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Succinylation is a post-translational modification (PTM) event that associates

metabolic reprogramming with various pathological disorders including

cancers via transferring a succinyl group to a residue of the target protein in

an enzymic or non-enzymic manner. With our incremental knowledge on the

roles of PTM played in tumor initiation and progression, relatively little has been

focused on succinylation and its clinical implications. By delineating the

associations of succinylation with cancer hallmarks, we identify the, in

general, promotive roles of succinylation in manifesting cancer hallmarks,

and conceptualize two working modes of succinylation in driving oncogenic

signaling, i.e., via altering the structure and charge of target proteins towards

enhanced stability and activity. We also characterize succinylation as a

reflection of cellular redox homeostatic status and metabolic state, and bring

forth the possible use of hyper-succinylated genome for early cancer diagnosis

or disease progression indication. In addition, we propose redox modulation

tools such as cold atmospheric plasma as a promising intervention approach

against tumor cells and cancer stemness via targeting the redox homeostatic

environment cells established under a pathological condition such as hypoxia.

Taken together, we emphasize the central role of succinylation in bridging the

gap between cellular metabolism and redox status, and its clinical relevance as

a mark for cancer diagnosis as well as a target in onco-therapeutics.
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Introduction

Succinylation, a post-translational modification (PTM) process that modulates a

protein’s structure by transferring a succinyl group (-CO-CH2-CH2-CO2H) to a residue

of the target protein, is involved in many cellular processes in human life such as

mitochondrial metabolism and thus plays critical roles in various diseases including

cancers (1). Chemical succinylation, though typically occurring on lysine (K), can also

occur on arginine (R) or histidine (H) depending on pH (2). Yet, protein succinylation is

considered a PTM event in vivo on lysine (3).
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The discovery of lysine succinylation stemmed from studies

on acetylation, where a variety of new acylation forms including

succinylation were identified that had substantially enriched the

PTM family (4). In 1961, succinylation was first used as a

method of inhibiting antibody formation to test for

erythematous responses in animals sensitive to dinitrophenyl-

polyline (DNP-polyline) (5). The mechanisms underlying this

antibody inhibition was not elucidated until 1976, when

succinylation was found to alter the electrophoretic mobility,

isoionic pH and conformational shift of ovalbumin in vitro (6).

In 1992, the transcriptional properties of succinylated

nucleosomal cores were reported to be similar to those of

acetylated particles (7, 8). In 2004, lysines were found to be

indispensable for the binding of the succinyl group to the target

proteins (4, 9). In 2011, succinylation was revealed as a naturally

occurring PTM on lysine residues in bacteria (3, 4, 10). Since

then, intensive efforts had been devoted to succinylation, where

proteins targetable by succinylation such as histones, specific

succinylation sites, enzymes catalyzing succinylation and de-

succinylation, as well as the roles of succinylation in both the

physiological and pathological cell states were most frequently

reported (4, 10–17). Investigations using mass spectrometry

(MS)-based proteomic analysis have identified numerous

lysine succinylated proteins localized in the cytoplasm,

mitochondrion, and nucleus, including metabolic enzymes

involved in, e.g., the metabolism of fatty acids, amino acids,

and carbohydrates (18–21). Nowadays, succinylation is known

as a PTM occuring extensively in both prokaryotes and

eukaryotes that plays crucial roles in regulating the

functionalities of various signalings and pathways (17).

Succinylation relies on succinyl-CoA to supply the succinyl

groups, where the succinyl group is added to the ϵ-amino groups

of protein lysine residues (15, 22). Lysine has an innate positive

charge at the physiological pH that can be neutralized by PTMs

such as acetylation, methylation and succinylation, leading to

shifted protein structure and enzymatic properties (3, 10). The

succinate group is larger, i.e., approximately 100.02 Daltons (Da)

(3, 16), than other typical covalent modification groups of lysines

such as acetyl (42.0106 Da) and dimethyl (28.0313 Da) (3, 23).

