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Background: The presence of lymph nodemetastasis leads to a poor prognosis for

prostate cancer (Pca). Recently, many studies have indicated that gene signatures

may be able to predict the status of lymph nodes. The purpose of this study is to

probe and validate a new tool to predict lymph node metastasis (LNM) based on

alternative splicing (AS).

Methods: Gene expression profiles and clinical information of prostate

adenocarcinoma cohort were retrieved from The Cancer Genome Atlas (TCGA)

database, and the corresponding RNA-seq splicing events profiles were obtained

from the TCGA SpliceSeq. Limma package was used to identify the differentially

expressed alternative splicing (DEAS) events between LNM and non-LNM groups.

Eight machine learning classifiers were built to train with stratified five-fold cross-

validation. SHAP values was used to explain the model.

Results: 333 differentially expressed alternative splicing (DEAS) events were

identified. Using correlation filter and the least absolute shrinkage and selection

operator (LASSO) method, a 96 AS signature was identified that had favorable

discrimination in the training set and validated in the validation set. The linear

discriminant analysis (LDA) was the best classifier after 100 iterations of training.

The LDA classifier was able to distinguish between LNM and non-LNMwith an area

under the receiver operating curve of 0.962 ± 0.026 in the training set (D1 = 351)

and 0.953 in the validation set (D2 = 62). The decision curve analysis plot proved

the clinical application of the AS-based model.

Conclusion: Machine learning combined with AS data could robustly distinguish

between LNM and non-LNM in Pca.
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1 Introduction

Prostate cancer (PCa) is one of the most prevalent

malignancies and the second leading cause of death in men in

the United States (1). The incidence of prostate cancer, as well as

its malignancy, increases with aging (1). About 3% patients have

metastases at diagnosis, and the prevalence of metastatic prostate

cancer has been climbing, especially among men aged between 55

and 66 (2). Metastasis is most likely to occur in the lymph nodes

adjacent to the primary tumor, the pelvic lymph nodes (2). Pelvic

lymph node metastasis (LNM) is one of the most decisive factors

associated with post-operation disease recurrence and correlates

with poor prognosis (3–5). The management of TxcN1M0 prostate

cancer is at the crossroads of local and systemic cancer treatment

(6). It is crucial to ascertain the status of lymph nodes and accurate

lymph node staging will provide patients with better treatment

options (7).

By now, there are two major ways to identify the lymph node

metastasis before surgery, including imaging modalities and

nomograms. Even the advanced imaging modalities, like

positron emission tomography/computed tomography (PET/

CT) with prostate-specific membrane antigen (PSMA), show

moderate sensitivities (50–66%) for LNM detection (8).

Nomograms are common clinical predictive models that are

based on imaging, pathological, and clinical parameters. The

area under the receiver operating characteristic curve (AUC) of

three nomograms predicting LNM reported by Partin and

Memorial Sloan Kettering Cancer Center (MSKCC), Briganti,

ranges from 0.778 to 0.793 (9). Although some progress has

been made in predictive models, the performance of these

models needs to be improved. However, other than traditional

methods, there are few tools to detect lymphatic metastasis in

prostate cancer.

In recent years, gene signatures have been reported as a means to

predict lymph node metastasis in lung adenocarcinoma and

endometrial cancer, as well as prostate cancer (9–11). Alternative

splicing (AS), as a specific modality of gene expression, plays a key

role in gene expression regulation and gene mutation modulation,

and even castration resistance of prostate cancer (10–12). AS is

important in carcinogenesis and the immune microenvironment,

which affects the prognosis and treatment response in a variety of

tumors (10, 13–15).

The association between AS and lymph node metastasis has not

been reported previously. The relationship between AS and lymph

node metastasis should be elucidated in order to assess the biological

behavior of AS in tumors in order to provide individualized optimal

treatment to patients.

