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learning to imaging in
hematological oncology:
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Background: Here, we conducted a scoping review to (i) establish which

machine learning (ML) methods have been applied to hematological

malignancy imaging; (ii) establish how ML is being applied to hematological

cancer radiology; and (iii) identify addressable research gaps.

Methods: The review was conducted according to the Preferred Reporting

Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews

guidelines. The inclusion criteria were (i) pediatric and adult patients with

suspected or confirmed hematological malignancy undergoing imaging

(population); (ii) any study using ML techniques to derive models using

radiological images to apply to the clinical management of these patients

(concept); and (iii) original research articles conducted in any setting globally

(context). Quality Assessment of Diagnostic Accuracy Studies 2 criteria were

used to assess diagnostic and segmentation studies, while the Newcastle–

Ottawa scale was used to assess the quality of observational studies.

Results: Of 53 eligible studies, 33 applied diverse ML techniques to diagnose

hematological malignancies or to differentiate them from other diseases,

especially discriminating gliomas from primary central nervous system

lymphomas (n=18); 11 applied ML to segmentation tasks, while 9 applied ML

to prognostication or predicting therapeutic responses, especially for diffuse

large B-cell lymphoma. All studies reported discrimination statistics, but no

study calculated calibration statistics. Every diagnostic/segmentation study had

a high risk of bias due to their case–control design; many studies failed to

provide adequate details of the reference standard; and only a few studies used

independent validation.

Conclusion: To deliver validated ML-based models to radiologists managing

hematological malignancies, future studies should (i) adhere to standardized,
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high-quality reporting guidelines such as the Checklist for Artificial Intelligence

in Medical Imaging; (ii) validate models in independent cohorts; (ii) standardize

volume segmentation methods for segmentation tasks; (iv) establish

comprehensive prospective studies that include different tumor grades,

comparisons with radiologists, optimal imaging modalities, sequences, and

planes; (v) include side-by-side comparisons of different methods; and (vi)

include low- and middle-income countries in multicentric studies to enhance

generalizability and reduce inequity.
KEYWORDS

machine learning, hematological malignancy, scoping review, artificial
intelligence, radiology
1 Introduction

Radiology is at the forefront of applied artificial intelligence

(AI) due to the digitization and archiving of vast numbers of

radiology images coupled with the availability of high-

performance, low-cost computers. Machine learning (ML) is a

branch of AI that uses computational resources to detect

underlying patterns in high-dimensional, “big” data. ML is

increasingly used in radiology (1) and other medical specialties

requiring predictions such as predicting hypertension (2) or

chronic kidney disease risk (3). ML algorithms have now been

developed and tested in almost every radiological subspecialty,

including X-ray interpretation to reduce turnaround times,

analyzing screening mammograms for breast cancer,

segmenting pulmonary embolism in CT angiography, and

brain tumor segmentation with MRI (4). This is also true in

hematology, where ML has been applied to hematological

malignancy radiology and to cytology, molecular genetics, and

cytogenetics (5). However, there is currently no comprehensive

assessment of ML in hematological oncology radiology.

This scoping review focuses on the application of ML to the

diagnosis and prediction of hematological malignancies using

radiological approaches. It also serves as an exemplar of the

challenges faced when applying ML to diagnostic and predictive

problems in hematology and oncology where computational

approaches would benefit the specialty. ML has already been

applied to other areas of hematology such as cytomorphometry

(identifying and characterizing cell populations based on their

morphology after imaging), cytogenetics (identifying and

selecting individual chromosomes and chromosomal

abnormalities), and immunophenotyping (identification and

characterization of flow cytometry cell populations based on

light-scattering properties and antigen expression patterns) (5).

ML has also been applied to every other area of clinical oncology

including automated histopathological analysis, molecular

subtyping, prognostication and predicting responses to
02
therapies using clinical and/or biomarker data (genomic and

transcriptomic), and precision oncology (such as the inference of

genomic traits from histopathological images) (6). Therefore,

many of the principles underlying the application of ML to

hematological oncology radiology—and the challenges and

conclusions—will be of interest to every clinician since all

patient care is likely to be impacted by rapid developments in

this field.
1.1 A brief overview of machine learning
and some important definitions

For an excellent overview of ML in radiology, see (4). For the

purposes of this scoping review, ML refers to the automatic

detection, or learning, of patterns and associations within data

using computational resources and algorithms (a series of steps,

often mathematical equations, designed to solve a problem). In

the context of imaging, by applying an ML algorithm to images

(such as CT, MRI, or FDG-PET images) and given some prior

knowledge about these images (such as whether they contain a

benign or malignant tumor), the algorithm can learn from

training images and apply this knowledge to unseen images to

make a prediction. Hopefully, as the parameters in the equations

are optimized, the prediction improves, i.e., the algorithm learns.

From this basic description of ML, we can describe a set of

definitions to help understand the ML literature. The model

represents the rules, numbers, and any other algorithm-specific

data structures required to make predictions after running an

ML algorithm on training data. Labels refer to the “correct”

answer assigned to the images or parts of the images, such as the

presence of a lymphoma or the boundary of a diseased node.

When the label is assigned to a group of pixels, this is known as

classification. Training refers to the ML model learning from

labeled data until it can no longer improve, while the validation

set refers to a second set of data to which the model is applied to
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provide an unbiased estimate of the skill of the final tuned model

when comparing or selecting between final models. In some

cases, a third set of examples is used for “real-world” testing,

known as testing, although, confusingly, the terms “validation”

and “testing” are often used interchangeably. The application of

the model to a third (preferably independent) set of data helps to

ensure that the model generalizes with high accuracy to new,

unseen data. Since the label in many medical applications is

known (i.e., presence or absence of lymphoma), these models

tend to be supervised as opposed to unsupervised, where the

output is unknown and generated by the model itself. Finally, the

data used to construct ML models are called features, which

might be pixel values or variations, edge strengths, or any other

numerical value derived by radiomics—a method that extracts

huge numbers of features from medical images using data-

characterization algorithms. For medical applications, non-

imaging features may also be used such as a laboratory test

value or clinical parameter such as age or gender.

Many different types of the ML model have been used in

radiology research. These include decision trees [DTs; and their

adaptation, random forests (RFs)], support vector machines

(SVMs), and artificial neural networks (ANNs), complete

descriptions of which can be found in (4). For the purposes of

this review, it is useful to know that SVMs tend to generalize well

to unseen data and work well with complex (multidimensional)

data but can be hard to interpret (7, 8) and that ANNs—inspired

by neural connections in the human brain—are computationally

expensive and represent a “black box.” That is, the way in which

they performed the classification is not known; thus, they are

therefore difficult to interpret clinically (7, 8).
1.2 The clinical imperative for using ML
in the hematological cancer radiology

There are several intuitive areas in which ML can be applied

to hematological malignancy imaging: diagnosis, segmentation,

and prognostication or therapeutic response prediction.

1.2.1 Clinical rationale for developing ML-
based diagnostic models

While the morphological features of lymphomas and other

benign and malignant neoplasms and inflammatory diseases are

usually easy to distinguish, diagnostic difficulties can arise in

certain cases when these appearances overlap. For example, most

glioblastomas (GBMs) exhibit ring-like or heterogeneous

enhancement on MRI with the areas of hypointense necrosis.

Primary central nervous system lymphomas (PCNSLs) show

uniform enhancement and low cerebral blood volumes (CBVs).

Despite these diagnostic features, atypical cases can cause

diagnostic difficulty (for example, non-necrotic GBMs or

necrotic PCNSLs) (9, 10). Furthermore, “hypervascular

PCNSLs” have high CBVs that mimic GBM (11). While
Frontiers in Oncology 03
biopsy can resolve the diagnostic dilemma, this is invasive, can

cause complications, and may be non-diagnostic, particularly if

steroids have lysed lymphoma cells (12). While complex imaging

protocols including quantitative diffusion-, perfusion-, and

susceptibility-weighted imaging; texture analysis; or their

combination may increase diagnostic yield, a sufficiently

accurate automated analysis of routine diagnostic images with

ML could help diagnostic decision-making. It is essential to

make the correct diagnosis, with minimal resources, and with

minimal harm to the patient, since PCNSL and GBM are

managed differently: methotrexate-based chemotherapy with

or without radiotherapy for the former and surgical resection

with radiochemotherapy for the latter (10, 13). Similar

diagnostic difficulties occur at other sites including

differentiating thymic neoplasms (usually surgical treatment)

from lymphoma (medical management) (14) and differentiating

breast carcinoma from lymphoma (15).

