune stimulation (3)

Endogenous
H2O2

MOF nanohybrid catalyzes the
decomposition reaction of H2O2

MOF-Au-PEG Glioma Enhance the radiotherapy effect and alleviate tumor
hypoxia

(46)

Endogenous
H2O2

Catalase catalyzes the
decomposition reaction of H2O2

131I-Cat/CpG/ALG hybrid
gel

Breast cancer Biocompatible components enable local tumor
treatments and systemic therapeutic responses

(47)

Exogenous
H2O2

Catalase catalyzes the
decomposition reaction of H2O2

CAT@liposome and
H2O2@liposome

Breast cancer Delivering catalase and exogenous H2O2 into
tumors

(48)

(Continued)
F
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3.2 Catalyzer-based oxygen generator

Due to the abnormal metabolism and redox homeostasis, a high

level of H2O2 is found in the tumor cells compared to normal cells. To

generate O2 via H2O2 decomposition, catalase (CAT) and nano-

enzyme-loaded oxygen switches were developed to enhance

radiotherapy in situ.

CAT generates oxygen in situ but may be degraded in vivo due to

the upregulated protease in the tumor. Zai et al. developed highly

protease-resistant E. coli membrane vesicles (EMs) to contain CAT

and thus relieve tumor hypoxia for a long time (3) (Figure 2B). EMs

demonstrated a higher CAT activity than free CAT even in the

concentration of 100-fold protease. Combined with immune

stimulation features, EMs maintained their hypoxia relief ability for

a long time and enhanced radiotherapy.

Song et al. developed a strategy that delivers exogenous H2O2 to

the tumor microenvironment and subsequent CAT-triggered H2O2

decomposition (48). CAT and H2O2 were separately encapsulated

within stealthy liposomes for a long-lasting effect in tumor re-

oxygenation enhancement. Furthermore, the relieved tumor

hypoxia enhanced the therapeutic effects of radiotherapy and

reversed the immunosuppressive tumor microenvironment.

Combined with CTLA4 blockade, the radio-immunotherapy

induced effective anti-tumor immune responses to destruct tumors.

Zhang et al. reported a nanoplatform based on poly(N-vinyl

caprolactam) (PVCL) nanogels (NGs) co-loaded with gold (Au) and

manganese dioxide (MnO2) nanoparticles (NPs) for sensitized

radiotherapy (28). MnO2 displayed the CAT-mimic catalytic activity

that decomposed H2O2 to form O2 and alleviate tumor hypoxia

(Figure 2C). Resulted Mn2+ exerted a Fenton-like reaction to cause

intracellular ROS and made the cells more susceptible to radiotherapy.

Meanwhile, Au NPs and Mn (II) transformed from MnO2 NPs guided

the in vivo radiotherapy through dual mode CT/MR imaging.
4 Biological strategies

Though chemical strategies display a prolonged oxygenmodulation

capacity than physical strategies, the hypoxic environment reappears

once the chemicals are exhausted. Since tumor hypoxia is the outcome
Frontiers in Oncology 06
of abnormal biological behavior of tumor cells, emerging biological

strategies-based oxygen switches may provide exciting opportunities

and should be highlighted (Table 3).
4.1 Oxygen switches to decrease
oxygen consumption

To support accelerated cell proliferation, excessive oxygen

consumed is one of the critical reasons for tumor hypoxia. Thus,

metabolism regulation-based strategies that inhibit tumor aerobic

respiration is promising.

As mitochondria refer to the energy house that consumes oxygen to

generate energy for tumor growth, mitochondria-targeted interventions

are believed to enhance radiotherapy. Gao et al. fabricated a

mitochondria-targeted nano-platform via the integration of a self-

assembled peptide and a positively charged cyclen (62). The

positively charged cyclen anchored to the mitochondria and loaded

lonidamine, which served as the energy stripper of cancer cells,

inhibited energy metabolism and oxygen consumption. Combined

with radiotherapy and endogenous apoptosis pathway, this

mitochondria-targeted intervention led to tumor eradication in vivo.