In this study, we investigated the DEAS events that correlated

with LNM and tried to assess the ability of AS features to detect

LNM and non-LNM in Pca. We hypothesized that LNM would

have a particular AS pattern associated with it when compared to

non-LNM, which could distinguish LNM from non-LNM. We

identified DEAS events and built an AS-based model with

machine learning on a training set and validated its potency on

an internal validation set.
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2 Methods

2.1 Data collection

RNA-seq FPKM (Fragments Per Kilobase per Million) profiles

and clinical information about the status of lymph nodes of the

TCGA prostate adenocarcinoma (PRAD) cohort were acquired from

the TCGA data portal (https://portal.gdc.cancer.gov). The

corresponding RNA-seq splicing events profiles of PRAD were

obtained from the TCGA SpliceSeq (16). In order to get reliable AS

event data, we adopted a rigorous screening filter criteria with a

sample proportion of PSI values of no less than 75% (17). The cases

without the status of lymph node or lack of matched RNA-seq

splicing events profiles were excluded. Finally, there were 413 cases

included in our analysis cohort.
2.2 Identification of differentially expressed
alternative splicing events

The overview of the workflow is shown in Figure 1. The PRAD

cohort was divided into two groups by the presence or absence of

lymph node metastasis. We used the limma package (18) for

differential analysis. An adjusted p value < 0.05 was applied as the

threshold to determine the DEAS.
2.3 Feature evaluation

For the purpose of evaluating and analyzing the whole dataset

structure. We performed unsupervised clustering on the DEAS

feature pool by k-means clustering. Cluster analysis was performed

in order to determine LNM patients clustering patterns without

knowing the results in advance and evaluated by comparing the

clustering outcome with the underlying facts.
FIGURE 1

The flowchart displays the framework of our study. (DEAS: differentially
expressed alternative splicing).
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2.4 Feature selection

The dataset was split randomly into a training set and a

validation set, containing 351 cases in the training set and 62

cases in the validation set (Supplementary Table 1). To lessen

feature redundancy, two feature selection methods were used in

the training set to identify features that might be essential for our

model. In the first step, a correlation filter premised on the

absolute values of pairwise Spearman’s correlation coefficient

was applied. The threshold was set at 0.8 for r. In a nutshell, if

two features have r > 0.8, the function examines the mean absolute

correlation of each feature, and the feature with the higher mean

absolute correlation will be eliminated. In the second step, the least

absolute shrinkage and selection operator (LASSO) logistic

regression algorithm was applied to choose the most optimized

predictive features from the features selected from correlation

filter algorithm.
2.5 AS-based model construction

In this study, we built eight machine learning classifiers, namely

random forest (RF), multi-layer perceptron (MLP), logistic regression

(LR), gaussian naive bayes (GNB), linear discriminant analysis

(LDA), quadratic discriminant analysis (QDA), support vector

machine (SVM), and light gradient boosting machine (LGBM). The

eight machine learning classifiers were trained on the training set,

respectively. To evaluate the performance and overall error estimation

of the eight classifiers, we applied a stratified five-fold cross-validation

method with 100 iterations. Oversampling method was not applied in

this study, as the ratio of positive samples to negative samples is

approximately equal to 1:5. In the training set, each fold in turn was

used as a validation set, and the other four folds were used as a

training set. The validation outcomes from 100 five-fold

cross-validation were then integrated to present a measure of

global performance.
2.6 Statistical analysis and
model explanation

The statistical analysis was performed with the R (version

4.1.2) and the Python (3.9.7) programming languages and

environments with the scikit-learn repository. The LGBM

classifier was built on the lightgbm module. The performance of

the classifiers was assessed by area under the receiver operating

characteristic curve (AUC), accuracy, recall/sensitivity,

specificity,and F1-score. P value of less than 0.05 indicates

statistical significance.