Thus, the succinate group is bigger than the acetyl or methyl

group, and thus may impose a larger force and impact to the

structure and function of the target proteins (3, 4). In addition,

the charge status of the lysine residue can be shifted from +1 to

−1, 0 and not at all, respectively, by succinylation, acetylation

and mono-methylation at the physiological pH (7.4) (4, 24),

further supporting the possible stronger effect of succinylation

than the other PTMs such as acetylation and methylation.

Given the recognized implications of acetylation and

methylation in cancer diagnosis and therapeutics (25, 26), we

are interested to delineate the roles of succinylation during

tumorigenesis according to the hallmarks of cancer, its

working modes in driving cancer hallmarks and the clinical

relevance of succinylation, with the hope of enriching our
Frontiers in Oncology 02
toolboxes for cancer management and resolving issues

remaining in the field of oncology.
Mechanism and regulation of
succinylation

Succinylation can be either enzymatically or non-

enzymatically (3, 16, 19, 21, 27–29) (Figure 1). Both processes

require succinyl-CoA that can be produced from mitochondria

or peroxisomes (16, 30). While mitochondrially-derived

succinyl-CoA is trapped within the matrix, peroxisome-

generated succinyl-CoA finds its way to the cytosol (31–33).

This makes succinylation possibly occur both on histones and

non-histone proteins.
Enzymatic succinylation

Though our knowledge on the enzymatic system

of succ iny la t ion i s fa r f rom comple te , ca rn i t ine

palmitoyltransferase1A (CPT1A) and lysine acetyltransferase 2A

(KAT2A) are known succinylation ‘writers’ (19, 34), sirtuin 5

(SIRT5) and sirtuin 7 (SIRT7) are erasers of lysine succinylation

(11, 35), and the yeast domain of glioma-amplified sequence 41

(GAS41) is a pH-dependent reader of lysine succinylation (36).

While KAT2A, also known as GCN5, can act as a succinyl-

transferase that forms a complex with the nucleus-localized a-
ketoglutarate dehydrogenase (a-KGDH) to produce succinyl-

CoA (21), CPT1A, initially found responsible for catalyzing the

transfer of the acyl group from coenzyme A (CoA) to L-carnitine

(37), has the succinyl-transferase functionality. Specifically, 171

out of 550 lysine sites were reported succinylated on 101 out of

247 proteins in a CPT1A expression-dependent fashion without

altering succinyl-CoA levels, suggestive of the succinyl-

transferase role of CPT1A (19) that was independent from its

other activities (38).

Mammalian cells express 7 sirtuin proteins, denoted as

SIRT1-SIRT7 (39), among which SIRT5 is the sole de-

succinylase so far recognized to act in all cell compartments

but the de-succinylase activity of SIRT7 is limited in the nucleus

(11). The activity of SIRT5 is influenced by the availability of the

NAD+ (substrate), the amount of nicotinamide (product) (19),

as well as interactions of SIRT5 with other regulators of cellular

energy homeostasis besides sirtuins such as AMP-activated

protein kinase (AMPK) and proliferator-activated receptor g
coactivator-1a (PGC-1a). Notably, PGC-1a upregulates SIRT5

expression, AMPK downregulates SIRT5 activity (40). SIRT5 is a

mitochondrial protein with numerous protein targets being

identified. At least 2,565 succinylation sites on 779 proteins in

mammalian fibroblasts and liver tissues were found to be

regulated by SIRT5 (14). In the absence of SIRT5, the rate-
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limiting enzyme of ketogenesis, 3-hydroxy-3-methylglutaryl-

CoA synthase 2 (HMGCS2), is hyper-succinylated that leads

to suppressed HMGCS2 activity and reduced ketone body

production (15). SIRT5 can reverse the succinylation of

pyruvate kinase M2 (PKM2) at K498, leading to increased

PKM2 activity (41), de-succinylate acyl-CoA oxidase 1

(ACOX1) and isocitrate dehydrogenase 2 (IDH2) in response

to oxidative damage (42, 43), and inhibit the kidney-type

glutaminase (GLS) ubiquitination to regulate mitophagy and

tumorigenesis (44, 45). In addition, novel targets of SIRT5 for

de-succinylation have been consecutively identified such as

mitochondrial uncoupling protein 1 (UCP1) in the brown fat

tissues of mice (46).
Non-enzymatic succinylation process

Several large acyl modifications including succinylation can

occur predominantly by non-enzymatic mechanisms (29, 47).