A second major application of ML techniques is to improve

the detection and monitoring of hematological malignancies for

accurate diagnosis, treatment, and staging. For example, the

FDG-PET/CT images of lymphomas and multiple myeloma can

be difficult to interpret due to low avidity, unusual distribution

patterns [particularly diffuse disease in multiple myeloma (16)

and leukemia (17)], or motion/attenuation artifacts, especially

for inexperienced readers. Algorithms to support diagnostic

decision-making would therefore be helpful (16, 18).

1.2.2 Clinical rationale for developing ML-
based segmentation models

Total metabolic tumor volume (TMTV)—the quantification

of the metabolically active volume of tumor assessed by FDG-

PET/CT—is prognostic for many hematological malignancies

including Hodgkin (19) and non-Hodgkin (20) lymphomas.

Some patients are resistant to therapy or relapse, and it is

difficult to identify this subset with existing prognostic indices

[such as the international prognostic index (IPI) or international

prognostic score (IPS) for HL]. New, accurate prognostic indices

to drive personalized treatment approaches are still needed.

While TMTV might form a valuable component of a

prognostic algorithm, its computation currently requires the

marking, often manually, of many regions of interest (ROIs).

This is time-consuming and operator dependent, also

contributing to error, and several non-standardized

approaches are currently used to threshold and segment

lesions, e.g., SUV ≥41%, SUV ≥2.5, or SUV ≥ mean liver

uptake. ML approaches lend themselves to automating and

standardizing this task by learning the most important

imaging features while subtracting physiological uptake. This

is challenging since the algorithms must handle low-resolution

PET and the partial volume effect (loss of signal in small areas

due to limited resolution), the high distribution variability of

lesions, and the recognition and subtraction of physiological

uptake in different organs.
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1.2.3 Clinical rationale for developing ML-
based prognostic/predictive models

As noted above, not all patients respond to therapy; for

example, only ~60% of diffuse large B-cell lymphoma (DLBCL)

patients benefit from current therapies and ~15% experience

primary treatment failure and a median survival of under 1 year

(21). Identifying these patients would allow the tailored addition

of emerging therapies such as chimeric antigen receptor T-cell

(CAR-T) therapy in patients most likely to fail first-line therapy.

However, it is becoming increasingly clear that identifying and

quantifying variability in and between lesions in the same

patient, i.e., tumor heterogeneity, is as important as

quantifying the amount of tumor since the molecular and

microenvironmental differences reflected by this heterogeneity

contribute to progression (i.e., prognosis) and therapeutic

responses (22). Since ML can detect underlying patterns in

high-dimensional data that are invisible to humans, it is

hypothesized that ML can better interpret the quantitative and

spatial data embedded in radiology images reflecting tumor

heterogeneity. Associating these previously unseen patterns

with the outcomes of interest such as survival or therapeutic

response is then expected to identify the future clinical course of

individual patients.
2 Objectives

Radiologists managing patients with hematological cancers

are faced with clinical problems defined by known and unknown

imaging features corresponding to disease states or clinical

outcomes. This lends itself to the application of supervised ML

techniques to develop diagnostic or predictive models. We

therefore performed a scoping review of studies using ML

techniques on radiology images to (i) establish which, if any,

ML methods have been applied to hematological malignancy

imaging; (ii) establish the main applications of ML in

hematological cancer radiology; and (iii) identify research gaps

that must be addressed to advance the field.
3 Methods

The Preferred Reporting Items for Systematic Reviews and

Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR)

guidelines were applied (see Supplementary File 1 for the

checklist) (23).
3.1 Rationale for performing a
scoping review

A scoping review methodology (24) was chosen to map the

available evidence since initial literature assessment showed that
Frontiers in Oncology 04
(i) evidence on ML in hematological cancer radiology is only just

emerging; thus, a first impression of this field of research was

appropriate and (ii) available studies are highly heterogenous

and use many ML methods for several purposes/applications

(24). The scoping approach therefore allowed us to (i) identify

the available evidence; (ii) clarify key concepts and definitions;

(iii) examine how research is being conducted, in which

populations, and for what purposes; and (iv) identify

knowledge gaps (24).
3.2 Inclusion and exclusion criteria

Using the population, concept, and context approach (25),

inclusion criteria were (i) pediatric and adult patients with a

suspected or confirmed hematological malignancy undergoing

imaging (population); (ii) any study using ML techniques to

derive models using radiological images for clinical benefit

(concept); and (iii) original research articles conducted in any

setting globally (context). All modeling approaches defined as

ML in the respective papers (such as logistic regression) were

included, with the assumption that the data analysis was almost

wholly computer driven.

Exclusion criteria were any study in which an ML model was

not defined and outcomes were not defined (for prognostic/

predictive studies) and/or not written in English.
3.3 Literature search

The PubMed database was searched to identify literature

meeting the study criteria published in English from inception

to 1 October 2021. The search term used was [((machine

learning) OR (artificial intelligence) OR (decision tree) OR

(neural network) OR (random forest) OR (support vector

machine) OR (radiomics)) AND ((radiology) OR (imaging)

OR (tomography) OR (magnetic resonance)) AND

((hematological malignancy) OR (lymphoma) OR (myeloma)

OR (leukemia))].

Articles were included if they used supervised ML

techniques to interpret diagnostic radiology images in any

patient with a hematological malignancy. Commentaries,

editorials, letters, or case reports were excluded. All abstracts

identified by the initial search were screened for inclusion and

checked for accuracy. Disagreements over inclusion were

resolved by consensus between the researchers.

Data were extracted from papers meeting the inclusion

criteria to populate tables prior to analysis. The data of

interest included study population characteristics; imaging

modalities; ML algorithms used; the methods of model

validation; performance measures such as accuracy, sensitivity,

specificity, and AUC; and direct comparison to other algorithms

or radiologist performance.
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3.4 Quality assessment

No current quality assessment tool specifically addresses ML

methodology, although the Checklist for Artificial Intelligence in

Medical Imaging (CLAIM) is a recently published guideline that

helps authors applying ML to medical imaging applications

present their research optimally (26).

Therefore, for diagnostic studies (including segmentation

analyses), the following CLAIM items were used to assess each

domain of the Quality Assessment of Diagnostic Accuracy

Studies 2 (QUADAS-2) criteria (27): (1) data sources, the

selection of data subsets and how missing data were handled

in the patient selection risk of bias; (2) the measures of

significance and uncertainty and robustness or sensitivity

analysis in the index test risk of bias; (3) sufficient detail to

allow replication about the definition of ground truth, rationale

for choosing the reference standard, qualifications, and

preparation of annotators for the source of ground truth

annotations in the reference standard test risk of bias; and (4)

validation or testing on external data when assessing concerns

regarding the applicability of the index test.

The Newcastle–Ottawa Scale (NOS) (28) was used to assess

the quality of prognostic/predictive studies with scores

converted to AHRQ standards, i.e., good quality: three or four

stars in the selection domain AND one or two stars in the

comparability domain AND two or three stars in the outcome/

exposure domain; fair quality: two stars in the selection domain

AND one or two stars in the comparability domain AND two or

three stars in the outcome/exposure domain; and poor quality:

zero or one star in the selection domain OR zero star in the

comparability domain OR zero or one star in the outcome/

exposure domain.
4 Results and discussion

4.1 Main findings

4.1.1 Identified risk models
A total of 397 studies were identified, of which 53 studies

met the inclusion criteria (Table 1; Figure 1). The most common

reasons for exclusion were (i) ML was not the primary analytical

methodology or the analysis was not computer driven and (ii)

the studies used features from non-imaging data such as

histopathological or cytology images.

All studies were retrospective studies conducted between

2012 and 2021, and 39 (74%) were published in the last 3 years.

There were 14 studies conducted in China, 15 in the UK/Europe,

11 in North America, 5 in South Korea, 4 in Japan, and 2 in the

rest of the world (Tunisia and Turkey); only two were

multicenter, multinational (Germany/USA and Denmark/

USA) studies.
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There were 33 studies that applied ML techniques to

diagnose a hematological malignancy or to differentiate it from

another disease state or malignancy (Table 1); 11 applied ML for

segmentation tasks alone (Table 2), while 9 applied ML to the

problem of prognostication or predicting responses to therapy

(Table 3). These subgroups are considered separately below.
4.2 ML models for diagnostic purposes

4.2.1 Applications
Of the 33 studies that applied ML techniques to diagnose a

hematological malignancy or to differentiate it from another

disease state or malignancy (Table 1), 18 were designed to

establish and train ML models to discriminate gliomas

[predominantly GBM from PCNSL (29–31, 34–37, 40–42, 44,

45, 49, 50, 53–56)] using features extracted from FDG-PET [one

study (29),] or MRI (30, 31, 34–37, 40–42, 44, 45, 49, 50, 53–56)

images. The remaining studies belonged to two major categories:

those developing models to discriminate solid hematological

malignancies from other benign and malignant lesions at other

sites [nasopharyngeal carcinomas from nasopharyngeal

lymphoma (46, 48), idiopathic orbital inflammation from

ocular adnexal lymphoma (33), thymic neoplasm from thymic

lymphoma (14), breast carcinoma from breast lymphoma (15),

lymphoma from normal nodes (43), or multiple myeloma from

bone metastases (51)] and those that detect the location of

hematological malignancies either at diagnosis or during the

disease course [location of (18) or evolving/residual lymphoma

(32) or leukemia (17) or bone marrow involvement with

mult iple myeloma (16, 38, 47, 52) or mantle cel l

lymphoma (39)].