SHAP (SHapley Additive exPlanations) was performed to explain

the model. SHAP is a game theoretic method to explain the output of

any machine learning model (19). SHAP values evaluate the

significance of the output resulting from the inclusion of one

feature for all combinations of other features.
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3 Results

3.1 Overview of AS events in the TCGA
PRAD cohorts

Finally, there were 413 cases included in our analysis cohort, with

336 lymph node negative cases and 77 lymph node positive cases.

44070 AS events were preliminary identified from 10381 genes,

including 3524 AA events in 2488 genes, 3101 AD events in 2185

genes, 9035 AP events in 3621 genes, 8663 AT events in 3781 genes,

16772 ES events in 6578 genes, 228 ME events in 221 genes, 2747 RI

events in 1849 genes (Supplementary Figure 1).
3.2 Identification of differentially
expressed AS events associated with
lymph node metastases

In this work, 333 important DEAS events in 255 genes were

identified by the limma package as being correlated with lymph node

metastasis by comparing LNM and non-LNM cases (Supplementary

Table 2). There were 157 ascending DEAS events and 177 descending

events. Compared with the proportion in all AS types, the proportion

of AT type in DEAS increased more apparently than any other type,

which indicated that AT type may perform a crucial role in tumor

metastasis (Supplementary Figure 1).
3.3 Analysis of the feature set with
unsupervised clustering

Principal component analysis as well as k-means clustering was

used to analyze the whole DEAS feature stream and two clusters were

detected. A 76.6% compactness, the degree to which group members

share similarities, was detected inside the clusters. The established

cluster was validated by applying the silhouette coefficient (silhouette

width), which is an algorithm to evaluate the cluster results. The

silhouette plot showed that the clustering using two groups was

perfect, with no negative silhouette width and the majority of

cluster values greater than 0.03, as shown in Figure 2A. The lymph

node positivity rate was 0.074 in cluster 1 and 0.347 in cluster 2. 76.6%

of LNM were collocated in cluster 2 according to the unsupervised

clustering algorithm (Figure 2B). Most of LNM patients appeared to

be clustered together, potentially suggesting that DEAS is a reliable

data source to distinguish between LNM and non-LNM.
3.4 Features selection

First, 268 key features from 333 DEAS were acquired by using

pairwise Spearman’s correlation filter with a 0.8 correlation coefficient

threshold in the training set. Second, applying the LASSO-based

feature selection method (Figures 3A, B), we further selected 96

crucial features from 268 key DEAS (Supplementary Table 3).
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3.5 Supervised classifier performance

The final selected 96 features were then treated as input layers in

the subsequent classifiers. With stratified five-fold cross-validation on

the training set, we ran 100 iterations on each of the eight distinct

classifiers to evaluate their performance. Performance of the eight

classifiers was shown in Supplementary Table 4. Due to unbalanced

data, we selected the optimal classifier based on F1-score and finally

the LDA model was chosen with the best F1-score performance. The

performance outcome showed that the LDA algorithm achieved an

average AUC of 0.962± 0.026 and an accuracy of 0.929± 0.028, a

specificity of 0.958± 0.024, a sensitivity of 0.812± 0.111, a F1-socre of

0.809± 0.079 on the stratified five-fold cross-validation set

Subsequently, the independent validation set was tested with the

same LDA classifier. An AUC of 0.953 (Figure 4A) was reached by the

classifier. The F1-score, specificity, sensitivity, and accuracy were all

observed to be 0.815, 0.979, 0.917, and 0.919 respectively. In the

validation set, eleven LNM and forty-six non-LNM cases were

accurately detected. In the remaining cases, one LNM and four

non-LNM cases were incorrectly categorized as non-LNM and

LNM, respectively (Figure 4B).