Succinyl-CoA maintains steady-state concentrations in the

mitochondrial matrix at a low mM range (0.1-0.6 mM).

Supplementing succinyl-CoA with isocitrate dehydrogenase

(IDH) increased succinylation in a pH and dose-dependent

manner (16, 27, 28), suggesting that protein succinylation in

the mitochondria may be a chemical event aided by the alkaline

pH and high concentrations of the reactive acyl-CoAs present in

the mitochondrial matrix without catalytic enzymes (28, 29). In

addition, it was shown that nicotinamide adenine dinucleotide

phosphate (NADPH)-specific IDH mutation resulted in a 280%

increase of cellular succinyl-CoA levels and mitochondrial

hyper-succinylation, implicative of the driving role of succinyl-

CoA and succinate on succinylation within and outside the

mitochondria (13, 17).In other words, succinylation can occur if

provided with sufficient succinyl-CoA supply (17).
Succinylation and cancer hallmarks

According to the five themes covered by the 10 cancer

hallmarks, as established in 2000 (48), revised in 2011 (49),
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imbalanced cell life/death control (represented by ‘sustaining

proliferative signaling’ , ‘evading growth suppressors’ ,

‘resisting cell death’, ‘enabling replicative immortality’),

metastatic transition (‘inducing angiogenesis’, ‘activating

invasion and metastasis ’), metabolic reprogramming

(‘deregulating cellular energetics ’), perturbed immune

homeostasis ( ‘avoiding immune destruction ’ , ‘tumor-

promoting inflammation’), and loss of genome integrity

(i.e., ‘genome instability and mutation’) (25). By delineating

the roles of lysine succinylation in carcinogenesis according

to cancer hallmarks, we propose lysine succinylation as a

reflection of disordered metabolism in histones that drives the

other hallmarks of cancers (Figure 2).
Hyper-succinylation accelerates
glycolysis and promotes tumor growth

Succinyl-CoA, the substrate of succinylation, is produced

from various metabolic processes including the tricarboxylic

acid (TCA) cycle (12) that functions as the hub of energy

generation and production of many biosynthetic pathway

precursors. As succinyl-CoA is a metabolite generated from

the TCA cycle and succinylation is widely spread among

diverse mitochondrial metabolic enzymes as well as

extramitochondrial cytosolic and nuclear proteins, variations

on the protein lysine succinylation level may be a reflection of

different cell metabolic states (51). In general, chromatin

succinylation is correlated with an active transcriptional

program and promotive on aerobic glycolysis and cell

proliferation, and the associations between succinylation and

tumorigenesis have already been established in many studies

(52) such as the tumor-promotive role of phosphoglycerate

mutase 1 (PGAM1) K99 succinylation in liver cancers (53) and

that of fibrillin 1 (FBN1) K672 succinylation in gastric

cancers (54).

Genes encoding critical enzymes of the TCA cycle

especially controlling succinylation such as succinate

dehydrogenase (SDH), once mutated, were reported to be
FIGURE 1

Mechanism of succinylation. (A) Enzymic succinylation. (B) Non-enzymic succinylation. Succinylases such as CPT1A and KAT2A are required in
enzymic succinylation. Sufficient succinyl-CoA supply is a pre-requisit for the occurrence of non-enzymic succinylation. Desuccinylases such as
SIRT5 and SIRT7 are required to erase succinylation marked via both enzymic and non-enzymic pathways.
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associated with carcinogenesis by affecting succinylation and

consequently the integrity and functionalities of the TCA cycle.