4.2.2 Model development
Many ML techniques were used, and, in some studies,

different modeling approaches were compared on the same

dataset (30, 32, 34, 35, 42, 43, 50, 51, 55). Others developed

models using a single approach or a combination of approaches

in an end-to-end manner (31, 32, 55, 56). The following diverse

ML approaches were used to discriminate lymphomas from

other benign or malignant lesions: support vector machines

(SVMs (29–31, 33–37, 46, 48, 50, 51, 53–55);), linear

discriminant analysis (LDA (14, 15, 30, 34, 37);), logistic

regression (LR (30);), artificial/convolutional neural networks

(A/CNNs (31, 40, 45, 49, 51, 55, 56);), k-nearest neighbors (K-

NNs (34, 51);), naïve Bayes classification (NB (34, 50, 51);),

decision trees (DTs (34);), random forests (RFs (34, 35, 43, 44,

50, 51, 55);), adaptive boosting (34), and gradient boosting (41,

43). The ML approaches used to detect the location of

hematological malignancies either at diagnosis or during the

course of disease were similarly diverse: A/CNNs (18, 32, 48, 77),

SVMs (32, 38), K-NN (32, 38), RF (16, 17, 32).
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TABLE 1 Studies applying machine learning to the diagnosis of lymphoma or to distinguish it from another malignancy.

Reference Country Patient popu- Imaging Learning algorithm Features Diagnostic aim Results Validation Comparison
with radiol-
ogist (or
other)

assessment

: AUC 0.877 (0.798-0.955) No Reader 1: AUC
0.878 (0.807-
0.949)
Reader 2: AUC
0.899 (0.833-
0.966)
Reader 3:
0.0.845 (0.757-
0.933)
SVM
significantly
non-inferior to
human
interpretation

LDA-based models, the AUCs
e validation group were 0.978,
4, 0.977, 0.750, and 0.956; for
SVM-based models, the AUCs
e 0.959 and 0.822; and for LR-
d models, the AUCs were
3 and 0.975

Cohort
randomly
split 4:1

N/A

99.1 cross-validation cohort,
98.2 independent cohort

Cohort
randomly
split 2:1

N/A

uracy 97% 80:20 random
split

N/A
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lations modality

Alcaide-Leon
et al., 2017
(29)

Canada Glioma n=71
PCNSL n=35

PET SVM classifier 11 first-order and
142 second-order
texture features

Distinguish
enhancing glioma
from PCNSL

SV

Chen et al.,
2020 (30)

China GBM n=76
PCNSL n=62

T1
contrast-
enhanced
MRI

LDA, SVM, and LR classifiers Automatic feature
extraction using
lifeX; different
features
according to:
-Distance
correlation
- RF
- LASSO
- eXtreme
gradient boosting
(Xgboost)
- Gradient
boosting decision
tree (GBDT)

Establish and train
the models to
discriminate GBM
from PCNSL with
radiomics features
extracted from T1C
imaging

Fo
in
0.9
the
we
ba
0.9

Chen et al.,
2018 (31)

China GBM=66
PCNSL=30

T1
contrast-
enhanced
MRI

CNN for segmentation, SIFT
for feature extraction, GA to
extract SIFT features, and SVM

496 after GA Establish and train
the models to
discriminate GBM
from PCNSL with
radiomics features
extracted from T1C
imaging

AU
AU

Ferjaoui
et al., 2021
(32)

Tunisia n=50 MRI End-to-end automated
segmentation, feature
extraction, and classification

72 extracted
features

Detect evolving
lymphoma and
residual disease
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M

r
th
6
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3
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C
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TABLE 1 Continued

Reference Country Patient popu- Imaging Learning algorithm Features Diagnostic aim Results Validation Comparison
with radiol-
ogist (or
other)

assessment

C 0.803 (0.725-0.880) with a
sitivity 71.4%, specificity 90.5%

5-fold cross-
validation and
random 4:1
split

Inexperienced
radiologist:
sensitivity of
60.7%,
specificity 57.1%
Experienced
radiologist:
sensitivity of
75.0%,
specificity 67.9%

ining set AUCs 0.910–0.983
ending on classification and
ture selection method
t set AUC 0.787-0.946
ending on classification and
ture selection method

External
validation set
from another
center
Used
heterogenous
MRI protocol,
confirming
robustness

Human readers
AUC 0.825–
0.930

AUC 0.979 discovery, 0.956
ependent validation
M AUC 0.997 discovery, 0.947
ependent validation
AUC 1.00 discovery, 0.953
ependent validation

Validation
cohort
PCNSL had
atypical
appearances

N/A

C 0.90–0.97 training, 0.70–0.95
idation, depending on final
del
C clinical model 0.95

Split sample N/A

(Continued)
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lations modality

(back-propagation ANN, SVM,
K-NN, relevance vectors
machine, and the RF compared
to deep learning based on a
CNN).

Hou et al.,
2021 (33)

China Idiopathic orbital
inflammation n=28
ocular adnexal
lymphoma n=28

Contrast-
enhanced
MRI

SVM with linear kernel 160 textural
features encoded
into BOF
representation

Establish and train a
model to discriminate
IOI from OAL

AU
sen

Kang et al.,
2018 (34)

South
Korea

Training n=70
glioblastomas
n=42 PCNSL
Test n=28 GBM,
n=14 PCNSL

MRI K-NN, naiüve Bayes classifier,
decision tree, LDA, RF,
adaptive boosting, linear SVM,
and radial basis function
support vector machine
classifiers

Selected from 17
first-order
features, 7
volume and
shape features,
162 texture
features, and
1,432 wavelet
features

Establish and train
the models to
discriminate GBM
from PCNSL with
radiomics features
extracted from
routine MRI

Tr
de
fea
Te
de
fea

Kim et al.,
2018 (35)

South
Korea

Training n=86
GBM, n=37 PCNSL
Testing n=57 GBM,
n=28 PCNSL

MRI Minimum redundancy
maximum relevance (mRMR)
algorithm and LASSO for
feature selection, logistic
classifier, SVM, and RF for
classification

15 selected from
127 radiomics
features

Establish and train
the models to
discriminate GBM
from PCNSL with
radiomics features
extracted from
routine MRI

LR
ind
SV
ind
RF
ind

Kirienko
et al., 2020
(14)

Italy n=55 thymic
neoplasm
n=53 lymphoma

CT LDA Selected from 41
LIFEx radiomic
features

Establish and train
the models to
discriminate thymic
neoplasms from
thymic lymphoma
with radiomics
features

AU
va
mo
AU
a
p

s
p

l
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TABLE 1 Continued

Reference Country Patient popu- Imaging Learning algorithm Features Diagnostic aim Results Validation Comparison
with radiol-
ogist (or
other)

assessment

Training: AUC 0.99 (0.86-1.00)
training with Gaussian kernel,
AUC 0.87 (0.77-0.96) training
with linear kernel
75% accuracy on testing

Sample split
by time
periods,
therefore
potentially
biased

N/A

ML: 87.5%, 89.5%, and 88.6%
sensitivity, specificity, and
accuracy vs. 62.5%, 73.7%, and
68.6% for visual inspection
83.3% accuracy independent
validation

Small
validation
cohort split
by time
period (same
institution),
therefore
potentially
biased

N/A

98.9% accuracy Cross-
validation

88.9% from
radiology
reports

AUC 0.996 ± 0.009 with SVM 4:1 split Compares
favorably with
0.867 for blood
serum testing

AUC up to 0.81
Laboratory parameters improved
performance

Split into
training
(n=68) and
test (n=29)
cohorts

N/A

AUCs 0.92-0.95 Images split
into training
(n=189) and
test (n=59)
sets

N/A

(Continued)
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lations modality