Recently, therapeutic gases were attractive and found to exhibit

regulation effects. Nitric oxide (NO), hydrogen sulfide (H2S), and

carbon monoxide (CO) were utilized in tumor treatment for their

therapeutic capacity. Duo et al. designed an irradiation-triggered NO-

release nano-prodrug to improve radiosensitization (62). Through the

reaction of sodium nitroprusside and L-glutathione, high content of

NO was released and thus inhibited cell respiration and oxygen

consumption. Then O2 accumulation improved the therapeutic

outcomes under irradiation by generating more ROS in the tumor

microenvironment. Besides, H2S was also employed as an oxygen

switch to remodel oxygen metabolism by inhibiting cytochrome c

oxidase activity in a high-Z metal ion-sensitized radiotherapy (54).
4.2 Oxygen switches to increase
oxygen supply

One important reason for tumor hypoxia is the abnormal blood

vessel. To obtain nutrients for growth and to metastasize, tumor
TABLE 2 Continued

Oxygen
source

Chemical reaction Agent Cancer cell types Advantage Ref.

Endogenous
H2O2

Pt catalyzes the decomposition
reaction of H2O2

Pt2Au4 cluster Cervical carcinoma Sustainable production of O2 by cluster alloying (49)

Endogenous
H2O2

CeO2 catalyzes the decomposition
reaction of H2O2

GDY–CeO2

nanocomposites
Esophageal cancer Multisensitized radiotherapy strategy (50)

Endogenous
H2O2

Catalase catalyzes the
decomposition reaction of H2O2

PLGA-R837@Cat
nanoparticles

Breast cancer and colon
cancer

Synergistic whole-body therapeutic responses after
local treatment

(51)

Endogenous
H2O2

Catalase catalyzes the
decomposition reaction of H2O2

CAT-SAHA@PLGA Colon cancer Synergistically increasing tumor oxygenation and
inhibiting HDAC activity

(52)

Endogenous
H2O2

Carbon substrate catalyzes the
decomposition reaction of H2O2

Hf-MOF Breast cancer peroxidase-like activity and distinct NIR-II
absorption properties

(53)
frontiers
CAT, catalase; A, Apoptin; V, verteporfin; HP, Hollow polydopamine; M, cancer cell membrane; MOF, Metal-organic framework; GDY, 2D graphdiyne.
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blood vessels are leaky, tortuous, and saccular (63). Thus, Tumor

vascular normalization is a promising method to increase blood

perfusion and relieve tumor hypoxia. Wang et al. modified Au NPs

with 8-hydroxyquinoline (HQ) to obtain AuHQ, which attenuated

the expression of angiopoietin-2, vascular endothelial growth factor 2

(56). Moreover, AuHQ treatment increased pericyte coverage and

modulated tumor leakage, which led to increased blood perfusion.

Tumor vascular normalization not only alleviated tumor hypoxia but

also contributed to an increased AuHQ accumulation. Ultimately,

compared to Au NPs, the anti-tumor efficacy of radiotherapy was

increased by 38% in the AuHQ group.

Apart from chemical strategies, generating O2 in situ could be

achieved by biological strategies via a natural photosynthetic system

(64, 65). Qiao et al. engineered RBCM to modify the algal surface and

deliver this RBCM-Algae to the tumor to increase tumor oxygenation

(58). With red light-induced photosynthesis, RBCM-Algae generated

O2 in situ and alleviated tumor hypoxia, and further led to re-

oxygenated radiotherapy. Cyanobacteria were also utilized for

continuous photosynthetic oxygen evolution in a two-dimensional

bismuthene platform with high-Z components, which demonstrated

the photosynthetic hypoxia-alleviation capability and radiosensitization

performance (59). These works exemplified the construction of

microorganism-enabled oxygen switches for radiosensitizer-

augmented radiotherapy.
5 Challenges and perspective

Given the central role of tumor hypoxia in the treatment

resistance to radiotherapy, a various of oxygen switches were
Frontiers in Oncology 07
fabricated based on physical strategies, chemical strategies, and

biological strategies. In this review, we summarized the oxygen

switches designed for hypoxic-tumor radiotherapy. Physical oxygen

switches served as a high-capacity carrier to deliver exogenous O2.

Chemical oxygen switches triggered an in-situ reaction to generate O2

in vivo . Biological oxygen switches reshaped the tumor

microenvironment by regulating biological behavior or introducing

microorganism-mediated photosynthesis. Over the past few years,

prosperous designs gained much attention and gratifying results in

pre-clinical experiments, but there remained several challenges to

be addressed.

The first limitation refers to the efficacy of these oxygen switches.

As known, the hypoxic tumor area is quite complex and exhibits steric

heterogeneity. On the one hand, deepen understanding of the

mechanism of tumor hypoxia and radiosensitization are necessary.