Indeed, a quantitative global proteomic study reveals 161

differentially expressed lysine succinylation sites in renal cell

carcinoma (RCC) tissues and significant alterations on the

succinylation levels of phosphoglycerate kinase 1 (PGK1) and

PKM2, suggesting the importance of lysine succinylation in

energy metabolism and the driving role of glycolysis in RCC

progression (55). The a-KGDH binds to KAT2A in the gene

promoter regions to function as a H3K79 succinyl-transferase,

the blockage or suppression of either one of which halts tumor

growth (21, 34, 56). Histone acetyltransferase 1 (HAT1) is

another recently identified succinyl-transferase, which

promotes glycolysis and thus tumorigenesis in, e.g., human

hepatoma cells and pancreatic cancer cells by enhancing the

enzymic activity of PGAM1 via K99 succinylation (57). SIRT5,

a mitochondrial NAD-dependent lysine deacylase, can

suppress the biochemical activities of both the pyruvate

dehydrogenase complex (PDC) and SDH as well as protect

GLS from ubiquitination via de-succinylating GLS, which is

up-regulated in transformed cells to support uncontrolled cell

proliferation (14, 45). Overexpressing SIRT5 can slow the

oncogenic growth of hyper-succinylated human fibrosarcoma

cells that harbor IDH1 mutation, suggesting the effectiveness of

hyper-succinylation inhibition in the control of hyper-

succinylated tumors (13). The succinyl-CoA synthetase ADP-

forming subunit b (SUCLA2) enhances kidney-type GLS K311

succinylation in response to the oxidative stress, which

promotes pancreatic ductal adenocarcinoma cell survival and

growth in vivo by enhancing the production of nicotinamide

adenine dinucleotide phosphate (NADPH) and glutathione to

counteract the oxidative stress (58).
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Succinylation mostly potentiates
cancer metastasis

Succinate can be generated from succinyl-CoA and oxidized

to fumarate by SDH, or from other metabolic precursors such as

the g-aminobutyric acid (GABA) shunt (2, 59) (Figure 3). The

succinyl moiety of succinylation, especially those occurring in

the cytoplasm and nucleus can be originated from succinate (2).

Excess succinates in the cytosol has been considered as a

metabolic signature of hypoxia that is a known trigger of

cancer invasion and metastasis (2, 60). Mechanically,

succinates accumulate within the mitochondria as a result of

reversed SDH activity and inhibited respiratory chain under low

oxygen stress, and these abnormally accumulated succinates are

freely transported to the cytosol via the dicarboxylic acid

translocator in the mitochondrial inner membrane and the

voltage-dependent anion channel (VDAC/porin) in the

mitochondrial outer membrane to stabilize and activate

hypoxia inducible factor 1a (HIF1a) (61).
Lots of evidence have associated hyper-succinylation with

promoted cancer metastasis. For instance, by catalyzing H3K79

succinylation at the promoter region of tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation

protein zeta (YWHAZ) to promote its expression, KAT2A

reinforces the migration and invasion of many transformed

cells such as human pancreatic ductal adenocarcinoma cells

(62), liver cancer cells (63), and glioblastoma cells (21). CPT1A

promotes gastric cancer invasion by acting as a lysine succinyl-

transferase of S100 calcium binding protein A10 (S100A10) (19,

37). In addition, CPT1A succinylates lactate dehydrogenase A

(LDHA) at K222 that leads to reduced LDHA degradation in

gastric cancer and consequently promotes cell invasion (64).

SIRT5 inhibits the activity of the oxoglutarate dehydrogenase
FIGURE 2

The driving role of succinylation on cancer hallmarks. Succinylation is a reflection of reprogrammed metabolism of cancer cells, and drives
cancer hallmarks that are represented by ‘reprogrammed metabolism’, ‘sustained proliferation’, ‘activated metastasis’, ‘perturbed immune
homeostasis’, and ‘loss of genome integrity’.
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(OGDH) complex via de-succinylation and thus suppresses the

epithelial-to-mesenchymal transition (EMT) of gastric cancer

cells (65).

Despite consecutive reports on the promotive role of

succinylation on cancer progression, hypo-succinylation was

revealed to be enriched in enzymes of the metabolic pathways

with a promotive role on cancer migration in esophageal

squamous cell cancer cells by conferring a negative regulatory

role on histone methylation (66).
Succinylation promotes tumor-
associated inflammation

Succinate is a proinflammatory metabolite that was found to

accumulate under certain pathophysiological situations

especially inflammation. SUCNR1, being the receptor of

succinate, is a plasma membrane G protein-coupled receptor

(GPCP) widely expressed in many cells including those relevant

to immune response such as macrophages and dendritic

cells (DCs).