Kunimatsu
et al., 2018
(36)

Japan Training n=44
GBM
n=15 PCNSL
Testing n=11 GBM
n=5 PCNSL

T1
contrast-
enhanced
MRI

SVM classifier 67 texture
features

Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI

Li et al.,
2019 (17)

China n=41 (35 training,
6 testing) with
acute leukemia

FDG-PET/
CT

Random forest 2 PET and 1 CT
feature

Identify bone marrow
involvement in
patients with
suspected relapse of
leukemia

Liu et al.,
2012 (37)

UK n=10 GBM, n=8
PCNSL

T1
contrast-
enhanced
MRI

Hybrid method with wavelet
analysis, Gabor wavelet
analysis, SVM, and LDA

2 features Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI

Martıńez-
Martıńez
et al., 2016
(38)

Czech
Republic

n=127 MM CT K-NN and SVM classifier 2 features Differentiating
patients with and
without bone marrow
infiltration

Mayerhoefer
et al., 2020
(39)

USA n=97 mantle cell
lymphoma patients

FDG-PET/
CT

PCA for feature selection
Multilayer perceptron NN for
classification

5 radiomic
components

Differentiating
patients with and
without bone marrow
involvement

McAvoy
2021 (40)

USA GBM
(n = 160) and
PCNSL (n = 160)

MRI 3 CNN models Automated
feature selection

Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI
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TABLE 1 Continued

Reference Country Patient popu- Imaging Learning algorithm Features Diagnostic aim Results Validation Comparison
with radiol-
ogist (or
other)

assessment

AUC 0.90, accuracy 91%, 80%
accuracy in “independent” test set

Independent
test set (n=10
from original
n=30)

Not fully
independent
validation, even
though stated as
such

AUC 0.98 10-fold cross-
validation

0.84 and 0.79
for radiologists

AUC 0.87 for best performing
model

4:1 split with
10-fold cross-
validation

N/A

AUCs between 0.74 and 0.92 5-fold cross-
validation

N/A

AUC 0.95 both training and
testing (RF) and 0.99 and 0.96 for
gradient boosting

7:3 split N/A

(Continued)
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lations modality

Mesguich
et al., 2021
(16)

France n=30 multiple
myeloma patients

FDG-PET/
CT

RF 5 radiomic
features

Identifying diffuse
disease

Nakagawa
et al., 2018
(41)

Japan n=45 GBM, n=25
PCNSL

Contrast-
enhanced
MRI

Univariate logistic regression
and multivariate eXtreme
gradient boosting-XGBoost

48 features Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI

Ou et al.,
2019 (15)

China n=25 breast cancer
n=19 breast
lymphoma

FDG-PET/
CT

LDA Up to 15 clinical,
SUV, and
radiomic features

Establish and train
the models to
discriminate primary
breast carcinoma
from breast
lymphoma

Priya et al.,
2021 (42)

USA n=97 GBM, n=46
PCNSL

MRI First-order histogram features
and multiple linear and non-
linear ML classifiers

Multiple linear
and non-linear
ML classifiers

Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI

Seidler et al.,
2019 (43)

Canada n=10 patients er
group (number of
nodes shown in
brackets)
HNSCC with
metastases (n = 31)
HNSCC with
benign nodes (n =
145)
lymphoma (n = 65)
inflammatory (n =
29)
no lymph node
history (n = 142)

Dual-
energy CT

RF and gradient boosting 6 texture features Prediction accuracy
for distinction of
lymphoma from not
only normal nodes
but also inflammatory
from normal and
benign vs. malignant
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TABLE 1 Continued

Reference Country Patient popu- Imaging Learning algorithm Features Diagnostic aim Results Validation Comparison
with radiol-
ogist (or
other)

assessment

UC 0.97, 0.84, and 0.88 for
mphoma localization to body
art, organ, and subregion,
spectively
.95 classification accuracy

Random split
20:60:20
validation:
training:
testing

N/A

ean AUC of ML 0.921 Nested cross-
validation

0.70-0.76 for
three human
readers

aximum 69.2% accuracy for ML Unlabeled
cases using
the leave-one-
subject-out
method

65.4% and
80.8% for two
human readers
19% increase in
diagnostic yield
when added to
routine human
interpretation

UC 0.80 50 repetitions
of 5-fold
cross-
validation

N/A

.96 classification accuracy None N/A

UC of 0.92 80:20 random
split

AUCs of
radiologists
0.76–0.80

ccuracies between 0.7 and 0.90 5-fold cross-
validation

Not significantly
different to
experienced
radiologist and
radiomics model
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lations modality

Sibille et al.,
2019 (18)

Germany
and USA

n=327 patients with
lymphoma

FDG-PET/
CT

CNN Combinations of
CT, PET, and
maximum
intensity
projection
features

Localization and
diagnosis

A
ly
p
re
0

Suh et al.,
2018 (44)

South
Korea

n=54 PCNSL
n=23 GBM

MRI Recursive feature elimination
and random forest (RF)
analysis

80 radiomics
features

Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI

M

Swinburne
et al., 2019
(45)

USA n=9 GBM
n=9 metastasis
n=8 PCNSL

MRI Support vector classifier (SVC)
and multilayer perceptron
(MLP) models

Automated
feature selection

Establish and train
the models to
discriminate GBM,
PCNSL, and
metastases with
features extracted
from routine MRI

M

Tomita et al.,
2021 (46)

Japan n=17
nasopharyngeal
cancers and n=17
nasopharyngeal
lymphomas

CT SVM 5 combined
texture features

Differentiate between
nasopharyngeal
cancer and
nasopharyngeal
malignant lymphoma

A

Wang et al.,
2021 (47)

China n=186 MM patients CT U-net for segmentation, Faster
R-CNN for detection

U-net for
segmentation

Segmentation and
lesion labeling

0

Wang et al.,
2021 (48)

China n=154 (n=74 SCC
and n=80
lymphomas)

MRI SVM 5 radiomics
features

Discriminate
sinonasal primary
lymphoma and SCC

A

Xia et al.,
2021 (49)

China n=289 PCNSL and
n=153 GBM

MRI CNN Single parameter
(CE-T1WI,
FLAIR, and
ADC)
and
multiparameter

Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI

A
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TABLE 1 Continued

Reference Country Patient popu- Imaging Learning algorithm Features Diagnostic aim Results Validation Comparison
with radiol-
ogist (or
other)

assessment

AUC 0.85 LR
AUC 0.90 NB
AUC 0.87 SVM

10-fold cross-
validation

N/A

ANN best performance (AUC
0.61)
Less accurate at predicting
metastasis subtypes

10-fold cross-
validation,
70:30 split

N/A

Sensitivity 73.5%, Specificity 99.5% 3-fold cross-
validation

N/A

91.1% accuracy Leave-one-out
cross-
validation

N/A

96.4% accuracy Leave-one-out
cross-
validation

N/A

AUC GLM 0.94
AUC MLP 0.99
AUC CNN 0.73 in training;
MLP AUC 0.95 in external
validation but CNN only 0.49

Internal and
external
validation

N/A

(Continued)
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lations modality

(image- and
decision-level
fusion) models

Xiao et al.,
2018 (50)

China n=60 GBM
n=22 PCNSL

MRI SVM, NB, RF 3 features Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI

Xiong et al.,
2021 (51)

China n=47 MM, n=60
metastases

MRI SVM, RF, NB, K-NN, and
ANN

13 features in
T1WI images and
9 features in
T2WI images

Differentiating
between multiple
myeloma and
metastasis subtypes in
lumbar vertebrae

Xu et al.,
2018 (52)

Germany n=12 MM patients FDG-PET/
CT

CNN Automated
feature selection

Bone lesion detection

Yamasaki
et al., 2013
(53)

Japan n=20 GBM
n=20 PCNSL

MRI SVM Luminance range
thresholding

Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI

Yang et al.,
2017 (54)

China n=58 GBM
n=37 PCNDL

MRI SVM Manual feature
extraction

Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI

Yun et al.,
2019 (55)

South
Korea

n=73 GBM, n=50
PCNSL training;
n=18 GBM, n=12
PCNSL internal
validation; n=28
GBM, n=14 PCNSL
external validation

MRI SVM, GLM, or RF
or multilayer perceptron
(MLP) network
End-to-end CNN

Manual feature
extraction

Establish and train
the models to
discriminate GBM
from PCNSL with
features extracted
from routine MRI
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All studies used at least some radiomics features in the models

(from a few to several hundred); most studies used automated

extraction methods, although some used manual feature extraction

(54, 55) and one study included clinical features (15). Only three

studies validated model performance on external datasets (34, 35,

55), the remainder choosing cross-validation approaches or a

random division of the datasets into training and test sets.