On the other hand, oxygen switches have to improve the O2

concentration continuously and accurately. Bio-mimic encapsulation

was employed in oxygen switches to avoid early leakage and immune

clearance (20). Stimulus-response (near infrared-triggered, irradiation-

triggered, focused ultrasound-triggered, etc.) oxygen switch helped to

achieve spatiotemporal specificity oxygen generation (62). As the

penetration depth of NIR was limited, irradiation-triggered or

focused ultrasound-triggered oxygen switch was worth further

exploration (66). Moreover, novel in-situ microorganism-mediated

photosynthesis could generate O2 continuously. However, it is still a

challenge to prolong the survival time of microorganisms.

Secondly, the biosafety and biocompatibility of these oxygen

switches are of concern. Unexpected Hb exposure can cause severe

side effects including blood clot formation, renal toxicity, and

cardiovascular complications (67). The metal oxide may affect
TABLE 3 Biological strategies-based oxygen switches.

Oxygen
source

Biological
behavior

Agent Cancer cell
types

Advantage Ref.

Reduced oxygen
consumption

Inhibit mitochondria
respiration

Hf-PSP-DTC@PLX Breast cancer Synergistic strategy for improvement of oxygenation and oxygen
utilization

(54)

Reduced oxygen
consumption

Inhibit mitochondria
respiration

AuNCs- PEG-SNP-PM Colon Cancer NO inhibited cell respiration and O2 consumption (55)

Increased blood
perfusion

Remold tumor
vasculature

AuHQ nanoparticles Hepatocellular
carcinoma

Alleviating tumor hypoxia and increased blood perfusion (56)

Increased blood
perfusion

Remold tumor
vasculature

NO depot Melanoma provide low dosage NO continuously and release a large amount of
NO immediately before irradiation for a short time

(57)

Photosynthesis Microalgae-mediated
photosynthesis

RBCM-Algae Breast cancer In situ–generated oxygen and ROS (58)

Photosynthesis Cyanobacteria-
mediated
photosynthesis

Cyanobacteria-loaded
bismuthene nanosheets

Breast cancer
and Lung cancer

Photosynthetic hypoxia-alleviation capability and radiosensitization
performance

(59)

Photosynthesis Cyanobacteria-
mediated
photosynthesis

Photosynthetic
microcapsules

Melanoma Evoked lipid peroxidation, Fe2+ release, GPX4 suppression,
glutathione reduction, and ferroptosis

(60)

Photosynthesis Microalgae-mediated
photosynthesis

Algae@SiO2 Breast cancer PAI/FI dual imaging, radiosensitization, and cascaded photothermal
therapy

(61)

Reduced oxygen
consumption

Inhibit mitochondria
respiration

“Nano-boat” Breast cancer Efficiently induce cancer cell apoptosis by the energy metabolism
inhibition involving multiple pathways

(62)
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intracellular redox homeostasis and induce macromolecule

dysfunction. Especially, CAT-mimic nano-enzyme enables

activating the matrix metalloproteinases in the tumor tissue, which

could lead to inflammation and even tumor metastasis (68).

Introducing microorganism into a human may activate the

unfavorable immune response and induces local microbiome

disturbances (69).

Finally, the coordination of oxygen switches and radiotherapy

should be strengthened. The pharmacokinetics of oxygen switches

should be tailored to the conduction of radiotherapy. Since

radiotherapy is an oxygen-consumed intervention, the amount of

oxygen generated from the oxygen switches has to be precisely

measured to keep the balance of oxygen concentration and reach

the best outcome. Furthermore, the combination of other therapeutic

interventions such as photodynamic therapy and RDT may improve

the utilization efficiency of oxygen.

Researchers paid much effort to the approach of oxygen-enriched

radiotherapy. Nowadays, novel technologies are paving the path to

more precise clinical medicine. Single-cell sequencing helped us

understand how hypoxia is shaped and the evolutionary landscapes

of tumor genomics (70). Nano-robots can follow a specified route and

directionality under control, thus leading to a more precise oxygen

delivery (71). Genome editing may improve the safety and oxygen-

generating capability of microorganisms-mediated photosynthesis (72).

To be concluded, from the first attempt to combat hypoxia for

radiotherapy to enhancement, multiple strategies have been

developed to increase available oxygen. Though different strategies

work on different principles, the efficacy of these oxygen switches has

been widely recognized. However, there remain some obstacles before

clinical translation. With a more in-depth understanding of tumor

hypoxia, we should believe that better radiosensitized oxygen switches

will emerge.
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