Succinate can tune macrophages to the M1 state that is

inflammation-promotive by secreting pro-inflammatory

cytokines such as interleukin-1b (IL-1b), IL-6, and interferon-

g (IFN-g), whereas alternatively-activated M2macrophages takes

on the opposite role by expressing large amounts of IL-10 (67).

Specifically, succinate is enriched in lipopolysaccharide (LPS)- or

IFN-g-treated macrophages and contribute to IL-1b
transcription towards the M1 phenotype by stabilizing HIF1a
as a result of PKM2 K311 succinylation, and SIRT5 prevents
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dextran sodium sulfate (DSS)-induced colitis by restoring PKM2

activity in a mouse model (68–70). Further, succinate produced

by LPS-activated M1 macrophages can exacerbate inflammation

in an autocrine and paracrine manner through enhanced IL-1b
production in vivo (71). On the other hand, mice lacking

functional SUCNR1 are protected from acute inflammation in

a colitis model, providing supportive evidence on the mediating

role of the succinate-SUCNR1 axis in priming macrophages to

the M1 state (72). In addition, SUCNR1 can synergize with

innate Toll-like receptors to boost inflammatory responses by

promoting proinflammatory cytokine secretion in DCs and

myeloid cells, as well as activating T helper (Th) cells such as

Th17 and attenuating T regulatory cells (71, 73–76).
Succinylation maintains genome integrity
of cancer cells

Succinylation may contribute to the maintenance of genome

integrity of transformed cells and thus lead to onco-therapeutic

resistance. For instance, succinylation of human flap

endonuclease 1 (FEN1), a multifunctional endonuclease

essential for DNA replication and repair, at K200 maintains

genome stability by promoting interactions between FEN1 and

the Rad9-Rad1-Hus1 complex towards a rescued DNA damage

repair ability of both malignant (HeLa) and normal (HEK293T)

cells; though K200 was identified as the key site for FEN1

succinylation as well as other PTM modifications such as

phosphorylation and small ubiquitin like modifier 1 (SUMO-

1) modification, its succinylation was found to be required for
FIGURE 3

Primary sources generating succinate. Succinate is primarily generated from the tricarboxylic acid (TCA) cycle. Succinate can also be produced
via the g-Aminobutyric acid (GABA) shunt or under low oxygen supply that reverses the activity of SDH. SCS, succinyl-CoA synthetase; SDH,
succinic dehydrogenase; a-KGDH, a-ketoglutarate dehydrogenase; IDH, isocitrate dehydrogenase; ACO1, aconitase; CS, citrate synthase; MDH,
malate dehydrogenase; FDH, famarate dehydrogenase; FH, famarate hydratase.
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DNA damage repair, and cells deficient of this modification are

sensitive to DNA-damaging agents such as hydroxyurea (77). In

addition, SDH loss results in accumulated errors originated from

normal DNA replication that predisposes the sensitivity of cells

lacking functional SDH to genotoxic drugs such as gemcitabine

and etoposide (47). On the other side, SIRT7 is associated with

poly (ADP-ribose) polymerase (PARP) 1-dependent DNA

damage repair system, the integrity of which is essential for

cell survival in response to genotoxic stress (35). On SIRT7

depletion, deficient PARP1-dependent DNA repair leads to

failed histone de-succinylation, chromatin hyper-succinylation,

aberrantly elevated levels of DNA damage as represented by

gamma H2A.X over-expression (52). These evidence,

collectively, suggest the role of chromatin hyper-succinylation

in triggering cancer cell resistance to genotoxic agents.
Modes of succinylation driving
cancer hallmarks