4.2.3 Model discrimination and calibration
AUC values or standard accuracies were provided as the

metrics of model performance. No study assessed calibration

(i.e., quantifying the uncertainty). With respect to distinguishing

gliomas from PCNSL, the AUC values were mainly >0.90, with the

occasional study reporting lower values (e.g., 0.85–0.90 and 0.74–

0.92 depending on model type in (50) and (42), respectively, and

0.49 and 0.79 independent external datasets in (55) and (34),

respectively). Where accuracies were reported, they were similarly

usually very high (>90%), except for one study where the

maximum accuracy was only 69.2% for the ML approach.

Likewise, for those studies discriminating lymphomas from other

benign or malignant lesions, the AUC values were generally high

(>0.80), except for one attempt to differentiate multiple myeloma

from metastases in lumbar vertebrae [best AUC (for a CNN) 0.61

(51)]. Those studies examining disease location or presence

reported uniformly good performance (AUCs usually >0.8,

accuracies >85%), except for one study identifying patients with

and without bone marrow involvement with mantle cell
T
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 FIGURE 1

The Preferred Reporting Items for Systematic Revsiews and
Meta-Analysis (PRISMA) flowchart depicting the search strategy.
Figure prepared using the PRISMA Flow Diagram Generator
(http://prisma.thetacollaborative.ca).
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TABLE 2 Studies applying machine learning to segmentation tasks.

Reference Country Number Validation Disease Imaging Learning Ground truth Results Notes

Mean DSC and Jaccard
coefficients (± standard
deviation) in the validations set
were 0.73 ± 0.20 and 0.68 ± 0.21,
respectively
R2 of 0.88 and 0.82 in first and
second cohorts
TMTV was underestimated in
both first and second validation
cohorts
SUVmax currently predicted in
83% of cohort 1 and 33% cohort
2 compared with 92% for two
human readers

Algorithm significantly correlated
with reference TMTV (rho=0.76,
p<0.001)
Dice score 0.73
Predictive of PFS and OS (PFS
hazard ratio: 2.4 and 2.6 for AI-
based and reference TMTVs; OS
hazard ratio: 2.8 and 3.7 for AI-
based and reference TMTVs,
respectively)

Independent validation of CNN
presented in (18)

92% detection of lesions,
retrieved 75% of tumor volume,
but overestimated tumor volume
by 35%

Dice coefficient 0.7115 ± 0.132

Dice score 0.895 training, 0.886
testing
0.97 and 0.96 TMTV and
SUVmax correlations with
radiologist ground truth

(Continued)
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13
of
patients

modality algorithm

Blanc-
Durand
et al., 2020
(57)

France n=733,
n=639 for
training
and n=94
for
validation

n=94 for
validation

DLBCL FDG-PET/
CT

3D deep CNN
based on
open-source
Python
libraries

Ground truth masks were manually
obtained after a 41% SUVmax

adaptive thresholding of lymphoma
lesions

Copobianco
et al., 2020
(58)

France n=280 Nil DLBCL FDG-PET/
CT

CNN trained
on
independent
cohort

The reference TMTV was measured
by two experienced readers using
independent semiautomatic
software after 41% SUVmax adaptive
thresholding of lymphoma lesions

Grossiord
et al., 2017
(59)

France n=43 Leave-one-
out cross-
validation

Lymphoma,
unspecified

FDG-PET/
CT

Random forest
based on
intensity,
shape,
textural, and
spatial features

41% SUVmax in manually placed
ROIs

Hu et al.,
2020 (60)

Germany n=83 80:20 split NK/T-cell
lymphoma

FDG-PET/
CT

Coarse-to-fine
adversarial
segmentation
network

Manual by two radiologists,
otherwise undefined

Jemaa et al,
2020 (61)

USA n=2266
DLBCL
training
n=1124 FL
testing

n=1124 FL
testing

NHL and
NSCLC

FDG-PET/
CT

Cascaded 2D
to 3D CNN

Manual by radiologists, otherwise
undefined
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TABLE 2 Continued

Reference Country Number Validation Disease Imaging Learning Ground truth Results Notes

therwise High volumetric correlation
between automated and manual
segmentations was observed
(TTV: r = 0.88, P < 0.0001; core:
r = 0.86, P < 0.0001)
Median DSC: 0.76

therwise Dice scores 0.95 for both
algorithm and radiologists for
liver segmentation

therwise DeepMedic, achieved the highest
performance across all evaluation
metrics and was comparable to
physician assessment (DSC
approximately 0.70)

Multiple methods, including a 3D
CNN, clustering, and an iterative
threshold method, achieved both
good lesion-level segmentation and
patient-level quantification
performance.
However, thresholding outside
limits defined by inter-physician
agreement

ly placed Median Dice similarity
coefficient between automated
and physician contours was 0.86
Pearson’s R=0.95 between
physician and ML SUVmax.
Pearson’s R=0.88 between
physician and ML MTV,
although slightly underestimated

Excellent agreement with reference
physician PET segmentation

ly placed 100% detection, Dice indices
84.4% compared to manual
segmentation

Mean Dice similarity coefficient
(DSC) of 73%

G, fluorodeoxyglucose; HL, Hodgkin lymphoma; MRI, magnetic resonance imaging; HNL, non-Hodgkin
t; SUV, standardized uptake value; TMVM, total metabolic tumor volume.

K
o
tsyfakis

e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
2
.10

8
0
9
8
8

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

14
of
patients

modality algorithm

Pennig et al.,
2021 (62)

Germany n=43
patients
with
PCNSL

None PCNSL MRI 3D CNN Manual segmentation, o
undefined

Sadik et al.,
2018 (63)

Sweden n=80
lymphoma
patients
(testing)

n=6
validation

Lymphoma FDG-PET/
CT

CNN Manual segmentation, o
undefined

Weisman
et al., 2020
(64)

USA,
Denmark

n=63 newly
diagnosed
NHL
n=27 newly
diagnosed
DLBCL

5-fold cross-
validation

NHL and
DLBCL

FDG-PET/
CT

Thresholding
Clustering
Adaptive
region
growing
DeepMedic
U-net

Manual segmentation, o
undefined

Weisman
et al., 2020
(65)

USA n=100
pediatric
HL

5-fold cross-
validation

HL FDG-PET/
CT

CNN
(DeepMedic)

40% SUVmax in manual
ROIs

Yu et al.,
2018 (66)

France n=8
lymphoma
patients

Not stated Lymphoma
(unspecified)

FDG-PET/
CT

Conditional
random fields

41% SUVmax in manual
ROIs

Yuan et al.,
2021 (67)

China n=45 15-fold
cross-
validation

DLBCL FDG-PET/
CT

CNN Not stated

3D, three dimensional; CNN, convolutional neural network; CT, computed tomography; DLBCL, diffuse large B-cell lymphoma; DSC, Dice similarity coefficient; FD
lymphoma; NSCLC, non-small cell lung cancer; PCNSL, primary central nervous system lymphoma; PET, positron emission tomography; ROI, region of interes
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TABLE 3 Studies applying machine learning for the prognosis/prediction of responses to therapy.

Reference Country Number Imaging Learning Features Disease/ Therapy Outcome Results Validation NOS
(quality)

Response AUC 0.81 3-fold cross-
validation

6 (fair)

PFS AUC of 0.99
(training) and 0.88
(test)

n=64
training,
n=20 test

8 (good)

Survival Final model used
three features
(treatment arm,
hemoglobin, and
SUVmax Bone
Marrow) defined
good and poor
prognosis groups
mean HR 4.3 ±
1.5.