In the validation set, there was a strong agreement between the

observed LNM rate and the model prediction (Figure 4C) revealing
Frontiers in Oncology 04
good discrimination of the classifier. Hence, our model performed

well in the internal testing set. The decision curve analysis (Figure 4D)

demonstrated that the application of the LDA model to predict LNM

in the validation set indicated a greater net benefit increase than the

“treat everyone” or “no treatment” strategic scheme over a wide range

of threshold probabilities, showing the model’s utility in

clinical settings.
3.6 Model explanation

We used SHAP to explain the significance of each feature to the

model output. Summary plot was drawn to display the top 20 features,

which had the most impact on the model output. Figures 5A, B show

how high and low the feature values were relative to the SHAP values in

the training set. The features were listed from top to bottom in

descending order by magnitude of impact on model output, with the

first feature having the greatest influence. The parameter values of each

feature variable are represented in color on the right side of the variable

name, with red representing the high parameter value and blue

representing the low parameter value. The higher the SHAP values,

the higher the probability of lymph nodemetastasis. The reverse applies

when the SHAP values decrease. The feature with the highest value is
A B

FIGURE 3

AS feature selection performed by LASSO analysis. (A) Selection of the tuning parameter l in the LASSO model via 10-fold cross-validation in the training
set. optimal l value of 0.0123, with log (l)= -4.396, was selected based on minimum criteria. (B). LASSO coefficient profiles of the 268 DEAS features.
Vertical dot line was drawn at the optimal value where optimal l resulting in 96 nonzero coefficients.
A B

FIGURE 2

Unsupervised clustering analysis. (A). The elbow curve plot shows that the optimal number of clusters was observed to be two by using K- mean
clustering analysis on the PRAD cohort with the 333 DEAS feature. (B). In the two clusters, cluster two had a 76.6% compactness with LNM. (LNN lymph
node negative, LNP lymph node positive).
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CALCOCO1|22108|RI. The lower feature value of CALCOCO1|22108|

RI, the higher probability of lymph node metastasis, indicating

protecting role of CALCOCO1|22108|RI in LNM.
4 Discussion

Precise prediction of LNM in prostate cancer is significant for its

prognosis and treatment strategies (20). LNM disease has a worse
Frontiers in Oncology 05
prognosis and need comprehensive treatment. 50% patients with

LNM will suffer clinical and/or biochemical progression within 5

years after radical prostatectomy (21). Androgen deprivation therapy

and radiotherapy were currently recommended for LNM disease (20,

22). In recent years, although diagnostic techniques to detect LNM

have improved, there is still no highly accurate approach to

discriminate between patients with and without lymph node

metastases prior to surgery. Extended pelvic lymph node dissection

(ePLND) is still the mainstream approach for detecting LNM. The
A B

FIGURE 5

Illustration of the top 20 features contributing to model output by SHAP values. (A) The relative contributions of each of the parameters to predict the
risk of lymph node metastasis. (B) The relative contributions of each feature for model prediction. Features on the right of the risk explanation bar
pushed the risk higher, and features on the left pushed the risk lower.
A B

DC

FIGURE 4

Performance of the AS-based model in the validation set. (A) ROC curve of the AS-based model in the validation set. (B) Confusion matrix plot for the
AS-based model in the validation set. (C) Calibration plot for the AS-based model in the validation set. (D) Decision curve analysis plot for the AS-based
model in the validation set.
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ePLND is not only a diagnostic method of LNM but also a treatment

option for LNM. Though, LNM is a small part, many non-LNM

patients still have suffered unnecessary ePLND (19, 23).

Recently, the scientific community has increasingly concentrated

their efforts on identifying the most trustworthy approaches to predict

LNM (19, 24). The AUC of normgrams, imaging modalities, and deep

learning models from primary tumor histology ranged from 0.68 to

0.82 (19, 24, 25). Even though, the performance of tools to detect the

LNM has been improved, the need for more accurate methods is

urgent. High-throughput sequencing has greatly enhanced our ability

to gain insight into the root etiology of human disease (26). Genome-

wide profiling analysis has been profoundly analyzed in Pca and has

contributed to more precise and individualized diagnosis, prevention,

and treatment (27–29). Several Genomic-Clinicopathologic

nomograms based on RNA_seq have been reported to predict LNM

in Pca, gastric cancer, bladder cancer and achieved good performance

(30–32). Besides RNA_seq, alternative splicing is another big data

from high-throughput sequencing.