Most succinylations so far reported occur on proteins with

oncogenic roles and promote tumor initiation and progression

by increasing the (1) stability or (2) activity of these

targets (Figure 4).
Enhancing the stability of target proteins

Succinylation can protect target proteins from degradation

by blocking protein-protein interactions (PPIs). For example,

FBN1 over-expression is associated with advanced gastric

malignancies that can promote cancer progression by

activating TGF-b1 and PI3K/Akt signaling; succinylation of

FBN1 at K672 is widely distributed in gastric tumors that

blocks its interactions with matrix metallopeptidase 2 (MMP2)

and thus prevents it from MMP2-mediated local degradation
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and collagen remodeling (54). LDHA, an enzyme controlling

lactate production and the Warburg effect, is highy succinylated

at K222 in gastric cancers that prevents K63-ubiquitinated

LDHA from interacting with sequestosome 1 (SQSTM1) and

thus reduces its lysosomal degradation (64).
Enhancing the activity of target proteins

Succinylation can enhance the activity of target proteins. For

instance, PGAM1, a key enzyme of glycolysis, accelerates

carcinogenesis once hyper-activated; aspirin is capable of

attenuating PGAM1 activity by removing its K99 succinylation

in hepatoma cells that ultimately leads to halted tumor

progression (53). Kidney-type GLS is highly represented in

human pancreatic ductal adenocarcinoma specimens, the

activity of which is enhanced after K311 succinylation, leading

to increased glutaminolysis and elevated production of

glutathione and NADPH to counteract oxidative stress for

improved survival of transformed cells (58).
Targeting succinylation via redox
intervention as a promising onco-
therapeutic strategy

Mutations of genes encoding enzymes participating in

mitochondrial metabolism such as SDH, fumarate hydratase

(FH), IDH1/2 can activate the NFE2-related factor 2 (NRF2)

pathway towards enhanced anti-oxidative ability and reduced

ferroptosis of cancer cells by increasing succinate, fumarate, or R

(-)-2-hydroxyglutarate levels that inhibit various a-
ketoglutarate-dependent dioxygenases (78). In addition, altered

mitochondrial metabolism can affect the cellular redox status by

increasing the generation of mitochondrial reactive oxygen
FIGURE 4

Modes of succinylation that drive the manifestation of cancer hallmarks in transformed cells. Succinylation drives cancer traits via two modes,
i.e., enhancing the stability and/or activity of target proteins. As an example of the ‘stability’ mode, FBN1 over-expression promotes cancer
progression by activating TGF-b1 and PI3K/Akt signaling, succinylation of which is widely distributed in gastric tumors that blocks its interactions
with MMP2 and thus MMP2-mediated protein degradation. As an example of the ‘activity’ mode, hyper-activated PGAM1 in hepatoma cells as a
result of succinylation can enhance glycolysis and thus accelerate carcinogenesis. 3-PG, 3-phosphoglycerate; 2-PG, 2-phosphoglycerate.
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species (ROS) that affect the activities of transcription factors

such as HIF1a (78). Therefore, succinate, being a central

metabolite, not only connects several metabolic pathways, but

also regulates the redox homeostasis of mitochondria and the

whole cell (2); and succinylation may be a reflection of cellular

metabolic and redox statuses (Figure 5). That is, a hyper-

succinylated proteome may implicate activated aerobic

glycolysis and a hypoxic cellular environment associated with

stimulated HIF1a signaling that favours fast cell growth. This

makes targeting succinylation via perturbing the redox state of

transformed cells a highly promising and innovative

intervention approach (Figure 5). Notably, non-enzymatic

succinylation is largely associated with altered metabolism in

cancer cells and a reflection of accelerated energy metabolism;

thus, while enzymatic succinylation and its formation process

may serve the purpose for cancer targeting, non-enzymatic

succinylation is more feasible for cancer diagnosis.

Cold atmospheric plasma (CAP), composed of hydroxyl

radical (OH·), singleton oxygen (O), superoxide (O2-), nitric

oxide (NO), hydrogen peroxide (H2O2), ozone (O3), and nitrite

in the form of anion or proton (OONO-, ONOOH) (79, 80), is a

redox modulating tool and a promising onco-therapeutics with

selectivity against malignant cells documented in various cancers

such as melanomas (81, 82), prostate cancers (83), breast tumors

(80, 84), bladder cancers (85), pancreatic cancers (86), liver

carcinomas (87). By imposing a redox stress and elevating

cellular ROS level, CAP may perturb HIF1a signaling and

thus the redox status of transformed cells. This may either

temporarily restore reprogrammed cell metabolism back to the

healthy state (given that accumulated genetic mutation may

consecutively drive cells towards the chaotic state once the

external perturbation was removed) or, and most importantly,
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irreversibly trigger the cell death program such as ferroptosis by