Train-test
sets and
nested cross-
validation

7 (poor)*

OS, PFS Dice coefficient of
0.97 ± 0.03 for
segmentation
Muscle
hypodensity was
associated with
lower OS and PFS,
respectively (HR =
2.80 (95% CI 1.58–
4.95), p < 0.001,
and HR = 2.22
(95% CI 1.43–
3.45), p < 0.001)

n=190 for
training,
n=670 for
validation

9 (good)

HRC status LR two-sequence
model
outperformed
other models
(AUC 0.84)

10
repetitions of
5-fold cross-
validation

8 (good)

(Continued)
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Coskun
et al., 2021
(68)

Turkey n=45 FDG-PET Recursive
feature
elimination
for feature
selection and
LR classifier

14 features Predicting
response to
therapy in
DLBCL

R-CHOP

Guo et al.,
2021 (69)

China n=167 FDG-PET Weakly
supervised
deep learning

128 features
automatically
extracted

Prognosis in
extranodal
natural killer/T-
cell lymphoma,
nasal type

Methotrexate, etoposide,
dexamethasone, and
pegaspargase

Jamet et al.,
2020 (70)

France n=139 FDG-PET/
CT

RSF 17 image features,
5
clinicopathological
features

Multiple
myeloma/
evaluate
prognostic value
of baseline PET
features

Eligible for transplant
(randomized)

Jullien 2021
(71)

France n=656 CT CNN N/A Prognostication
based on
muscle
hypodensity
DLBCL

Obinutuzumab vs. rituximab
(R) in combination with CHOP
(cyclophosphamide,
doxorubicin, vincristine, and
prednisone) or ACBVP (as
above with bleomycin and
vindesine replacing vincristine)
chemotherapy in newly
diagnosed untreated DLBCL

Liu et al.,
2021 (72)

China n=37 HRC
patients
and n=52
non-HRC
patients

MRI Support
vector
machine,
random
forest, logistic
regression

Top three features
in T1, T1, and T1/
T2 images selected
from 217 after
three feature
selection steps

Detecting HRC
patients with
MM

N/A
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TABLE 3 Continued

Reference Country Number Imaging Learning Features Disease/ Therapy Outcome Results Validation NOS
(quality)

i-CD20 Progression-
free survival

AUC 0.83 for
predicting 2-year
survival vs. 0.73 for
radiomic features
alone

7:3 random
split

9 (good)

Refractory
or relapsed
HL

AUC 0.95 for
model vs. 0.78 for
MTV and TLG
and 0.65 for
SUVmax

10:2 split 7 (good)

ib, and
ith or
-cell
by

ce

PFS Average prediction
error 0.36
compared to 0.43–
61 for conventional
approaches

10-fold
cross-
validation

9 (good)

Primary
treatment
failure

AUC 0.83 and 0.79
for the two readers,
respectively,
compared to 0.56
and 0.52 for
“subjective
necrosis” alone

Two readers 6 (fair)

iffuse large B-cell lymphoma; FDG, fluorodeoxyglucose; HRC, high-risk cytogenic; LR,
omography; PFS, progression-free survival; R-CHOP, rituximab, cyclophosphamide,
tandardized uptake value; SVM, support vector machine.
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(LR), decision
tree, k-nearest
neighbor, and
XGBoost

Mayerhoefer
2019 (73)

USA n=107
mantle cell
lymphoma

FDG-PET/
CT

Multilayer
perceptron
neural
network in
combination
with logistic
regression
analyses for
feature
selection

SUVmean, entropy,
lactate
dehydrogenase
level (LDH), white
blood count
(WBC), Ki-67
index and ECOG
performance status

Prognostication Scheduled to receive ant
immunotherapy

Milgrom
et al., 2019
(74)

USA n=251 HL FDG-PET/
CT

SVM 5 radiomic features Primary clinical
outcome was
refractory or
relapsed HL

Chemo(radio)therapy

Morvan
et al., 2019
(75)

France n=66 MM
from a
multicenter
study

FDG-PET/
CT

Random
survival forest
(RFS) and
variable
importance
(VIMP) for
both feature
selection and
prediction

14 clinical, 6
conventional, and
110 textural
features

Progression-free
survival of MM
patients

Lenalidomide, bortezom
dexamethasone (RVD) w
without autologous stem
transplantation, followed
lenalidomide maintenan

Santiago
et al., 2021
(76)

Canada n=26
refractory
patients vs.
n=26 non-
refractory
DLBCL
patients

CT RF 1,218 handcrafted
radiomics features
reduced to 66 +
two additional
features of nodal
site and subjective
necrosis

Predicting
primary
treatment
failure (to R-
CHOP) in
DLBCL

R-CHOP

AUC, area under the (receiver operating characteristics) curve; CI, confidence interval; CNN, convolutional neural network; CT, computed tomography; DLBCL, d
logistic regression; MM, multiple myeloma; MRI, magnetic resonance imaging; NOS, Newcastle–Ottawa scale; OS, overall survival; PET, positron emission t
hydroxydaunorubicin hydrochloride (doxorubicin hydrochloride), vincristine (Oncovin) and prednisone; RF, random forest; RSF, random survival forest; SUV, s
* Zero stars in the comparability domain.
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lymphoma, which achieved AUCs up to 0.81 and required the

inclusion of laboratory parameters to improve performance (39).

4.2.4 Performance of different ML methods
and comparison with radiologist assessment

In studies that compared different ML methods on the same

datasets (30, 32, 34, 35, 42, 43, 50, 51, 55), no single approach

consistently outperformed the others.

All studies comparing model performance with radiologists

or human interpreters reported equivalent (29, 49) or superior

(33, 34, 37, 41, 44, 48) performance using ML approaches, except

for Swinburne et al. (45), who reported a maximum accuracy of

60.2% for the ML approach to discriminate GBM, PCNSL, and

brain metastases with features extracted from routine MRI scans

compared with 65.4% and 80.8% for two human readers.

However, when the algorithm was added to routine human

interpretation, there was a 19% increase in diagnostic yield.

Finally, an SVM-based model (AUC 0.99) compared

favorably with blood serum testing to detect patients with

bone marrow infiltration with multiple myeloma (38).

4.2.5 Quality assessment
The quality of diagnostic studies was assessed by QUADAS-2

criteria (Table 4 and Figure 2). In the patient selection risk of bias

domain, all studies were considered at a high risk of bias since they

needed to be considered as a case–control design because the

outcomes were already known before ML algorithms were

applied. Conversely, all studies were assessed as a low risk of

bias in the index test risk of bias domain because the ground truth

was not visible during computational analysis and algorithm

development defined a prespecified threshold that was

subsequently used in the test phase. In the reference standard

risk of bias domain, while nine studies explicitly stated that the

reference was interpreted without the knowledge of the ML

results, there was uncertainty in the remainder as to whether

reference standard interpretation was independent of the index

test results. For many of these studies, this lack of information also

resulted in uncertainty in the flow and timing domain since the

interval between the index and reference tests was uncertain. In

the index test domain of concern of applicability, five studies

validated the algorithms on external validation cohorts (two via a

temporal split of the data) and were considered to have a low

concern of applicability. All studies were considered to have low

concern about applicability in the patient selection domain, and

one study had high uncertainty about applicability in the reference

standard domain due to the variety of diagnostic techniques used

to define the disease status of the cervical nodes assessed in the

study (43).
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4.3 ML models for segmentation tasks

4.3.1 Applications
A total of 11 studies applied ML to segmentation tasks

(Table 2) in FDG-PET/CT images: 3 applied it to DLBCL (57,

58, 67), 1 to DLBCL and HL (78), 1 to DLBCL and NHL (64), 1

to natural killer (NK)/T-cell lymphoma (60), 1 to HL (65), and 4

to NHL/lymphoma unspecified (59, 61, 63, 66). One study

applied ML to MRI images to segment PCNSL (62).

4.3.2 Model development
CNN-based methods were most commonly applied to

segmentation tasks (eight studies (57, 58, 61–65, 67),), but RFs

(59), adversarial networks (60), and conditional random fields

(66) were also used.

Each study selected a number of different ground truths for

comparison with the ML results, including manual selection

after 41% SUVmax thresholding (57, 58), 41% SUVmax

thresholding in manually placed ROIs (59, 64, 66), manual

segmentation by radiologists but without any further details of

the methodology (60–63, 65), or not stated (67).

Models were validated using random splits (60), cross-

validation approaches (59, 64, 65, 67), separate (but not fully

independent) datasets (57, 61, 63), or validation was unreported

or not performed (62, 66).
4.3.3 Model discrimination and calibration
All studies reported Dice similarity coefficients (DSCs).

These ranged from 0.71 to 0.95, except for Grossiard et al.

(59), which only reported its results descriptively (92% lesion

detection, retrieved 75% of tumor volume but overestimated

tumor volume by 35%). Calibration (i.e., quantifying the

uncertainty) was not assessed in any study.
4.3.4 Quality assessment
QUADAS-2 quality assessment results are presented in

Table 5 and Figure 3. All studies were considered at a high

risk of bias in the patient selection domain and as a low risk of

bias in the index test risk of bias domain due to the case–control

design and blinded ground truth/prespecified thresholds used,

respectively. No study stated whether the reference standard was

assessed independent of the index test results or the interval

between the index and reference tests; thus, the reference

standard and flow/timing biases were deemed unclear. No

study validated the proposed ML algorithms on independent

cohorts; hence, the concern about the applicability of the index

test was deemed uncertain in all cases.
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TABLE 4 Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) assessment for diagnostic studies.