Alternative splicing, the process of cleaving the precursor

messenger RNA (pre-mRNA), discarding introns and splicing

alternative exons, is a crucial procedure in the post-transcriptional

gene expression pathway regulation, which leads to multifunctional

proteins from a single pre-mRNA (10, 33). AS is extensively involved

in many kinds of physiological processes, such as aging, angiogenesis,

mammal spermatogenesis, and cornel development (34–37). In

addition to physiological processes, AS also plays an important role

in tumors. AS changes are constantly observed in many tumors and

treated as of a great significance in tumor progression and therapy

(38). AS is frequently reported in prostate cancer and plays an

important role in prostate cancer progression, castration resistance

(39). However, as of now, no single prediction model of lymph node

metastasis according to AS data has been reported. Hence, we argued

that the types of AS in prostate cancer without lymph node metastasis

are different from those in cancer with lymph node metastasis and

could identify LNM from non-LNM. In our study, we built a model to

predict lymph node metastasis in prostate cancer according to

AS signatures.

In our work, the results show that LNM has a particular AS

pattern when compared with non-LNM and can distinguish LNM

from non-LNM easily. We built a machine learning model to detect

LNM only using the AS signatures. The model consisted of 96 AS

signatures, with AUC of 0.962 ± 0.026 in the training set and 0.953 in

the validation set, respectively. The model also had good sensitivities

in the training set and the validation set. Previously, as mentioned

above, Zhang et al. built a genomic-clinicopathologic nomogram to

predict LNM (30). However, compared to their model, our model has

a better performance with an AUC 0.962 vs 0.947 in the training set

and 0.953 vs 0.901 in testing test. Furthermore, they used RNA_seq

data other than AS data. Radiomics models with machine learning to

predict LNM based on MRI or CT were reported in recent years (40,

41). The AUCs of these radiomics models ranged from 0.915 to 0.950,

which did not show better performance than our AS model. The DCA

analysis shows that our model has good utility in clinical practice. The

specific AS signatures can be identified from biopsy specimens before

surgery. Hence, our model can facilitate to detect the presence or

absence of nodal metastasis at the time of histological diagnosis of

Pca. Using the model, many patients without LNM can be spared
Frontiers in Oncology 06
from ePLND and some patients with LNM can be identified under the

circumstances of being undetectable by imaging methods.

We acknowledge the limitations of our study. Our model was

performed only in a single institution. It is necessary to be validated in

other independent institutions. In addition, since the data of our

model was obtained from surgical specimens, further high-

throughput sequencing from biopsy specimens is warranted to

validate our model.

In summary, we constructed and validated a well-performed AS-

based machine learning model that precisely identified lymph node

metastasis in Pca. This model enables detection of LNM before

surgery, which may optimize integrated tumor diagnosis and

treatment in clinical practice and promote tumor prognosis.
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SUPPLEMENTARY FIGURE 1

Overview of seven types of AS events profiling in the PRAD patients. (A)
UpSet plot of intersections among seven types of AS events in the PRAD

patients. (B) Number of AS events and corresponding parent genes in the
PRAD patients. (C) Pie chart of composition ration of seven AS events in the
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PRAD patients. (D) UpSet plot of intersections among seven types of DEAS
events associated with lymph node metastasis in the PRAD patients. (E)
Number of DEAS events and corresponding parent genes. (F) Pie chart of
composition ration of seven DEAS events. (G) The top 50 DEAS were shown

in the heatmap.

SUPPLEMENTARY TABLE 1

Training set and validation set

SUPPLEMENTARY TABLE 2

The results of differential analysis of alternative splicing.

SUPPLEMENTARY TABLE 3

The 96 AS with their corresponding non-zero coefficients from LASSO results.

SUPPLEMENTARY TABLE 4

The performance of the eight classifiers in the training set with five-fold

cross-validation.
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