suppressing NRF2 signaling (Figure 5). In support of this

hypothesis, CAP was reported capable of inducing ferroptosis

in human lung cancer cells (88), suggesting the possible

suppressive role of CAP on succinate production and

succinylation due to the intrinsic connections between

succinate and ferroptosis bridged by redox homeostasis (as

mentioned in the beginning of this section).

At the clinical level, succinylation in general or occurring on a

certain protein such as those involved in glycolysis may be

employed as diagnostic markers of the progression status of

malignant cells. This offers us an opportunity for early cancer

diagnosis if the critical succinylation degree to which cells transit

from the healthy to the transformed state was characterized. On the

other hand, therapeutics relying on redoxmodulations such as CAP

may be used as a safe yet effective tool for cancer control. As

transformed cells with enhanced anti-oxidative abilities are typically

more difficult to treat and exhibit traits of cancer stem cells (89),

CAPmay attenuate the stemness of transformed cells and represent

a remedy for cancers lack of effective cure such as glioma and bone

sarcoma. Given these traits, it is also promising that cancers may be

eventually eradicated, to some extent, if CAP was combined with

treatments targeting the bulk tumor cells and used with appropriate

dosing strategy and administrating technology.
Concluding remarks

Through delineating the relationship between succinylation and

cancer hallmarks, we may centre succinylation as a PTM event

reflecting the extent to which cells undergo reprogrammed

metabolism that, ultimately, initiates carcinogenesis and
FIGURE 5

Succinylation reflects cell redox status that sensitizes tumors to redox modulation tools. Metabolism reprogramming in cancer cells as a result
of, e.g., IDH, SDH, FH mutations may lead to elevated levels of succinyl-CoA and succinate. High succinyl-CoA leads to hyper-succinylation;
thus, succinylation is a reflection of reprogrammed metabolism. High level of succinate results in activated NRF2 signaling that is associated
with enhanced anti-oxidant ability of cancer cells (cancer stemness) and resistance of transformed cells to ferroptosis. In addition, abnormal
metabolism is associated with elevated mitochondria ROS generation that is accompanied with activated HIF1a signaling and a hypoxic
environment favoring cell proliferation and metastasis. These collectively result in the manifestation of cancer hallmarks and altered redox
homeostasis in malignant cells. Re-established redox homeostasis in cancer cells differs from that in their healthy peers, leading to the
differential sensitivities of tumor and normal cells to redox perturbation tools such as cold atmospheric plasma (CAP).
frontiersin.org

https://doi.org/10.3389/fonc.2022.1081712
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dai et al. 10.3389/fonc.2022.1081712
exaggerates their uncontrolled proliferation, enhanced migrative

potential, elevated tumor-associated inflammation, as well as

improved genome integration and resistance to DNA-damaging

therapeutics. Succinylation, adding a succinyl-group to the target

protein, alters the functionalities of target proteins by changing their

charges and structures. The impact of succinylation on the target

proteins is expected to be larger than acetylation or methylation

given the bigger mass of the succinyl-group than other common

modifiers. Succinylation takes on its action by enhancing the

stability or activity of proteins with oncogenic roles according to

our knowledge. However, we could not exclude the possibility that

succinylation may be tumor suppressive under certain

circumstances. Hyper-succinylated proteome may be a reflection

of abnormally accelerated metabolism, redox homeostasis under

hypoxia, and programmed cell death featured by ferroptosis.

Investigations on the potential of developing a gradient of

succinylation indexes for cancer early diagnosis and indication of

progression at different stages are of highly clinical relevance.

Translating CAP into the clinics as a novel onco-therapeutic

approach targeting succinylation, alone or together with the

existing strategies targeting the bulk tumor cells, may bring hope

to highly malignant cancers lacking effective cure and shed light on

our way towards cancer eradication.
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