Study Risk of bias Applicability concerns
Patient
selection

Index
test

Reference
standard

Flow and
timing

Patient
selection

Index
test

Reference
standard

Alcaide-Leon et al., 2017
(29)

О О ? О О ? О

Chen et al., 2020 (30) О О ? ? О ? О

Chen et al., 2018 (31) О О ? ? О ? О

Ferjaoui et al., 2021 (32) О О ? ? О ? О

Hou et al., 2021 (33) О О О О О ? О

Kang et al., 2018 (34) О О О О О О О

Kim et al., 2018 (35) О О О О О О О

Kirienko et al., 2020 (14) О О ? О О ? О

Kunimatsu et al., 2018 (36) О О ? ? О О О

Li et al., 2019 (17) О О ? ? О О О

Liu et al., 2012 (37) О О ? ? О ? О

Martıńez-Martıńez et al.,
2016 (38)

О О ? О О ? О

Mayerhoefer et al., 2020
(39)

О О ? ? О ? О

McAvoy 2021 (40) О О О О О ? О

Mesguich et al., 2021 (16) О О О О О О О

Nakagawa et al., 2018 (41) О О ? О О ? О

Ou et al., 2019 (15) О О ? О О ? О

Priya et al., 2021 (42) О О ? О О ? О

Seidler et al., 2019 (43) О О ? О О ? О

Sibille et al., 2019 (18) О О ? О О ? О

Suh et al., 2018 (44) О О О О О ? О

Swinburne et al., 2019 (45) О О О О О ? О

Tomita et al., 2021 (46) О О О О О ? О

Wang et al., 2021 (47) О О ? О О ? О

Wang et al., 2021 (48) О О О О О ? О

Xia et al., 2021 (49) О О ? О О ? О

Xiao et al., 2018 (50) О О ? ? О ? О

Xiong et al., 2021 (51) О О ? ? О ? О

Xu et al., 2018 (52) О О ? ? О ? О

Yamasaki et al., 2013 (53) О О ? ? О ? ?

Yang et al., 2017 (54) О О ? О О ? О

Yun et al., 2019 (55) О О ? ? О О О

Zhang et al., 2021 (56) О О ? ? О ? О

О low risk, О high risk, ? unclear risk.
1 Sample split by time period rather than fully independent.
F
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4.4 ML models for prognostication or
prediction of responses to therapy

4.4.1 Applications
Nine studies applied ML to prognostication or predicting

responses to therapy in patients with hematological

malignancies (Table 3): (i) predicting outcomes (overall

survival or progression-free survival) in patients with

extranodal NK/T-cell lymphoma, nasal type (69), multiple

myeloma (70, 75), DLBCL (71), and mantle cell lymphoma

(73) or (ii) predicting responses to therapy in patients with

DLBCL (68, 76) and HL (74). One study aimed to identify high-

risk cytogenetic (HRC) multiple myeloma patients by applying
Frontiers in Oncology 19
ML toMRI images (72). Six studies used FDG-PET/CT data, two

studies CT data, and one study MRI data.

4.4.2 Model development
Several different ML approaches were applied including a

logistic regression classifier (68, 72), random survival forests

(RSFs (70);), weakly supervised deep learning (69), ANN/CNNs

(71, 73), SVM (72, 74), RF (72, 75, 76), DT (72), K-NN (72), and

XGBoost (72). The models used a range of features including not

only automatically extracted radiomic features but also

clinicopathological variables in two studies (70, 75), laboratory

variables in one study (73), and two additional radiological

features (nodal site and subjective necrosis) in one study (76).
FIGURE 2

Graphical summary of Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) results for diagnostic studies.
TABLE 5 QUADAS-2 assessment for segmentation studies.

Study Risk of bias Applicability concerns
Patient
selection

Index
test

Reference
standard

Flow and
timing

Patient
selection

Index
test

Reference
standard

Blanc-Durand et al.,
2020 (57)

О О ? ? О ? О

Copobianco et al., 2020
(58)

О О ? ? О ? О

Grossiord et al., 2017
(59)

О О ? ? О ? О

Hu et al., 2020 (60) О О ? ? О ? О

Jemaa et al, 2020 (61) О О ? ? О ? О

Pennig et al., 2021 (62) О О ? ? О ? О

Sadik et al., 2018 (63) О О ? ? О ? О

Weisman et al., 2020
(64)

О О ? ? О ? О

Weisman et al., 2020
(65)

О О ? ? О ? О

Yu et al., 2018 (66) О О ? ? О ? О

Yuan et al., 2021 (67) О О ? ? О ? О

О low risk, О high risk, ? unclear risk.
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The models were validated by splitting the data or cross-

validation, and no study tested the models on independent

validation sets.

4.4.3 Model discrimination and calibration
Studies reported model performance with AUCs, hazard

ratios (HRs), or prediction errors. The models developed to

predict survival outcomes could all discriminate survival

differences with the AUCs of 0.83 (73) and 0.88 (test set (69),),

the HRs of 4.3 (70) and ~2 (71) between good and poor

prognosis groups, or an average prediction error for the PFS of

0.36 (75). With respect to responses to therapy, the reported

AUCs for the outcome of interest were between 0.81 and 0.95.

Finally, in the study aiming to identify HRC multiple myeloma

patients (72), the AUC was 0.84 for the LR model. No study

reported calibration statistics.

4.4.4 Quality assessment
Using the NOS, six studies were graded as good, two as

“fair”, and one as “poor”, the latter because the cohorts were not

comparable because the design or analysis did not adequately

control for confounders.
4.5 Strengths and limitations of the
evaluated studies

This scoping review set out to (i) establish which, if any, ML

methods are being used to interpret diagnostic radiology in

patients with hematological malignancies; (ii) establish the main

applications of ML in hematological cancer radiology; and (iii)

identify current research gaps. The review is definitive on the

first two aims. Wide, indeed disparate, ML methods have been

applied to diagnostic radiology images in patients with

hematological malignancies, and there is no consensus on

which, if any, approach best suits a particular application.

With respect to the second aim, these methods have been

applied to three main applications: the diagnosis or
Frontiers in Oncology 20
discrimination of lymphoma from other disease entities, lesion

segmentation to accurately quantify tumor burden in PET-CT

images, and for the prognostication or prediction of

therapeutic responses.

With three-quarters of ML studies in the hematological

oncology radiology arena published in the last 3 years, all the

published literature representing preclinical studies, and no ML

algorithm yet having entered hematological radiology practice,

this scoping review also highlights that the field remains in its

infancy. Most of the presented studies, whether evaluated in

isolation or compared with radiologist assessment, demonstrate

favorable accuracies. Thus, why are these ML algorithms not yet

used in clinical practice, and what areas need addressing to

facilitate widespread clinical adoption? We propose that three

areas must be addressed to progress the clinical application of

ML in this field: (i) improvements in model application,

validation, comparison, and performance evaluation; (ii)

improvements in methodology and reporting standards to

reduce bias and promote comparability; and (iii) broadening

the study populations to improve generalizability.
4.5.1 Model application, validation,
performance evaluation, and comparison

No single ‘best’ ML approach was identified, although some

studies compared different ML approaches on the same datasets.

Only a few studies validated model accuracy on external

datasets, instead splitting the sample or using cross-validation.

This limitation is analogous to that seen in molecular biomarker

development, where the numerous identified candidate

biomarkers for the diagnosis, prognosis, and prediction of

responses to therapy do not reach clinical practice because

they are not validated in independent datasets (79). Without

similar rigorous validation in independent datasets, ML

algorithms are likely to be similarly unsuccessful since cross-

validation approaches do not account for training dataset bias

(e.g., through patient selection or the use of a particular scanner)

nor differences in other target populations. While one solution

might be to increase the sample size to improve predictive
FIGURE 3

Graphical summary of QUADAS-2 results for segmentation studies.
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accuracy (79), this does not substitute for applying the same

algorithm to fully independent datasets derived from different

institutions and geographies. Furthermore, models trained on

larger sample sizes do not necessarily perform better (80). It

would perhaps be more useful to tailor the sample size to a

particular context. In this regard, Riley et al. (81) recently

reported a sample size calculation framework for predictive

models to help plan the application of ML and avoid

underpowered datasets unlikely to yield a meaningful result.

Second, discrimination (i.e., the ability to distinguish a

PCNSL from a GBM as measured by the AUC) is not the only

metric of model performance, nor is it necessarily the most

clinically useful (82). Calibration—that is, establishing the

uncertainty of the risk estimates or classification—is also an

important performance metric, particularly if intended for

clinical use (83). This is most easily understood when ML

models are developed to predict the risk of an event, such as

relapse: a clinically useful model would not unduly over- or

underestimate the risk that a patient will develop a relapse,

which might prompt overtreatment (overestimated risk), or,

conversely, undertreatment and false reassurance. No study

calculated calibration statistics, which is not uncommon in

ML; indeed, in one report, 79% of 71 studies using ML for

clinical prediction failed to address the calibration problem (84).

Given that a highly discriminatory but poorly calibrated model

would have poor clinical utility, one solution might be to report

probability scores for each outcome (e.g., PCNSL or GBM) along

with the calibration statistics of whether the predicted

probability scores match the actual probability scores. A

metric of the probability that a lesion belongs to a certain class

is likely to be much more clinically useful for guiding clinical

d e c i s i on -mak i n g b a s ed on weak and unc e r t a i n

binary classifications.

While all diagnostic/segmentation models were developed

based on a reference standard (radiologist assessment, either

manual or semiautomated), the details of the reference standard

were not always clearly reported, leading to large uncertainty in

the potential for bias. Furthermore, the robustness of the

reference standard, i.e., the stability of the diagnosis under

varying conditions such as different readers, scanners, or

technical protocols, were not reported. This has two main

implications; first, a robust standard is essential for the

development of an accurate model and therefore predictive

performance and (ii) that any developed model may not be

generalizable to other settings.

The lack of a standardized reference standard was

particularly critical for segmentation tasks, where TMTV was

often defined manually without further details of the

methodology or using different thresholds. In addition to

introducing intra- and interobserver variability and

compromising reproducibility, a lack of standardized ground

truth makes a meaningful comparison of different studies

difficult. While ultimately automated segmentations will
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eliminate this variability, a methodology for the assessment of

tumor burden will need to be standardized to limit error and

intercenter variability for clinical development and application.

It is currently unclear exactly which ground truth (e.g.,

SUV ≥41%, SUV ≥2.5, or SUV ≥ mean liver uptake) would be

optimal. Further efforts are required to strictly define TMTV,

standardize volume segmentation methods, and establish

guidelines for the inclusion of tumor-bearing anatomical

regions to optimize a completely automated method.

4.5.2 Methodology and reporting standards
Given the high standards of application, validation,

evaluation, and comparison required to translate ML

algorithms into clinical practice, research must also be

conducted and reported to standards that are likely to facilitate

this translation. Our quality assessments showed that no study

was free of a high risk of bias, particularly due to the process of

model development meaning that they were a case–control

design; this could at least, in part, be mitigated through a

prospective evaluation of independent datasets during

validation. Many studies failed to provide adequate details of

the reference standard, and few studies were applicable due to

the lack of an independent validation step. No study calculated

sample sizes a priori [for the purposes of model development, as

outl ined in (81)]. Other important methodological

considerations not considered include assessing feature

reliability (i.e., that the same features would be extracted under

different conditions, such as scans from a different scanner or a

different scanning protocol) and full reporting of performance

metrics (i.e., a minimum of sensitivity, specificity, positive

predictive value, negative predictive value, and the confusion

matrix for predictive performance; concordance index and Dice

coefficient for survival analysis and segmentation performance,

respectively; R squared, mean squared error, root mean squared

error, root mean squared logarithmic error, and mean absolute

error for regression tasks). For an excellent review of the key

considerations when reading and interpreting an ML paper in

radiology, see the review by Kocak et al. (85).

Recognizing the importance of clear, transparent, and

reproducible scientific communication of the application of

ML to medical imaging, the Checklist for Artificial Intelligence

in Medical Imaging (CLAIM, first published in 2020) (26)

provides a framework to assure high-quality scientific

reporting and addresses many of the limitations outlined

above. None of the studies reported here—despite many being

published within the previous 12 months—used or fully adhered

to CLAIM criteria. In a recent systematic review of CLAIM

compliance in 186 ML radiology studies, the median CLAIM

compliance was 0.40 (IQR 0.33–0.49; calculated as the number

of items satisfied over the number of items applicable),

suggesting significant room for improvement in the design and

reporting of ML studies in radiology; indeed, only 27%

documented eligibility criteria and 49% assessed model
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performance on test data partitions (86). We recommend that all

studies use this checklist from the outset.

4.5.3 Study populations
Overall, study populations were small (n<100 for most

studies) and heterogeneous (e.g., all grades of lymphomas

included). Only two studies were conducted in low- or

middle-income countries [LMICs; Turkey and Tunisia (32,

68)]. Developing and validating models in LMICs would have

the advantage of improving the generalizability (and therefore

utility) of models across the widest range of clinical contexts;

second, disparities between models developed in different

geographical settings could provide valuable new information

about the factors contributing to the variable biology of

hematological malignancies. However, we accept that

generalizing ML models to LMICs is likely to be challenging

since the necessary research infrastructure is often lacking.

Nevertheless, given the potential cost benefits of applying AI

to resource-poor settings, we believe that generalizing to LMICs

is highly desirable and would reduce inequity.
4.6 Implications for clinical practice

While the promising performance of the ML models

presented in this scoping review provides hope for their future

clinical application, clearly, there is still some way to go before

they reach clinical “prime-time” for the reasons described above.

Given the potential for model overfitting and the lack of

independent validation, it is perhaps unsurprising that the

headline AUC values for many of the published models are

high, and a more realistic appraisal of their clinical benefit will

come with time. It is also perhaps worth emphasizing that

although comparing ML algorithms with human interpretation

is desirable and indeed necessary, an imperfect or inaccurate

model does not necessarily imply a lack of clinical value.

Ultimately, these ML tools are likely to be best used not to

replace radiological assessment but rather to facilitate clinical

decision-making, especially for treatment decision-making

based on the AI-driven radiological biomarkers of future

outcomes or therapeutic responses.

This scoping review highlights that achieving the goal of

applying ML to hematological cancer radiology—and ultimately

improve clinical outcomes for our patients—will require

improvements in study design and clear, transparent, and

reproducible reporting. This will not only include reporting

diagnostic accuracy or performance but also confirming that it

is appropriately calibrated and presented to clinicians in such a

way that it can be embedded into clinical practice, for instance,

through the use of well-calibrated probability scores. These

measures are needed to reduce patient and health system risk,

establish trust, and facilitate their widespread adoption. These

steps are also needed to facilitate other essential aspects of real-
Frontiers in Oncology 22
world application and uptake, not least the need to meet

regulatory standards. When intended to diagnose, treat, or

prevent disease, ML-based software is defined as a medical

device under the Food, Drug, and Cosmetic Act (software as a

medical device, SaMD). Regulators, including the Food and

Drug Administration (FDA), have proposed frameworks for

ensuring the safety and efficacy of ML-based SaMDs, which

include establishing that the algorithm has a meaningful clinical

impact (87). Addressing the research gaps identified in this

review would be expected to not only streamline the

regulatory process but also improve the quality and

applicability of the algorithm in real-world clinical practice.
4.7 Study limitations

This study has some limitations. We only searched the

PubMed database; thus, papers in other non-biomedical

databases may have been missed. We only searched for articles

written in English; hence, papers in other languages may not

have been included. Although AUC values and Dice scores

provide an indication of model discrimination, they are not

directly comparable; thus, it is difficult to draw meaningful

conclusions about their general applicability to an application

of interest, such as discriminating GBM for PCNSL. We

identified significant bias and poor or uncertain applicability

in nearly every study, and several prognostic/predictive studies

similarly failed to control for confounders, which may have also

resulted in bias.
5 Conclusions

Several research gaps exist and require filling so that robust

ML-based models can be used to assist the clinical decision-

making of radiologists managing patients with hematological

cancers. These include (i) adhering to standardized, high-quality

reporting guidelines to reduce bias and improve comparability

and generalizability; (ii) validating models in independent

cohorts of sufficient size calculated a priori; (ii) developing a

stricter definition of TMTV and standardizing volume

segmentation methods for segmentation tasks; (iv) establishing

comprehensive prospective studies that include different tumor

grades, comparisons with radiologists, optimal imaging

modalities, sequences, and planes; (v) comparing different

methods on the same cohort to fully explore and report

optimal model generalizability and performance; and (vi)

include LMICs in multicentric study designs to further

enhance generalizability and reduce inequity. While some of

these research gaps are specific to hematological oncology

radiology, others—not least establishing and adhering to ML

reporting standards, independent validation, and method

comparison—are applicable to the application of ML to any
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diagnostic or predictive task in oncology or hematology, such as

predicting outcomes in patients with DLBCL (88). These

identified research gaps should help clinicians and

computational scientists plan their future research to provide

ML-based models that can be applied clinically.
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